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Abstract

Market-based algorithms have become popu-
lar in collaborative multi-agent planning due
to their simplicity, distributedness, low com-
munication requirements, and proven suc-
cess in domains such as task allocation and
robotic exploration. Most existing market-
based algorithms, however, suffer from two
main drawbacks: resource prices must be
carefully handcrafted for each problem do-
main, and there is no guarantee on final solu-
tion quality. We present an optimal market-
based algorithm, derived from a mixed in-
teger program formulation of planning prob-
lems. Our method is based on two well-
known techniques for optimization: Dantzig-
Wolfe decomposition and Gomory cuts. The
former prices resources optimally for a re-
laxed version of the problem, while the latter
introduces new derivative resources to correct
pricing imbalances that arise from the relax-
ation. Our algorithm is applicable to a wide
variety of multi-agent planning domains. We
provide optimality guarantees and demon-
strate the effectiveness of our algorithm in
both centralized and distributed settings on
synthetic planning problems.

1 INTRODUCTION

Multi-agent planning is often naturally formulated as
a mostly factored combinatorial optimization prob-
lem: each agent has its own local state, constraints,
and objectives, while agents interact by competing for
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scarce, shared resources. Such a problem is usually in-
tractable as a centralized optimization problem, as the
joint state over all agents is exponential in the number
of agents. Hence, given the natural factorization over
agents, it is beneficial to seek a distributed solution,
where each agent solves its individual local planning
problem with a fast single-agent planning algorithm.

Market-based planners provide a natural and intuitive
framework to leverage such multi-agent structure to
yield an efficient algorithm for distributed planning in
collaborative multi-agent systems: each agent bids for
resources, using its planner both to decide which re-
sources are worth acquiring and to decide how to use
resources if acquired. Market-based planners impose
low communication costs, are simple to implement,
and have been shown to work well, for example in the
task allocation domain [7, 10, 27]. However, they suf-
fer from several well-known limitations. First, to set
up a good market is something of an art: a human
designer must choose carefully, for every new problem
domain, a set of commodities and a market structure,
tuning both to balance planning effort against subop-
timality. Second, most market-based planners cannot
offer any guarantees on the final overall plan quality.
Finally, most algorithms degrade quickly in the pres-
ence of additional constraints that couple the agents’
solutions, such task ordering constraints or collision
avoidance. (See [8] for a further discussion.)

To address these problems, we design a principled
algorithm which automatically and optimally prices
resources in any domain. We formulate planning
problems as mixed integer linear programs (MILPs);
MILPs are a popular representation not only in ar-
tificial intelligence [26], but also in operations re-
search [20], cooperative control [21, 1], and game the-
ory [22]. The MILP representation lets us easily gen-
eralize the usual task allocation setting to handle com-
plex constraints over multiple agents. Also, the popu-
larity of MILPs makes our method readily applicable,
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since for many problems a MILP formulation already
exists. Finally, MILPs are commonly used to represent
problems of planning under uncertainty (e.g., [20]).
Most market-based planning algorithms do not ac-
count for uncertainty, e.g. in future resource availabil-
ity or future tasks, and therefore can return subopti-
mal plans in such domains; our method therefore holds
the promise of extending optimal market-based plan-
ning to uncertain domains. (Our experimental results
so far are only in deterministic domains, so realizing
this promise remains future work; however, we provide
an example in the Appendix to illustrate the idea).

Our algorithm is based on Dantzig-Wolfe (D-W) de-
composition [3, Ch. 6], a classical column generation
technique for linear programs (LPs), in which the
problem is reformulated into a master program enforc-
ing shared resource constraints, along with subprob-
lems for each agent. The master program corresponds
to the auctioneer in market-based planners, choosing
the resource allocation and giving agents (subprob-
lems) the current prices of the resources. Based on
the current prices, the agents iteratively change their
demands towards a globally optimal solution.

As D-W decomposition is defined only for LPs, we ex-
tend the formulation to MILPs using Gomory cuts [12],
which allows us to retain optimality and finite-time
convergence guarantees. The cutting plane algorithm
generates new constraints to “cut off” the optimal so-
lution of the LP relaxation. Each new constraint can
be interpreted as a derivative resource representing the
discretized consumption level of a combination of the
original resources. Hence its price can represent ideas
like discounts or penalties on particular baskets of re-
sources (see Sec. 4 for examples).

Since subproblems are independent of one another, all
subproblem computation can be distributed for speed
and robustness. While we do not specifically address
machine failure or communication complexity in this
paper, our algorithm is anytime: feasible joint plans
may be generated before reaching the optimal solution,
and if the situation requires, can be executed. Also,
since we consider collaborative domains, the auction-
eer computation may be replicated on multiple ma-
chines (or agents) for redundancy. Finally, our al-
gorithm has low communication requirements, since
agents communicate only when they might contend for
resources, and they never need to communicate their
individual problems or complete plans.

We conduct experiments on randomly-generated fac-
tored integer programs, which are both difficult to
solve and a versatile representation for planning prob-
lems, as well as on simulated unmanned aerial vehi-
cle (UAV) task allocation problems. The experiments

demonstrate that (1) when applicable, market-based
planning can lead to large efficiency gains, outperform-
ing an industrial-strength MILP solver (CPLEX [15])
for large problems, even if we force all computation
to be sequential; and (2) the benefit can become even
greater in distributed settings, where we can take ad-
vantage of each agent’s computational resources with-
out a large communication overhead.

2 RELATED WORK

Collaborative market-based planning has been popu-
lar in particular in robotic task allocation domains [7,
10, 18]. Most such algorithms are based on se-
quential single-item (SSI) auctions, and while older
studies have been mostly empirical, recent work has
shown that SSI auctions give a constant approxima-
tion factor in some types of problems [28]. However,
SSI auctions cannot capture constraints that couple
multiple resources. Combinatorial auctions allow re-
source coupling by having agents bid on bundles of
resources. They have been studied extensively in com-
petitive settings [5], and iterative combinatorial auc-
tions (ICAs) [19] in particular parallel our algorithm:
the auctioneer gives agents the current price of the re-
sources at each round and allows them to rebid, to
hopefully achieve a better solution, and to avoid elic-
iting preferences on all possible bundles of resources.
One can view ICAs as having a predetermined set
of possible derivative resources that is the set of al-
lowed bundles, while our algorithm computes on the
fly which bundles are needed.

Distributed planning algorithms based on decompo-
sition methods have been explored in the machine
learning and planning communities; the most rele-
vant research includes work on hierarchically factored
Markov decision processes (MDPs) [13], loosely cou-
pled MDPs [2], and the approach by Calliess and
Gordon which frames the market-based interactions
as a game between adversarial agents and learning
agents [4]. However, existing works (including [13]
and [4]) employ a decomposition for linear or convex
programs, which limits them to infinitely divisible re-
sources only (although the infinitely divisible solution
can often be a reasonable approximation even in the
presence of discrete resources).

General frameworks for Dantzig-Wolfe decomposition
for mixed integer programming have been explored,
particularly in the operations research community
[23, 25]. Known as branch-and-price (B&P), these
frameworks typically focus on sequential execution.
They use branch-and-bound and sometimes cutting
planes, and at each node of the search tree employ
D-W decomposition to solve a linear program relax-
ation and obtain bounds. If we added branching to
our algorithm, it would fit nicely into this line of re-
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search; however, it is not clear how to do so efficiently
and robustly in a distributed framework. Much atten-
tion has been drawn to the implementation details of
B&P algorithms [24] which would need to be resolved
in the distributed setting; in particular, keeping track
of the branch tree can be tricky, and it is an art to find
good branching strategies. In contrast, our algorithm
is simple to implement and intuitively distributed.

Very limited work exists on applying a decomposition
algorithm for MILPs to distributed planning. Kara-
man et al. [16] claim to apply B&P to UAV task al-
location, but only solve the master as a LP without
branching, and cannot guarantee their solution will
satisfy integral constraints. Holmgren et al. [14] apply
B&P to supply-chain management and guarantee fea-
sible solutions, but forgo optimality as deep branches
make the procedure impractical. Also, they do not
evaluate the algorithm in any distributed manner. To
our knowledge, our combination of D-W decomposi-
tion and cuts, which we found to be a practical and
easily distributed algorithm, has not been explored for
distributed planning.

Thus our main contribution is twofold: first, from the
optimization viewpoint, removing branch-and-bound
from the combination leads to an algorithm that is
much more naturally distributed, without much loss in
efficiency (as seen in our experiments). Second, from
the market-based planning viewpoint, previous work
has not drawn the connection between multi-agent
planning and distributed algorithms for mathemati-
cal programming and pricing resources; by doing so,
our algorithm provides a principled way to introduce
new resources and set their prices, a problem which
has proven difficult in previous research and which has
typically been solved with heuristic methods.

3 ALGORITHM

3.1 Problem Formulation

We formulate multi-agent planning problems as MIPs
in the standard form, factored over n agents:

min
∑

i=1:n

c(xi) (3.1)

s.t.
∑

i=1:n

Aixi = b (3.2)

xi ∈ Ci, i = 1, . . . , n (3.3)

where xi represents the plan for agent i, Ci its domain,
i.e., the set of plans satisfying agent i’s individual con-
straints, and c(xi) its cost. Each xi is a mixed integer
vector (its elements may be integers or reals); for con-
venience we assume that Ci is bounded. (3.2) defines
the shared constraints, where each Ai is a matrix with
the same number of rows, i.e., the number of shared
constraints.

In the following section, we introduce Dantzig-Wolfe
(D-W) decomposition [3, Ch. 6], which is defined for
LPs. We then describe how D-W decomposition can
be combined with a cutting plane algorithm to solve
MILPs.

3.2 Dantzig-Wolfe Decomposition

Consider a problem of the form (3.1-3.3) where each
Ci is convex (relaxed from the presentation above). In
D-W decomposition, we reformulate the program to
consist of a master program and n subproblems. The
master program is defined in terms of the ni basic
feasible solutions x1

i . . . x
ni
i ∈ Ci to each individual

subproblem i; note ni may be very large. Its variables
are wj

i , indicators of whether the individual solution
xj

i is part of the optimal joint solution:

min
∑

i=1:n

∑
j=1:ni

c(xj
i )wj

i (3.4)

s.t.
∑

i=1:n

∑
j=1:ni

wj
iAix

j
i = b, wj

i ∈ [0, 1] (3.5)

∑
j=1:ni

wj
i = 1, i = 1, . . . , n. (3.6)

The number of constraints in the master program may
be much smaller than in the original formulation, as
the master does not include the individual constraints.
However, the number of variables may be prohibitively
large, as it is equal to the number of possible individual
basic plans for all agents. We thus define and solve
the restricted master program, whose variables include
only a subset of all possible plans, selected by variable
generation. In more detail, we can find a basic feasible
solution to (3.4–3.6) by solving the restricted master,
which is identical to (3.4–3.6) except that some wj

i are
forced to be zero. As in the simplex method for LPs
(see, e.g., [3, Ch. 3]), to determine whether our current
solution is optimal, we can observe the reduced cost of
each non-basic variable in the solution. The reduced
cost of a variable wj

i is

c(xj
i )− qTAix

j
i − µi, (3.7)

where q contains the values of dual variables for shared
constraints (3.5) at the current basic solution, and µi

is the value of the dual variable for the sum-to-1 con-
straint (3.6) for agent i. To find the variable wj

i with
the least reduced cost (so we can add it to our basis),
we can solve a modified subproblem for agent i:

min c(xi)− qTAixi (3.8)
s.t. xi ∈ Ci. (3.9)

Note that we have altered the subproblem only in its
objective, so domain-specific algorithms will typically
still be able to solve the altered subproblem. If wj

i was



     354

Decomposition-Based Optimal Market-Based Planning for Multi-Agent Systems with Shared Resources

not already in the restricted master, we can now add
it, guaranteeing progress when we solve the restricted
master again.

For conciseness, we write the restricted master as:

min ĉTw s.t. Âw = b̂, (3.10)

where we have renumbered the variables to be
w1 . . . wk, and collected together the constraints Âw =
b̂ and objective ĉTw. A subproblem solution xj

i corre-
sponds to a column Aix

j
i in Â and an entry c(xj

i ) in
ĉ. For convenience, we have incorporated the sum-to-1
constraints (3.6) into Â, so b̂ = (1, . . . , 1, bT)T.

Recall that in the market-based view, each shared con-
straint is considered a resource. The dual values q
communicated to subproblems then can be interpreted
as resource prices, and Âij as the usage level of re-
source i by plan j, as can be seen from the subproblem
objective (3.8). If a constraint is saturated by plans
currently in the restricted master, the corresponding
resource will have a positive price, leading to new in-
dividual plans that avoid heavy usage of the resource.

Algorithm 1 shows an outline of the Dantzig-Wolfe de-
composition algorithm. For linear programs, the mas-
ter program and all subproblems are linear programs,
and steps 1 and 2 can be solved by a LP solver.

Algorithm 1 Dantzig-Wolfe decomposition algorithm

0. Solve subproblems with resource prices = 0; use
solutions to initialize the restricted master.1

Repeat:

1. Solve the restricted master; get dual values q, µ.
2. Solve subproblems using new resource prices q.
3. For each subproblem i’s returned solution xi, if

the objective value satisfies c(xi) − qTAixi ≤ µi,
generate a new column and variable in the re-
stricted master.

4. If no new column has been generated in this iter-
ation, terminate.

As presented, Alg. 1 may not terminate in a finite num-
ber of iterations when degeneracy is present; however,
anticycling rules may be employed to ensure finite-time
termination, as typically done in the simplex method.
See [6, Ch. 23-1] for a discussion on anticycling rules
applicable to the D-W decomposition algorithm.

1To handle infeasibility in the restricted master, we in-
clude, for each agent, a fictitious plan that has feasible
resource usages and a very large cost. Picking fictitious
plans will lead to high prices for over-subscribed resources,
guiding the subproblems to return plans that better meet
the resource constraints.

3.3 Incorporating a Cutting Plane Algorithm

To represent and solve a mixed integer program us-
ing D-W decomposition, we must add the integrality
constraints w ∈ {0, 1}k to the master (3.5) and the
restricted master (3.10). (If Ci is convex, these con-
straints are unnecessary. However, for MIPs, a convex
combination of plans may not be a valid plan, so we
need the integrality constraints.) To do so, we will
employ a cutting plane algorithm. For notational sim-
plicity we will assume that each Ai has integer entries,
so that all resource usages are integral.

Cutting plane algorithms solve a mixed integer pro-
gram by adding cuts, or additional constraints, to its
LP relaxation, thereby “cutting off” fractional solu-
tions and eventually reaching an integral optimal so-
lution in the LP relaxation. (In particular, we use the
Gomory method for generating cuts.) To use a cutting
plane algorithm to solve the master program, for each
set of cuts we can use D-W decomposition to solve the
LP relaxation of the master program (i.e., without the
integrality constraints). The process is summarized
as Alg. 2. This algorithm is naturally distributed: as
in the original D-W decomposition method, subprob-
lems are solved independently by each agent, while the
restricted master program is either solved by a desig-
nated agent, or replicated on several agents simultane-
ously using a deterministic algorithm. Then, cuts can
be created by a designated agent, or by several agents
simultaneously using a deterministic algorithm.

Algorithm 2 Price-and-cut market-based planning
Repeat:

1. Performm iterations of steps 1-4 in Dantzig-Wolfe
decomposition algorithm, or perform the algo-
rithm to termination (m = ∞), and return its
optimal solution w to the restricted master LP
relaxation. Report whether w is optimal for the
full master LP relaxation, i.e., whether any new
column was generated in step 4.

2. If w is integral, and is optimal for the full master
LP relaxation, terminate.

3. If w is not integral, perform Gomory cuts and
add constraints to the restricted master program,
until k cuts have been made or no more cuts are
available (k =∞) for the current LP solution w.

The main algorithm, price-and-cut, admits two param-
eters, which allows different schedules over iterations
of D-W and Gomory cuts. Different schedules may
lead to varying optimality guarantees, and in practice,
to different execution times. One particularly illumi-
nating schedule is m = 1 and k = ∞; this version of
price-and-cut is equivalent to applying D-W decompo-
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sition (Alg. 1) to the MIP and solving the restricted
master in step 1 to its integer optimal solution. On
the other extreme is m = ∞ and k = 1, in which we
solve the master LP relaxation exactly and introduce a
single cut at each iteration. This latter schedule guar-
antees optimality in a finite number of iterations, but
in practice may prove less efficient than other sched-
ules, since we must find the optimal solution to the full
master at each iteration. We give optimality results for
general schedules in Sec. 3.5.

Two issues arise in applying cutting plane algorithms
to D-W decomposition. First, since columns are gener-
ated incrementally, when we generate a new cut, we do
not want to compute all of its elements immediately—
else we lose the benefit of a small restricted master.
Thus we need an efficient way to record our cuts and
compute new columns for the cut constraints incre-
mentally. Second, the new constraints must be taken
into account in the subproblems. Intuitively, new con-
straints become new resources; we refer to these re-
sources as derivative resources, to differentiate them
from the resources corresponding to the original con-
straints. Derivative resource usages will be a func-
tion of original resource usages, since cuts are gener-
ated by performing operations on subsets of existing
constraints. However, the functions will typically be
nonlinear with respect to the variables in the subprob-
lem, unlike the original resources in expression (3.8);
depending on the form of the individual problems, it
may be easy or difficult to plan to optimize combined
(original and derivative) resource usage.

As we will see, it is relatively straightforward to solve
both issues when using Gomory cuts, which is why we
choose Gomory cuts here. But, the Gomory method
is only one of many cutting-plane algorithms, and we
expect that other rules may be used in place of Gomory
cuts, as long as the two issues above can be resolved.

3.4 The Gomory Cutting Plane Algorithm

Suppose we have an optimal basic solution to the LP
relaxation of the restricted master program, associated
with the basis B, which is composed of the columns of
Â that correspond to the basic variables in the solu-
tion.2 To make a cut on the constraints (3.10), we first
choose a row of B−1, say (B−1)k, such that (B−1)k b̂,
the constant term in the constraint, is fractional. For
example, one may choose a row randomly based on
the magnitude of the fractional component of (B−1)k b̂.
The cut then has the form:∑

j

b(B−1)kÂ∗jcwj ≤ b(B−1)k b̂c, (3.11)

2Using the simplex method to solve the master LP re-
laxation automatically gives us the basis needed for making
Gomory cuts, which is another advantage of Gomory cuts.

where Â∗j denotes the j-th column of Â. The cut is
added to the constraint matrix Â, using a slack vari-
able to maintain the standard form.

The cut is a valid inequality : any integral point that
satisfies all original constraints in (3.5) satisfies the
new inequality. Also, the current LP optimal solution
violates the new constraint, ensuring progress (for de-
tails, see [3, Ch. 11]). Furthermore, when no more cuts
are available, we have an integral optimal solution.
These properties guarantee that the Gomory cutting
plane algorithm is a finitely terminating algorithm for
solving MILPs, including the integer master program.

We now discuss how to resolve the two aforementioned
issues under Gomory cuts.

3.4.1 The Cut Recipe

To solve the first issue of efficiently generating new
columns for cut constraints, we can simply store a
“recipe” for each cut. Since a Gomory cut only re-
quires a sum over the columns, we can simply gener-
ate each coefficient as its column is generated. (Other
coefficients are multiplied by zero and therefore ignor-
able, since their corresponding variable is not in the
restricted master yet.) Let (B−1)k denote the row of
the basis used to make the cut, and i refer to the row
number of the cut in Â. The coefficient for a new
column j is

Âij = b(B−1)kÂ(1:i−1)jc, (3.12)

where Â(1:i−1)j denotes the first i − 1 rows of the j-
th column of Â. For each cut, we need to store only
the row rk = (B−1)k used to make the cut, which is
a vector the size of the basis set (the number of rows
(i.e., constraints) in Â at the time of the cut). Note
that, for multiple cuts, we need to generate coefficients
serially, in the order in which the cuts were added to
Â, since each cut may depend on previous ones.

3.4.2 Derivative Resources in Subproblems

For subproblem i, define yi to be the usage vector
of original resources and zi to be the usage vector of
derivative resources. Recall that the usage for resource
k for column j is equal to the element Âkj of the master
program’s constraint matrix. Accordingly, as we saw
in the subproblem objective (3.8), original resource us-
age yi by a plan xi is simply yi = Aixi. We can also
write zik, the usage of derivative resource k, in terms
of yi and previous elements of zi. Let k′ denote the row
number in A corresponding to the derivative resource
k, and let rk refer to the cut recipe as defined in (3.12).
Then, for column j, rewriting (3.12) in terms of yi and
zi gives:

zik = brkuc, (3.13)
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where u = (eTi yT
i zT

i(1:k−1))
T, with ei an n-

dimensional unit vector whose i-th element is 1, cor-
responding to the sum-to-1 constraints in the master
program. Incorporating the new variables, the sub-
problem objective now becomes

min c(xi)− qT(yT
i zT

i )T

and we add the expressions above for yi and zik as
additional constraints. Now, we can encode the non-
linear constraints (3.13) as integer linear constraints,
which allows us to use a general MIP solver to solve
the subproblems:

zik ≤ rku,

zik ≥ rku− (1− 1
2M

),

zik ∈ Z

where M is the least common multiple of the denomi-
nators of the coefficients in rk.

Depending on the particular subproblem solver used,
we may have to handle derivative resources in a
domain-specific way. In general, adding derivative re-
sources to a subproblem can increase the size of its
state space, since the subproblem planner may now
need to track resource usage. However, note that there
is a limit to the possible increase in state space size,
since at worst we need to keep track of our usages
of all of the original resources: usage of any deriva-
tive resource is a deterministic function of the original
resource usages. Furthermore, depending on the do-
main, a subproblem solver may already keep track of
some or all of the original resource usages, in which
case the state space increase is limited still further.

3.5 Optimality and Termination

We now present conditions for optimality and termi-
nation of price-and-cut.

Theorem 3.1 (Optimality). For mixed integer pro-
grams of the form (3.1)-(3.3), the solution returned by
price-and-cut using optimal subproblem solvers is an
optimal solution to the master program.

Proof. At termination, the solution is optimal to the
full master program LP relaxation, and is integral,
which implies that it is also an optimal solution to
the master integer program.

Theorem 3.2 (Termination for IP). For integer pro-
grams of the form (3.1)-(3.3) with bounded variables,
price-and-cut under the schedule with m = 1 and
k = ∞ will terminate within a finite number of iter-
ations of both price-and-cut and D-W if the restricted
master programs are nondegenerate or an anticycling
rule is used.

Proof sketch. As mentioned in Section 3.3, price-and-
cut with the said schedule is equivalent to the Dantzig-
Wolfe decomposition algorithm where the restricted
master is solved to its integer optimal solution every
iteration. The integer optimal solution is guaranteed
to be found in finite time due to the finite-time guar-
antee for Gomory cuts. Also, there can only be a fi-
nite number of iterations inside D-W, since Gomory
cuts do not affect the number of integer solutions, and
thus only finitely many columns can be added. Anticy-
cling prevents the subproblem solvers from returning
the same column infinitely often.

Theorem 3.3 (Termination for MIP). For mixed in-
teger programs of the form (3.1)-(3.3) with bounded
variables, price-and-cut using optimal subproblem
solvers will terminate within a finite number of iter-
ations of both price-and-cut and D-W, if the employed
schedule allows only a finite number of iterations of
price-and-cut between applications of Gomory cuts to
a basic optimal solution of the full master’s LP relax-
ation, and the restricted master programs are nonde-
generate or an anticycling rule is used.

Proof. The finite-time termination guarantee of Go-
mory cuts ensures that the number of iterations of
price-and-cut spent on cutting basic LP optimal so-
lutions to the full master is finite, and there are only
a finite number of iterations between such iterations.
Each call to D-W is guaranteed to terminate in a finite
number of iterations (with anticycling) if m = ∞ in
the schedule, or it will terminate in m iterations.

While finite-time guarantees give us little assurance
for the actual execution time of price-and-cut (and we
would not expect otherwise, since general integer pro-
gramming is NP-hard), as we will see, our experiments
suggest that only a small number of iterations of price-
and-cut may be required in practice.

4 ILLUSTRATING DERIVATIVES
Before we show experimental results on larger sized
problems, we present a simple example to provide in-
tuition for the form and interpretation of derivative
resources created by Gomory cuts.

Consider a small grid world consisting of four positions
and two agents, as shown in Figure 1. Agent 1 starts in
position 1, and must to go to position 4; agent 2 must
do the opposite. At each time step, an agent can move
to a neighboring position, with constraints that agents
cannot occupy the same position simutaneously, and
also may not swap positions, i.e., occupy the same edge
between two positions simultaneously. It is easy to see
the bottleneck at position 2: one agent must wait in
position 3 for the other to pass through position 2.

In a typical run, our algorithm creates five cuts be-
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Figure 1: A grid world with four positions

fore termination, which are all tight at termination;
we will examine the first two cuts here. Our variables
are binary: xi

jt = 1 means that agent i is at position
j at time t. The discretizing (floor) operations in Go-
mory cuts make it possible for us to write the cut as
a combination of logical constraints between the posi-
tion variables, which is quite natural to intepret. For
example, we will see conjunctions (variables connected
by ∧), which will represent partial paths, and are ex-
amples of “baskets” of resources. For convenience, we
will use the convention that true and false correspond
to 1 and 0 respectively and write our cuts in mixed
logic and arithmetic notations. The first cut we ob-
tain is of the form:

(x1
22 ∧ x1

43) + (x2
22 ∨ (x2

42 ∧ x2
23)) ≤ 1.

First we see that, as expected, the cut heavily concerns
position 2, which is the bottleneck resource. Further-
more, this cut penalizes agent 1 for the partial path
(2@t2, 4@t3) of being at position 2 at time 2 and po-
sition 4 at time 3, and agent 2 for the partial path
(4@t2, 2@t3), but the penalization simply corresponds
to the original constraint that the agents should not
swap positions in a time step. However, it also pe-
nalizes agent 2 being in position 2 at time 2, only if
agent 1 tries to be in position 2 at time 2 and in po-
sition 4 at time 3, quantifying the evident correlation
between the occupation of position 2 at time 2 and the
movement of the two agents in the vicinity.

Perhaps the more interesting is the second cut, which
is derived from the first cut as well as two of the orig-
inal constraints:

[(x1
12 ∧ x1

23) ∨ (x1
22 ∧ x1

43)] + (x2
22 ∧ x2

13)) ≤ 1.

This new constraint penalizes agent 1 for taking the
partial path (2@t2, 4@t3). However, it does not penal-
ize agent 2 for taking the partial path (4@t2, 2@t3) and
thus does not duplicate any of the original constraints;
the derivative resource provides a way to guide the
agents that had been previously unavailable. In the
final solution agent 1 ends up yielding position 2 at
time 2 to agent 2 partly due to this constraint; the
constraint is tight at the final optimal solution, where
we see the partial path (1@t2, 2@t3) for agent 1.

5 EXPERIMENTS
Timing Experiments We demonstrate the effec-
tiveness of price-and-cut planning (PC) and its dis-
tribted version (DPC) on randomly-generated factored

zero-one integer programs. This domain is both dif-
ficult (general-purpose solvers take 103–104 seconds)
and relevant: for example, the method of proposi-
tional planning [17] encodes a planning problem as
a similar constraint-satisfaction problem, with feasi-
ble points corresponding to feasible plans, and an ob-
jective corresponding to plan cost. Our goal is two-
fold: (1) to show that PC is an efficient solver for
factored integer programs, and (2) to investigate the
effects of communication overhead required by PC in
distributed settings.

To generate a random instance, we pick a number of
variables and constraints, and for each constraint we
select a sparse set of variables and integer coefficients
at random. (Hence the constraint matrices Ai and the
bounds b in each instance start out integral; integrality
of the original Ai and xi imply integral usages for the
original resources, which allows us to use the integer
program subproblem formulation from Section 3.4.2.)
To make sure the instance is factored, we partition our
variables into subsets, and generate a set fraction of
our constraints among variables in the same subset; for
the remaining shared constraints, we select variables at
random from all subsets at once.

In our experiments, we use random 3SAT constraints,
together with the objective “set as few variables to 1
as possible.” We picked SAT constraints so that we
can set the ratio of constraints to variables near the
well-known empirical hardness threshold of 4.26 [11];
however, the resulting problem is not a SAT instance
due to the objective, and therefore SAT-specific solvers
are not directly applicable. Our implementation uses
the CPLEX MIP solver [15], a widely-used commer-
cial optimization package, for the integer program sub-
problems, and the CPLEX simplex LP solver for the
restricted master LP relaxation.3 We use the schedule
from Theorem 3.2 to guarantee finite termination.

We compare the runtimes of the centralized and dis-
tributed versions of PC to those of CPLEX’s MIP
solver, using 4713 randomly generated problems. We
varied between 2 to 10 subproblems, 10 to 200 vari-
ables, and 41 to 900 total clauses, of which 0.11%
to 17.65% were shared. The ratio of the number of
clauses to the number of variables was set to between
4.0 and 4.5 to keep the problems difficult. In the cen-
tralized version of PC, subproblems were solved se-
quentially on one CPU, alternating with the master
program, incurring no communication cost. The dis-
tributed runs were performed on two 8-core machines,

3We also tested the MiniSat+ solver [9], a specialized
zero-one IP solver based on a SAT solver, MiniSat. De-
pending on problem characteristics, it was sometimes faster
than CPLEX and sometimes slower. We report results us-
ing CPLEX since it is more general.
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Figure 2: (a) number of PC iterations performed, (b)–(d) runtime comparisons

where the subproblem solvers communicated with the
master over sockets. One process was dedicated to
solving the restricted master LP and making cuts.

Fig. 2(a) shows the distribution of the number of it-
erations of PC to reach optimality. Most cases re-
quired only a few iterations, and only 34 cases out of
4713 required more than 10. In Fig. 2(b), each point
represents a problem; on the x axis is the runtime of
CPLEX, and on the y axis is that of centralized PC,
both in log scale. The diagonal line is the identity:
any point below the line represents a problem instance
where PC outperforms CPLEX. Our observations sug-
gest that CPLEX running time is heavily dependent on
the number of total clauses in the problem. We can see
here that PC outperforms CPLEX handily for larger
problem sizes, as the advantage of market-based plan-
ning outweighs the overhead in our implementation:
PC outperformed CPLEX on 92.38% of the instances
where CPLEX took more than 1 second.

Fig. 2(c) is an analogous plot for the distributed ver-
sion of PC (DPC), and exhibits similar trends, if not
more pronounced. Finally, Fig. 2(d) gives a similar
comparison between PC and DPC: DPC outperformed
PC on 96.12% of the instances where PC took more
than 1 second. It is interesting to note that, even
for problems which take only 1s to solve, the bene-
fit of parallelism outweighs communication overhead,
despite our simple implementation.

The bottom horizontal “tier” of points in Figs. 2(b)
and 2(c) contains almost exclusively infeasible in-
stances; as expected, PC is very efficient at detect-
ing infeasibilities when a subproblem is infeasible. In
Fig. 2(c), additional tiers represent the effects of par-
allelism: different tiers roughly correspond to differ-
ent percentages of shared constraints in the prob-
lem, with smaller percentages corresponding to lower
tiers, where more execution time is spent in subprob-
lems (which can be parallelized) instead of the master
(which is not parallelized in our implementation).

Multi-UAV Planning We also performed experi-
ments on UAV task allocation and path planning prob-
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Figure 3: (a) an instance of the UAV planning problem
(b) runtime comparisons, PC vs. CPLEX

lems, using the MILP formulation presented in [21].
We again compared the runtimes of PC and CPLEX,
in the setting shown in Fig. 3(a), which was studied
in [21]. In this particular configuration, CPLEX took
166s, which is comparable to numbers reported in [21],
almost a decade ago, whereas PC found the answer
in 31s. We studied 150 instances based on this map,
with randomly generated targets. We used as the ob-
jective the sum of the agents’ finish times; there is lit-
tle computational advantage to using our decomposi-
tion under the maximum of finish times objective used
in [21], as it creates a star graph between the agents.
We observed trends similar to the 3SAT timing exper-
iments: PC outperforms CPLEX in 96.9% of the in-
stances where CPLEX took more than 10s. The mean
runtimes were 7.24s and 30.7s for PC and CPLEX re-
spectively, and max times 26.85s and 624.99s.

6 CONCLUSION
We presented a principled distributed market-based
algorithm for combinatorial optimization and multi-
agent planning, and provided optimality conditions.
Our experiments show promise for general applica-
bility of price-and-cut, in both centralized and dis-
tributed settings. Our future work includes investi-
gation of quality guarantees under approximate sub-
problem solvers, as well as application of the method
to multi-agent planning in continuous spaces through
the use of specialized subproblem solvers.
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