








 

3. ONLINE JOINT PROJECT 
SEGMENTATION AND IDENTIFICATION 
3.1 A Sliding Window Based Delayed 
Labeling Method 
A number of statistical methods for text segmentation are based 
on a window method – for each potential boundary Bi, features Fi 
are extracted from a window of words surrounding it, and the 
label Li is set to 1 (boundary) or 0 (non-boundary). The set {(Fi , 
Li)} is then used to train/test a classifier. This method can not be 
directly applied to online joint project segmentation, because (a) 
the words after the current word are not available yet, and (b) the 
characteristic words for different joint project are statistically 
similar so that we can only detect boundaries instead of topics, 
leading to a label bias problem (the number of boundaries are 
relatively small compared with non-boundaries). We propose a 
new delayed labeling method to overcome these problems. 

In each word position wi we define a window wini, which contains 
the information of L words in the history (see Figure 4): 

wini = {{wi},{wi-1, jpi-1, idi-1}, …, {wi-L+1, jpi-L+1, idi-L+1}}, 

where wi is the current word, and {wi-k, jpi-k, idi-k} is a triplet for 
word wi-k where idi-k is the speaker identity and jpi-k is the 
predicted joint project.  

 
Figure 4. The window for current word. 

 

The labeling function of wini is defined as: 
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In other words, we delay the label of a boundary word wi to L 
consecutive words (which are all 1s). 

We use a Support Vector Machine (SVM) as the classifier. To 
train the SVM, we define N features and the N-dimension attribute 
vector of the current window wini is: 

attr_vector(wini) = ( f1(wini), f2(wini), …, fN(wini) ). 

By sliding the window we get the pairs {attr_vector(win1), 
label(win1)}, …, {attr_vector(winM), label(winM)}, which are used 
to train a classifier. 

The trained classifier is used to predict the current joint project 
online. Given a word wi at position i, we first use the window 
based method to generate the attribute vector and input it to the 
classifier, which outputs whether a boundary has occurred within 
the window. We then assign a joint project ID jpi to that word 
based on predicted boundary labels and the joint project ID of its 
previous word jpi-1. After that we slide the window one word 
forward to predict the joint project for the next word. For the first 
word we can assign a random label to it. (See Figure 5 for details.) 

In our algorithm, the joint project prediction error for one word 
will not be propagated, since our online algorithm includes the 
predicted joint project for the previous word as one feature in the 
attribute vector for SVM transition prediction for the current word. 
In this way, for example, if wi is a word in worker 1’s joint project, 
and predicted as in worker 2’s joint project, then at the first true 
transition after wi, our algorithm will not predict this transition, 
since its input attribute vector “tells” it that current joint project is 
“joint project of worker 1”. After this false prediction of a 
transition, the joint projects for the following words will be 
corrected. The random assignment for the first word is an example 
beneficiary of this stable model. We can randomly assign the joint 
project to the first word. If this assignment is wrong, it will be 
rectified when the algorithm sees the feature words of the correct 
joint project. 

3.2 Feature Selection 
There are two types of features we used to segment and identify 
joint projects: lexical features and non-lexical features. Bi-grams 
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Figure 3. An Overview of the multimodal FOA prediction algorithm. wi is the ith spoken word with its speaker 
identification idi; {framed1, framed2, É , framedt} is the video sequence of the dth worker. 
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are used as lexical features: 
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To avoid over-fitting, we collected all possible bi-grams from the 
training data and sorted them by information gain: 
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where H(Label) is the entropy of the label and H(Label | f) is the 
conditional entropy. Bi-grams having the top N information gains 
were chosen as lexical features. 
 

OSI Algorithm 

Training: 

Feature selection based on information gain; 

Generate attribute vectors attr_vector(wini) and label(wini) sliding window 
based delayed labeling method; 

Use {attr_vector(wini), label(wini)} pairs to train an SVM 

Output: Learned model, selected features 

Prediction: 

Input: Learned model, selected features functions, {(w1, id1), …, (wi, idN)} 

Read w1; 

Assign a random joint project, jp1 to w1: 

i := 2 

Do until all words have been processed: 

 Read wi; 

 Generate attribute vector, attr_vector(wini), by window method; 

 Predict by SVM, Labeli=1 if the window contains the transition 
boundary, Labeli=0, otherwise; 

 Assign JPi to wi by: 

 If  JPi-1==worker 1 

  If Labeli-1=0 and Labeli=1 

   JPi==worker 2 

  else 

JPi==worker 1 

  end if 

 else 

  If Labeli-1=0 and Labeli=1 

   JPi==worker 1 

  else 

JPi==worker 2 

  end if 

 end if 

 i := i + 1 

Output : { JP1, …, JPN} 

Figure 5. The online joint project segmentation and 
identification (OSI) algorithm. 

 

There are two non-lexical features, finter and flastJP: 
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Examples of selected features are presented in Section 6.1 The 
OSI algorithm for the one-helper-two-worker condition is 
summarized in Figure 5. 

4. WORKER ACTIVITY RECOGNITION 
Workers’ activities in the circuit assembly task can be classified 
into one of three categories—idle, searching/picking up a part, 
and assembling a part on the breadboard—based on hand position 
in the video: none, pieces-bay, and workspace. (Figure 6) 

Sample Frame Worker’s Activity Hand Position 

 

Idle None 

 

Searching/picking 
up a part 

Pieces-bay 

 

Assembling a part Workspace 

Figure 6. Three categories of worker activity with 
corresponding hand positions. 

We applied background subtraction and modeled the background 
as a dynamic average of the previous frames: 
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where Bt is the updated background after the tth frame Ft is 
processed. α is the learning rate (α = 0.1 in our experiments). 

Given a new frame Ft+1, we first compute its foreground image 
FGt+1 by subtracting the background Bt: 
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Because an activity category depends on hand position 
(upper/lower/none) on the screen, we sum over the row elements 
of FGt+1 and use the resulting vector as the feature vector of the 
input frame: 
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where h is the image height. 

We then train a classifier with the feature vectors and 
corresponding labels (Idle/Searching/Assembling). The trained 
model is used to recognize the worker’s activity. Again we use 
SVM as the classifier. 



5. MULTIMODAL INTEGRATION 
The OSI identifies joint projects immediately after a word is 
spoken and provides information about the worker with whom the 
helper is interacting. A naïve way to predict FOA is to directly 
map the output of OSI to FOA, i.e., the prediction of FOA is 
changed whenever there is a change of joint projects. However, as 
noted earlier, a helper might visually attend to one worker while 
giving instructions to the other. This strategy might make 
collaboration more efficient when a helper assists multiple 
workers at the same time. In three out of the first five sessions, the 
number of FOA segments is only half the number of joint projects 
(see Table 1). In this section we present how we combined 
identified joint projects and workers’ activities to predict FOA. 

Table 1. Number of joint projects and FOA segments for the 
first five sessions in the study (with different participants). 

Session ID # of Joint Projects # of FOA Segments 

S01 24 12 

S02 14 6 

S03 14 20 

S04 25 10 

S05 30 39 
 
Because we did not have sufficient data to train sophisticated 
models such as hidden Markov models, we proposed a simple 
Winner-Takes-All strategy: when a switch of joint project is 
detected, we take the workers’ activities as inputs, predict the 
majority of the FOA in the started joint project, and label the FOA 
in the rest of the joint project as this majority. To train/test a 
classifier, we use features that summarize the recent activities of 
all workers at word wi. 

act_vector(wi) = (P1_Idle, P1_Searching, P1_Assembling, ……  PD_Idle, 
PD_Searching, PD_Assembling), 

where Pd_Activity is the percentage of time the dth worker is in 
Activity (Idle, Searching, or Assembling) over the last 10 seconds. 

We use a KNN classifier (K=3 in the experiments), which is 
memory based and effective when the size of training data is 
small. The distance metric is CHI-Square: 
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This algorithm is summarized in Figure 7.  

6. EXPERIMENTAL RESULTS 
We use the data collected from five sessions of the experiments to 
evaluate two individual modules (OSI, activity recognition) and 
the final FOA prediction performance. There are a helper and two 
workers in each session (D = 2). 

6.1 Joint Project Segmentation/Identification 
Experiments were conducted with a 12-fold cross validation: Each 
time, four sessions were used to train the model and the last 
session was used as the testing data. The SVM classifier was 
implemented by Chang and Lin [6]. The true joint project label for 
each word was coded by hand.  
 

The multimodal integration algorithm 

Training: 

Do until all joint projects have been processed: 

Generate act_vector(wi), where wi is the ending word of the joint 
project; 

      Compute the majority of the FOA in the next joint project; 

      Save the pair (act_vector(wi), majority) into the memory 

Prediction: 

i := 1 

Do until all words have been processed: 

Read wi; 

Call OSI and get the predicted joint project jpi; 

if jpi ≠ jpi-1 

         Generate act_vector(wi); 

         Find the majority of FOA for the next joint-project use KNN 

          Label the FOA 
i
ĝ =majority 

else 

         
i
ĝ =

1
ˆ
!ig  

            end if 

Output: { 
1
ĝ , …, 

Nĝ  } 

Figure 7. The multi-model integration algorithm. 
One way to evaluate text segmentation is using the WindowDiff 
method [16]. However, because our focus is on how accurately 
the algorithm can identify joint projects, we use the percentage of 
time that the algorithm correctly identifies whether the current 
joint project involves worker 1 or worker 2 as our evaluation 
metric. For our baseline, we chose an algorithm that always 
assigns the joint project to the worker with whom the helper 
interacted  most frequently. As shown in Figure 8, our algorithm 
achieved a high accuracy in segmenting and identifying joint 
projects online, and was significantly better than the baseline (t[11] 
= 18.49, p<0.001). 

 
Figure 8. Accuracies of the OSI algorithm and the baseline. 

To understand the algorithm’s performance, we examined the 
lexical features automatically selected by OSI. Among 227 
candidates (bi-grams that appear more than three times in the 
training corpus) we chose the 25 features with the highest 
information gain. The number of features selected was determined 
by cross validation. Table 2 shows the top 10 features and 



indicates which ones are boundary words (indicating a boundary 
should exist L words before them) and which ones are not.  

Table 2. Top 10 selected features. 

Rank Bi-gram Type 
1 “red worker” Boundary 
2 “for red” Boundary 
3 “for green” Boundary 
4 “and for” Boundary 
5 “green worker” Boundary 
6 “find the” Boundary 
7 “<red/green> find” Boundary 
8 “and put” Non-Boundary 
9 “one of” Non-Boundary 
10 “step <digit>” Boundary 

 

Helpers often used the color of the workers’ tables to address 
them. (e.g., “And now, the red worker …”, “Step 2 for green …”) 
When helpers wanted to switch joint projects, they usually started 
by calling for the attention of the worker to whom they wanted to 
speak by using “red worker”, “green worker”, “for red”, and “for 
green”. The bi-gram “and for” is the first two words in “and for 
red/green (worker)” and is a good marker of the entry into a new 
joint project. The physical task can be decomposed into several 
steps, each of which can be further divided into two sub-steps: 
searching for a part, and putting it in the right place. Therefore, 
“step <digit>”, “find the”, “<red/green> find” always appear in 
the beginning of a joint project (boundary word) whereas “and 
put” appears in the middle (non-boundary word). Figure 9 shows 
an example of how some of these bi-grams were used. 
 

[The conversation with the last worker ends] 

Helper: Now Step 2 for red find the brown, black, orange 
resistor. 
[More details of the resistor] 
Helper: And put one end on number 2 of the IC … 

Figure 9. A short excerpt of conversation. Italicized words are 
bi-grams selected as features. “step 2”, “for red”, “find the” are 

markers of the beginning a joint project and “and put” is a 
marker of being within a joint project. 

6.2 Workers’ Activity Recognition 
We collected 61572 images from 24 workers in 12 sessions. To 
test activity recognition performance, we applied 10-fold cross 
validation. Overall accuracy in predicting the three classes was 
86.13%. The confusion matrix is shown in Table 3. The algorithm 
performs best in predicting the Assembling category, where the 
worker’s hand is positioned on the breadboard. 

Table 3. The confusion matrix for activity recognition. 
Predict 

True Idle Searching Assembling 

Idle 87.87% 4.01% 8.12% 

Searching 16.40% 67.92% 15.68% 

Assembling 5.56% 0.98% 93.45% 

6.3 Focus of Attention Prediction 
In this section we present the results of our FOA prediction 
algorithm. The inputs of the algorithm, as discussed in Section 
2.2.5, are conversations between the helper and two workers and 
the workers’ video streams. We first used the OSI algorithm and 
activity recognition to extract higher level semantics from audio 
and video. We then combined the outputs, joint project ID and 
workers’ activity categories, to predict the helper’s FOA (either 
worker 1 or worker 2) online. The predicted FOA was then 
compared with the true worker ID, as indicated by which worker 
was in focus in the main window. As shown in Table 1, we found 
substantial variation among helpers–some switch FOA much 
more frequently than others. Thus, we built user dependent 
models: for each session we trained and tested the FOA prediction 
with 2-fold cross validation. Accuracy was measured by the 
percentage of time the predicted FOA matched the true FOA. We 
compared the performances of three models: 

• The baseline, which always predicts the output as the more 
frequent worker 

• Uni-modal method, which directly maps the predicted joint 
project to FOA 

• The proposed multimodal algorithm 

Overall accuracies are shown in Figure 10. Both the uni-modal 
(t[11] = 2.20, p=0.05) and multi-modal (t[11] = 4.28, p=0.001) 
methods were better than the baseline. The multi-modal method 
outperformed the uni-modal method (t[11] = 1.98, p=0.07). 

  
Figure 10. Accuracies of the baseline, uni-modal method, and 

multi-modal method. 
 

Combining audio and video leads to significant improvement 
when the joint project and FOA do not match well. The proposed 
algorithm decides whether there is a change in FOA when a new 
joint project is entered by using video information. For example, a 
helper might not need to focus on a worker whose hands are idle, 
or might want to continue watching a worker to ensure that a step 
is completed correctly after a joint project is exited. When joint 
project and FOA do match, our algorithm predicts changes in 
FOA at every joint project transition. Since these helpers did in 
fact change FOA at every joint project transition, both the 
proposed and baseline algorithms work well.  
We define an activity category as dominant if it comprised more 
than 66.6% of the sampled time period (the last 10 seconds). 
Because the number of FOA segments is smaller than the number 
of joint projects for S01, S02, and S04 (Table 1), when a new joint 
project was entered, the helper chose between switching FOA to 
the other worker or remaining with the current worker. We 



calculated switches vs. holds of FOA for times in which the 
Assembling activity was dominant at a joint project transition for 
S01, S02, and S04. When helpers held FOA, it was much more 
likely that the worker’s hand position was in the workspace than 
when they switched FOA to a new worker (Figure 11). This 
suggests that when a worker is busy assembling the circuit, the 
helper will continue gazing at that worker to ensure that the task is 
performed correctly, despite having switched to a new joint 
project with another worker. The classifier enhances the accuracy 
of FOA prediction by taking advantage of this phenomenon. 

 

Figure 11. Proportion of switches and holds of FOA at joint 
project transitions in which Assembling activity is dominant. 

7. CONCLUSIONS 
In this paper we analyzed and predicted helpers’ FOA in a 
multiparty remote physical collaborative task. We implemented a 
video based system to support one-to-many remote collaboration 
and collected multimodal data that we used to build FOA models. 
Dialogue and video were inputs to these models; and the helper’s 
FOA was the output. We presented three modules: a sliding 
window based delayed labeling method to segment and identify 
joint projects online; an activity recognizer based on an adaptive 
background model and an SVM; and a memory-based multimodal 
integration algorithm. Experimental results showed that our joint 
project identification (with an overall accuracy of 92.45%) and 
worker’s activity recognition algorithms (with an overall accuracy 
of 86.13%) were reliable. By combining their outputs, the 
multimodal integration algorithm achieved an accuracy of 81.79% 
in predicting the helper’s FOA online. 
There are several limitations to our study, which we plan to 
address in future work. First, we used party-line audio rather than 
a private line system. How the results will differ in a private-line 
system has to be explored. Second, because patterns of FOA vary 
among users, our FOA prediction model parameters are user 
dependant. When a new user comes, user enrollment and 
adaptation can be applied in practice. Finally, we make decisions 
only about joint project boundaries. With more data we can try to 
build finer-grained models to predict FOA. 
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