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Abstract

We consider optimal design problems of systems governed by suitable discretizations of non-
linear partial differential equations. We present and examine a coordinate basis infeasible
path method tailored to such design problems. We employ a particular null space represen-
tation which exploits the structure of the constraint Jacobian. The resulting method avoids
resolution of the nonlinear behavior for each design iterate. Three variants of the method
are developed which require the solution of either two or three linear systems involving
the giffness matrix of the discrete boundary vaue problem. The method is used to solve
an aerodynamic design problem governed by nonlinear potential flow. Numerica results
demonstrate a substantial performance improvement.




Chapter 1

| ntroduction

In recent years there has been growing interest in developing the capability for computing
optimal designs of engineering systems governed by nonlinear partial differentia equations.
For example, aircraft shape design can involve coupling compressible flow about a complex
body with large elastic deformation of the body. Another example is viscous drag reduc-
tion by either shape or velocity control, which requires the solution of the Navier-Stokes
equations as a subproblem within optimization.

The optimization problems we have in mind condst of an objective function reflect-
ing desgn goals, and constraints which include both a nonlinear boundary vaue problem
governing system behavior, and additional design constraints. We dassfy variables accord-
ing to two types. design variables which describe geometry (e.g. shape, thickness), and
state variables which describe system behavior for afixed geometry (e.g. pressure, velocity,
stress).

A standard approach to such problems is to view the state variables as implicitly de-
pending on the design variables (see, eg. [5]). Solution of the governing equations at
each optimization iteration reduces both the number of constraints and variables, as the
state variables are no longer considered optimization variables. We cdl this approach path-
following, snce the iterates fdlow a trajectory characterized by solution of (a discretized
form of) the governing equations at each design iteration. In addition to this reduction in
problem size, another advantage of path following methods is that they generate dense con-
straint Jacobian and Lagrangian Hessian matrices, so that standard projected Lagrangian
methods can be used without consideration of sparsity. The disadvantage of such meth-
ods, however, is that they require full solution of the nonlinear equations governing system
behavior at each design iteration. This can result in intractability for systems displaying
complex or coupled behavior.

In contradistinction to these methods, infeasible path methods regard the discrete form
of the governing PDE's as equality constraints in the optimization problem, and include
the state variables as optimization variables. Projected Lagrangian optimization techniques
(such as Sequentia Quadratic Programming) then require zero and first order information
about the governing equations at only a single point to define the optimization subproblem.




Full solution of the PDE's is thereby avoided. The difficulty with such an approach is that
the constraint Jacobian and Lagrangian Hessan matrices are larger and sparse [8]. Use
of a general-purpose sparse optimizer, such as MINOS [6], is problematic: the favorable
structure of the constraint Jacobian with respect to the state variables (i.e. the "tangent
diffness matrix") cannot be exploited. In this paper we give a new SQP method based
on infeasble path ideas for a class of optima design problems constrained by a discrete
nonlinear boundary vaue problem (BVP). The method is based on a particular null space
representation which exploits sparsity of the constraint Jacobian. Severa variants of our
method result. The first requires solution of two linear systemsinvolving the same coefficient
matrix, the tangent diffness matrix. The second requires the solution of two systems as
wdl, but with diffness matrices evaluated at different points. The third requires solution
of three linear systems, two of which have the same diffness matrix. In any case, resolution
of nonlinear behavior is avoided at each iteration: the method smultaneoudy finds an
optimum design while converging the nonlinear behavior. Furthermore, we update and
store only the projected Hessian matrix, resulting in storage requirements equal to those of
a path-following method. We refer to our method as the Coordinate Basis Infeasible Path
method (CBIP). Its three variants are described in chapter 2.

To demonstrate our proposed method and examine its performance, we apply it to
the solution of a shape optimization problem in aerodynamic design, which is defined in
chapter 3. The performance of the three variants are compared to a standard path-following
approach for a series of desgn problems in chapter 4, and conclusons are drawn in chapter
5.




Chapter 2

The Coordinate Basis Infeasble
Path method

In this chapter we present an optimization strategy tailored to physical systems governed
by nonlinear boundary value problems. We assume that numerical approximation of the
governing equations gives rise to large, sparse codficdent matrices, such as those produced
by finite difference, finite element, or finite volume methods. We limit our discussion to
problems that are constrained only by these equations. Extensions to problems that include
additional constraints on the parameters can be generdized. The optimal design problem
is to find vaues of parameters of a system that minimize a desired objective.

While in some cases quadraticaHy convergent Gauss Newton methods can be devised
for nonlinear least sguares problems, we target both large residual problems and more
general objective functions. Given the success of Sequentia Quadratic Programming (SQP)
methods for genera problems (e.g. [9]), it is natural to seek an SQP strategy tailored to
design problems with discrete BVP constraints. Typicaly the number of desgn variables is
much smdler than the number of state variables, and the full Hessan is sparse, indefinite,
and of order of the total number of variables. It is therefore advantageous to seek a strategy
which updates the projected Hessan matrix, which is positive definite a the optimum, and
of the order of the desdgn variables. Because of the specid structure of the constraint
Jacobian, we seek a corresponding basis for its null space that exploits this structure. We
begin with a canonica form of the optimization problem:

minimize /(X)
subject to h(x) = 0 (2.1
[:3T->», h:ft"-»", x€»"
Here, / represents the design objective, and h is a system of nonlinear agebraic equations
arising from discretization of the governing BVP. The n variables x consst of the m state

variables u and n — m design variables b. Typicdly m™> n— m, since alarge number of
state variables arise from discretization of the domain, but the design is described by a small




number of parameters (especiadly in shape optimization). The path-following approach to
2.1 eiminates the constraints, thereby resulting in an unconstrained optimization problem.
The penalty, of course, is the need to solve the nonlinear system h(x) = O at each design
iteration.

The infeasble path approach regards as 2.1 as a nonlinearly-constrained optimization
problem. SQP can be thought of as a Newton solution of the first order optimality condi-
tions. A Newton step defines the following quadratic program (QP):

minimize pegy + -;mGka 2.2)

subject to AkPk = -hfc 2.3)

where g is the gradient of the objective function, GL is the Hessan matrix of the Lagrangian
function, Ay is the Jacobian of the discrete PDE's, p*, is the search direction, and the
subscript k indicates evaluation at x".

For clarity we drop the subscript fc; it is understood that al quantities depending on x
are evaluted at x". Let us decompose py into two components:

p = Zp* + Yp, 2.4)

in which Z £ St™("~™ is a matrix whose columns form a basis for the null space of A, and
Y 6 3ft™™ is chosen so that the partitioned matrix Q = [ Z Y ] is nonsingular. Often, Y
is chosen o that its columns span the range space of AT. The y-space step is completely
determined by substituting (2.4) into (2.3), resulting in the m x m system:

AYp, = -h (2.5)

The null space move is found by substituting (2.4) into (2.2) and minimizing with respect
top”™:
Z'GLZp; = -Z7(g + GLY py) (26)

The (n- m) x (n— m) projected Hessian matrix Z'Gx,Z is dense but of the order of the
desgn variables, and is naturally approximated by a Quasi-Newton update. A feasible-
path method would require this storage as well, snce the optimization variables in that case
arejust the desgn variables. On the other hand, the "long and thin" matrix z"GL Y would
increase storage requirments considerably over a path-following approach. Our approach is
to ignore this term; Nocedd and Overton have shown that the resulting algorithm exhibits
two-step Q-superlinear convergence (when orthonormal bases are used for Y and Z) [7], in
the sense that

At Joas™hoc (2.7)
I x* = x* ||
The critical step is the definition of appropriate y- and null space bases. Since A is large
and sparse, a standard QR factorization is unacceptable. To examine the structure of the
constraint Jacobian, let us consder a partitioning of state and design variables:
x" = [u",b"] (2.8)
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in which u6 3" and b £ &™™. The partitioned constraint Jacobian becomes

A=Kzl (»)

in which we have identified the Jacobian of the discrete PDE's with respect to the state
variables as the tangent iffness matrix K (in deference to finite dement terminology).
It is desirable to exploit the inverse of K, snce the solution of linear systems with K as
a coeffident matrix is a well-studied problem and there exiss many direct and iterative
methods that explait its structure. We can define amatrix Z whose columns are orthogonal

to the rows of A as: . .
7 = [ ‘KI 12 j (2.10)

Here, we write K=* formdly; we shall however see that its inverse is not required, and
the computations can be arranged in such a way that solution of only two or three linear
systems involving K is required, using any direct or iterative technique. The y-space basis

is defined smply as V-[;] (Z.H)

We refer to this choice as a coordinate basis. Clearly, the matrix
Q=[Z Y] (2.12)

is nonsingular provided K is nonsingular, and hence Z and Y form a basis for 9" The
invertibility of K is established by the well-posedness of the boundary vaue problem. The
resulting t/-space step for p, from (2.5) becomes:

We observe that this is smply a Newton step for the nonlinear system h = 0. Using the
null space definition (2.10), the null space move p, can be found from

B*p* =-g, (2.149)

where
0, =2'g=-|£"K-Tgu+ g (2.15)

Here B, represents a Quasi-Newton approximation to the projected Hessian, and g, and
0& represent objective gradients with respect to the state and design variables, respectively.
Note the dose connection between the expresson for the projected gradient (2.15), and
the gradient of the objective using a path-following method (in conjunction with implicit
sengtivity expressions;, see eg. [5]). The difference, of course, is that in (2.15) K need
not be evaluated at the u for which h = 0, in contrast to path following methods, which




converge the behavioral equations at each optimization iteration. Using (2.4), the movesin
the state and design variables take the form

p’\-KTl%l:p,\,ﬁ Py (2.16)

P6 = P* (2.17)
The recipe for the update of the state variables (2.16) can be interpreted as being comprised
of two components. The first term gives afirst-order approximation of the change in state
variables due to a change in system parameters p&; the second term is the change that would

occur if the desgn were held constant, and the state variables were updated according to a
Newton step.




Chapter 3

Algorithms

Depending on the spedific way in which the updates of the state and design variables are
carried out, it is possible to identify severa variants of the methods described in the previous
chapter. What follows is a definition of algorithms corresponding to each of these variants.
Symmetry of K is assumed in al cases.

PFF : This s the path-following approach. A full Newton solution of the nonlinear BVP
Is performed at each optimization iteration. The initial guess for the state variables
at the beginning of each analysis is taken as zero.

PFP : Thisis avariant of the path-following approach. The Newton solve of the BVP is
initiated with the solution of the previous design.

CBIPS : Thisis the infeasble path method that results from the direct redization of the
SQP method of the previous chapter in conjunction with a coordinate basis for the
y—gpace move. It requires one giffness matrix factorization and two sets of triangular
solves per optimization iteration.

CBIPM : This is a variant of agorithm CBIPS in which information about the desgn
variables is used to evauate the giffness matrix which in turn is used to update the
state variables. It requires two siffness matrix factorizations and two sets of triangular
solves per optimization iteration.

CBIPC : This agorithm results from applying the Coleman-Conn method [3] (closdy
related to SQP) to the CBIP method. It requires one factorization and three triangular
solves per optimization iteration.

3.1 Algorithm PFF
« St* =0 H; =1, b=b",

» Solve h(u,b®) =0 for u®, usng u = 0 as the initia guess.




Solve K°A° =¢°,
Find ¢ = -(f6')°A° +g?
Set k = 0.0 and &° = 1.0.

While ||g£|| > € and k < maxiter do:

Find p* = -Hkgk
k — k
S A= TraegEl
Update design variables: b*** = b* + apf

Solve h(u,b**!) = 0 for u™*!, using u = 0 as the initial guess.

o > W D e

Check strong Wolfe conditions: if conditions are satisfied goto 6 else increment
K and go back to step 2.

Solve K*+!A**1=gJ+?

Find gnt = -(fT)/i+iA*+i L g%p+i
Find ¥ = g+ - ¢

Update HE using y¥ and p&

10. Set ¢ = g~?t

11. Setfc=fc+ |

© ® N o

* Endwhile

3.2 Algorithm PFP
« Setk=0,H =1, b=b°,

Solve h(u,b®) = 0for u®, usng u = 0 as the initial guess.

Solve K°A° =4

T
Find g2 =—(3 )°A%+gf

Set K = 0.0 and &° = 10.

While \g\ > e and k < maxiter do:

1. Find p* = -Hd¢
k_ a¥
2. Set o® = TFrExT
3. Update design variables: b®*! = h* + apk
4. Solve h(u,b™*?*) = 0 for u®*?, using u = U® as the initial guess.




Check strong Walfe conditions: if conditions are satisfied goto 6 else increment
K and go back to step 2.

6. Solve K**IA**t = gr*l
7. Find g~ i~ -(GRT )RR 4 ghtt
8. Find y* = g*™* - g
9. Update H% using y£ and p%
10. Set gf = gi+*
11. Set k =fc+ 1
* Endwhile

Notice that algorithm PFP differs from Algorithm PFF only in Step 4, in which the initial
guess for the nonlinear system solve is taken as u* rather than O.

3.3 Algorithm CBIPS
e S k=0, H; =1, u=u° b=>b°
» Solve K°A° =g2

.Find g0 - —(|ET}OAO+Q%

e Set kK =00and a° = 1.0.

* While ||g%|| > e and k < maxiter do:

Find p} = -H%g3

k _ a
- Set o =~

1.
2
3.
4
5
6

Fnd d"= 8EV p* + H°

. Solve K*pf = -df
. Update variables: u™* = u* + p£, b*** = b* + ap%,
. Check strong Wolfe conditions. if conditions are satisfied goto 7 else increment

K and go back to step 2.
S)IVe Kk+|xk+l - g£+1

8. Find g*' = -(ffcV tA=! +gf*

9. Find y£ = g+ - ¢
10. Update H* using y* and p”
11. Set gr = gn*
12. Set k=k+1
* Endwhile




3.4 Algorithm CBIPM
« Stk=0H =1, u=u’, b=b,

* Solve K°A° =g
 Find g2 =-(t")°A+ g
e St K=00and a* = 10.

* While ||g£|| > € and k < maxiter do:

oo

9.
10.
11.
12.
13.

N oUW N R

. Find p£ = -H*g£

k
Set a = %
Tnn| g2

Update the design variables: b* ** = b + &*P#
Write d* = h(b***,u*)

Solve K(b™** u*)p: = -d*

Update state variables: u™®** = u* + p~

Check strong Wadlfe conditions: if conditions are satisfied goto 8 ese increment
K and go back to step 2.

Solve K™ 1ak+t = gkt

Find g+ = _(%IEIT)I:+1AI:+1 +gi+
Find y; = g£™* - g

Update HE using y*, and p*

Set g =g

S k=k+1

* Endwhile

The only difference between CBIPS and CBIPM isin Step 3, in which thelatest information
about the desgn variables is used to evaluate the diffness matrix. The development of
this method is motivated by the desire to make CBIPM and PF* equivadent for linear
BVP's. The numerical results will demonstrate that this reduces the number of optimization
iterations a the expense of one additional giffness matrix factorization per optimization

iteration.

3.5 Algorithm CBIPC
« Stk=0,Hy=1,u=u, b=bh,

¢ Sove K°A° =4
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¢ Find g0 = —(Z27)0N% 4 g

e Sgt £ =00and a’ = 10.

» While ||g%|| > € and k < maxiter do:

10.
11.

12.
13.
14.

© N o 0 b~ W e

Find p; = -H*g#*

Set o = 1—4_-;“’;?'—5}—'-'

Update design variables b**! = b* + a*p*

Fnd dof = ftvpt

Solve K'pn, = -d*

Solve Kp~A = -h(u* + p~.b~1)

Update states variables: u“* = u* + (p%, + piy)

Check strong Walfe conditions: if conditions are satisfied goto 9 else increment
K and go back to step 2.

Solve K**AfcHt = gg*t

Find g"* = -(8")* "TA'"! +g£™!
Find y* = g~* - g2

Update H% using y% and p%

Set of = gk2+1

Set k =fc+ 1

* Endwhile

The Coleman-Conn method (CBIPC) differs from the other two infeasible path algo-
rithmsin its requirement of an extra constraint evaluation (Step 4). Thisresultsin an extra
triangular solve, because it does not permit combination of righthand sides.

11




Chapter 4

An aerodynamic design problem

L.

u=

X

a

Figure 4.1: Two dimensiona domain for arfoil anayss problem

We define in this chapter a design problem of a system governed by a nonlinear partial
differential equation. The problem we consider is to find the shape of the arfoil that ex-
hibits a prescribed pressure distribution. Such problems are of importance to the aerospace
industry, and there is growing interest in developing an optimal design capability for a
complete aircraft [4], Theflow around the arfoil is modeed by the nonlinear full-potential
equations. Though parameterized by asmal number of variables and only two-dimensional,
the problem captures the sdient features of more genera problems, which increase in df-
ficulty as dimensionality, number of system parameters, nonlinearity, and coupling among
the physical processes increase.

Let ft represent the domain of definition, Ts the surface of the airfail, T,, a split boundary
intended to model the wake, Too the fafidd boundary, U the freestream velocity, and a
the angle of attack of the airfoil.

The analysisproblem is to find the pressure distribution over Tg for subsonic flowswith
Mach numbers above 0.4, so that compressibility effects cannot be neglected. The equation




of continuity V ¢ (/>U) = 0 and boundary conditions take the form:

V. {[L- IZz'_Ev")Z]:FLI' V<8 =0 in f 4.1)
V<f>en=00nT, 4.2
V<f>en=UDe*nonToo 4.3

in which <f> is the velocity potential, 7 is a constant and p” is the freestream density.
The shape optimization problem of finding parameters describing a shape that induces
a desred pressure distribution can be stated as:
minimize:
f(T0®) = [ (o(®)- 5 dT (4.4
subject to:
[ n- 1’%1(«1»"" Q&)™ Q& d

JQl &
_L N”00U00)-!! dT (4.5)

where p(&) is the predicted pressure on the arfoil and p* is the prescribed pressure. The
constraint (4) reflects the Gaerkin form of the BV P, in which the finite dement interpolation
(f)n = N'4> has been introduced. Here, N represents a vector of global basis functions and
4> are noda potentials, and Q-= VN (VN)'. The boundary conditions and additional
constraints on the state variables are implied in this nonlinear agebraic system. This
problem is of the form (2.1).

The Jacobian (with respect to state variables) of the conservation equations (4 is the
diffness matrix, and is obtained by differentiating the left hand side with respect to 4>

K$) =/ [1-~2H$TQ @I Q
Jn 2
-n-2y L@t e Q$*TQ di (46)

This is an n x n symmetric matrix that can be constructed using standard finite eement
ideas. It is poditive definite for subsonic flow, and indefinite for transonic flow [2].

13




Chapter 5

Numerical results

In this chapter we compare the performance of the five algorithms for the aerodynamic
design problem defined in the previous chapter. We do this first for NACA airfoils. The
design variables are then the basic parameters of the NACA family of arfoils, namely, the
maximum thickness r, the position of the maximum camber p, and the maximum camber
e [1]. These parameters are illustrated in Figure 5.2. To dlow for more than three design
variables a second parameterization based on cubic splines is used to describe the shape
of the arfail in the second set of examples. This parameterization is shown in Figure 5.5.
The leading edge of the arfoil is modeled with a circular arc of radius ro. This arc extends
011 and 821 above and beow aline that is inclined OQ with respect to the horizontal axis.
All these quantities can have any positive value and are therfore taken as design variables.
For the purpose of the FE discretization the arc portions corresponding to 9\\ and #21 are
divided into n\\ and TI2L subintervals. The upper portion of the airfail is divided into rt\2
intervals. For purposes of the FE discretization each of these intervals is divided into no
subintervals. 7112 —ly coordinates are then used to fit a cubic spline between the end of the
arc and the trailing edge. These y coordinates are aso taken as design variables. The lower
portion of the arfoil is modeled in an analogous way. Angles O12 and 622 at the trailing
edge complete the list of design variables. The total number of design variables with this
moddled isthus 7112 + T122 + 4.

The agorithms were implemented on an IBM RS6000-320H workstation. The linear
systems involving K were solved using MA-28, the general direct sparse solver available
from the Harwdl library.

14




Table 5.1: Summary of Numerical Results - NACA family

PEP ]
[ Moo ] 040 ] 045 ] _ 050 5 0. 0.65 068 |
i 0.5440D-12 | 0.1302D-11 | 0.9653D-14 | 0.2739D-12 | 0.3576D-13 | 0.2133D-12 | 0.9593D-14
g zl 0.5043D-05 | 0.8289D-05 | 0.1065D-05 | 0.5042D-05 | 0.2227D-05 | 0.6399D-05 | 0.8375D-06
CPU time 964 975 1051 1258 1252 1385 2865
lter. 10 10 un 11 11 12 13
timeliter 96.4 97.5 95.5 114.4 1138 1154 220.4
PFP
Moo 0.40 0.45 0.50 0.55 0.60 0.65 0.68
! 0.4767D-09 | 0.1771D-09 | 0.3997D-08 | 0.3091D-09 | 0.2129D-09 | 0.3074-07 | 0.8996D-11
gzl 0.8482D-04 | 0.4235D-04 | 0.4678D-04 | 0.9004D-04 | 0.5074D-04 | 0.1064D-04 | 0.1483D-04
CPU time 724 790 775 801 822 961 1742
lter. 9 10 10 10 10 1 11
timeliter 80.4 79.0 775 80.1 82.2 87.4 158.4
- —<BPs_
Moo 0.40 0.45 0.50 055 0.60 0.65 0.68
7 0.6672D-11 | 0.1642D-09 | 0.4018D-08 | 0.4230D-12 | 0.1234D-10 | 0.3074D-07 | 0.1778D-09
g zl 0.9446D-05 | 0.1216D-05 | 0.1170D-05 { 0.3890D-05 | 0.3781D-05 | 0.7041D-06 | .6362D-04
CPU time 644 685 691 667 668 735 1224
Iter. 15 16 16 15 15 17 24
timeliter 42.9 42.8 43.2 445 445 43.2 51.0
CBIPM
Moo 0.40 0.45 0.50 055 0.60 0.65 0.68
¥ 0.5063D-11 | 0.1641D-09 | 0.4018D-08 | 0.2323D-11 | 0.1223D-10 | 0.3074D-07 | 0.8677/D-10
g zll 0.1016D-05 | 0.2225D-06 { 0.1343D-05 | 0.3731D-05 | 0.1106D-05 | 0.9497D-05 | 0.5191D-04
CPU time 637 639 639 699 703 997 1153
ter. 10 10 10 11 1 16 18
timeliter 63.7 63.9 63.9 63.5 63.9 62.3 64.1
—_ CBIPC ]
Moo 0.40 0.45 0.50 055 0.60 0.65 0.68
7 0.5067D-11 | 0.1642D-09 | 0.4019D-08 { 0.4291D-12 | 0.1331D-10 | 0.3073D-07 | 0.4326D-10
g zl 0.1292D-05 | 0.1708D-05 | 0.4766D-05 { 0.5013D-05 | 0.8745D-05 | 0.2116D-05 | 0.2515D-04
CPU time 527 526 528 538 543 571 907
Iter. 10 10 n 11 11 12 15
timeliter 47.9 47.8 48.0 48.9 49.4 476 60.5

51 NACA family

In these examples, the target pressure distribution was taken as that of a NACA 2412 airfoil
at an angle of attack of one degree and at the corresponding Mach number. The parameters
of the NACA 2412 arer = 0.12, p = 0.40, e = 0.02. In Figure 5.3 we show the Mach number
distribution for the target airfoil at Moo = 0.68 and angle of attack =1.0 degrees. The
corresponding pressure distribution is shown in Figure 5.4 (actually, the figure shows the
pressure coefficient defined as C, = if':g%/o—).

Figure 5.1 shows the mesh topolcz)gy uosned in our numerical simulations.

The fixed data used for these examples are as follows:

e Target pressure distribution: NACA 2412 at a = 10 (Variable Mach number).
* Initial values of parameters: r = 0.07, p = 0.30, e = 0.00
* Number of finite elements. 3,280

* Number of nodes: 1,743

Numerical results are summarized in Table 5.1. CPU times for the different algorithms
are plotted against Mach numbers in Figure 5.7. It is clearly seen from this graph that

15




Table 5.2 Summary of Numerica Results - Splines Modd

ppp . ]
Opt. Vars. 10 12 16 22 28 20 ] 30
/ 0.2549D-02 | 0.1319D-02 | 0.3859D-03 | 0.1660D-03 | 0.1052-03 | 0.5141D-04 | 0.2377D-07
gzl 0.1179D-03 | 0.3655D-03 | 0.4002D-03 | 0.9426D-03 | 0.4934D-03 | 0.6625D-03 | 0.8192D-03
CPU time 5317 5734 6927 7979 10328 19482 124,889
Iter. 33 37 39 33 42 63 29
timeliter. 161.1 155.0 1776 241.78 2459 309.2 12615
CBIPM
Opt. Vars. 10 12 16 22 28 40 90
/ 0.2549D-02 | 0.1363D-02 | 0.3866D-03 | 0.156/D-03 | 0.1052D-03 | 0.7100D-04 | 0.9260D-08
gzl 0.2449D-03 | 0.9867D-03 | 0.7529D-03 | 0.5502D-03 | 0.3153D-03 ] 0.5408D-03 | 0.4695D-03
CPU time 2791 1903 3281 4411 5020 8242 45422
Iter. 38 24 38 42 42 49 103
timeliter. 734 79.3 86.3 105.02 1195 168.2 440.99

path-following methods are the most sengtive to the increase in nonlinearity induced by
high Mach numbers. Cost per iteration, in CPU seconds, is shown in Figure 5.8. Again, as
expected, the path-following methods are the most sengitive to theincreasein the freestream
Mach number. The cost per iteration for the infeasble path algorithms remains essentialy
constant with increasing nonlinearity, up to Mach number of about 0.65. For larger Mach
numbers the physical solution to the flow problem becomes more and more difficult to get
when a Newton solver is used. This means that the vaues of the potential <f> is not very
accurate, specidly for very distorted shapes that arise in intermediate optimization steps.
This results in poor vaues of the gradients and the search directions, thereby producing an
increase in the number of iterations.

From the results presented in Table 5.1 and displayed in Figures 5.7 and 5.8 the following
additional remarks can be made:

With the exception of the CBIPS agorithm, al agorithms take essentidly the same
number of optimization iterations.

The accuracy of the objective function value at optimality is best for the PFF. All
other agorithms with the exception of the PFP exhibit essentially the same accuracy.
This can clearly be observed in Figure 5.9.

The worgt accuracy is that of the PFP algorithm. In fact, if the tolerance in the
norm of the projected gradient is lowered from 10~* in Table 5.1 to 10~°, the ago-

rithm oscillates about the solution, reaching it only by chance after alarge number of
iterations.

The most dfident agorithm in terms of CPU time is the CBIPC algorithm. This

algorithm aso exhibits the least sensitivity to increases in the freestream Mach number
(See Figure 5.7).

The lowest cost per iteration is exhibited by algorithm CBIPS, as can be seenin Figure
5.8. However, this agorithm takes the largest number of iterations, and therefore its
effidency is diminished.
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It isimportant to note that no formd line search was implemented for the cases presented
here. From a limited number of tests made it was found that a line search was expensve
and did not improve the convergence characteristics of the algorithms. However, it was
sometimes necessary to limit the step length of the agorithms due to the fact that some
iterates generated correspond to undefined vaues of K and h (specidly for high Mach
numbers). In addition, for the case with M" = 0.68, it was necessary to limit the step
length to ensure a decrease in the objective function. In generd, the step lengths were
equa to one, except for the first few iterations.

The progress in the objective function when M" = 0.65 is presented in figure 5.9. The
corresponding sequence of norms of the projected gradients is shown in Figure 5.10. The
sequence of arfoil shapes generated by algorithm CBIPS for M = 0.65 is displayed in
Figure 5.11. The fina shape is indistinguishable from the target.

5.2 Parameterization using the spline model

Figure 5.13 illustrates the initia conditions for a case using the splines modd and n\2 =
712 ~ 9 (22 design variables). The objective is again the NACA 2412 a M* = 06 and
a = 10. The target pressure distribution and arfoil together with the optima found are
shown in Figure 5.14. It can be seen that the two shapes are virtualy indistinguishible
from each other. The target conditions and optima for a case with n\2 = &2 = 3 (10
design variables) is shown in Figure 5.12. Not surprisingly, the agreement of the pressure
distributions for the 22-variable case is much better than for the 10-variable case.

The number of optimization iterations against the number of design variables is depicted
in Figure 5.15. The number of iterations increases with the number of design variables as
can be expected. Again, it can be observed that the number of iterations is basicaly the
same for the CBIPM and PFF agorithms. The cost per iteration, however, is much larger
for the path-following method as can be seen in Figure 5.16.

The results of Figures 5.15 and 5.16 are summarized in Table 5.2.

The norm of the residual of the behavioral equations against the number of iterations has
been plotted in Figure 5.17 for dl algorithms. The convergence tolerance for the Newton
solver was set to 10", Although not necessary for the infeasible path algorithms, the
starting point used here corresponds to afully converged solution of theflow equations. This
can be observed in the Figure by noting that the residua for dl algorithms at iteration zero
is 10"7. After that initial point, al infeasible path methods (that is, the CBIPS, CBIPM
and CBIPC) depart consderably from strict feaghility, with a fully converged solution for
the flow equations ocurring only at the last iteration. It can aso be observed from Figure
5.17 that the path following algorithms (PFF and PFP) produce aresidual that is lower than
the tolerance for some intermediate iterations. This is due to the fact that even though the
10"" vaue of the tolerance is acceptable for engineering purposes, the machine can provide
a much higher accuracy for this particular problem. A problem with 28 design variables
was used to produce the results shown in Figure 5.17.
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All results presented in this section, with the exception of the 90-variable case corre-

spond to an airfoil problem with M* = 0.6, a = 10, and the following discretization
characteristics:

* Number of finite elements. 3,952
* Number of nodes : 2079
o Target pressure distribution: NACA 2412 a 10 degree angle of attack. M* = 0.6.

The results for the 90-variable case do not correspond to an arfoil problem but to a
unit cilynder under the following conditions:

* Moo = 0.35.

Target Pressure Distribution: Unit Cilynder (r = 0.50).

Design variables: Radid distances to the surface of the Cilynder.

Initial vaues of dl dedgn variables. 0.456

Number of finite d ements; 4,416

Number of nodes: 2,325

In lieu of aline search, the step length was limited to avoid undefined values of K and
h and to ensure a decrease in the objective function, in al cases presented here.
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Figure 5.1. Discretized two dimensional domain with airfoil
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Figure 5.2: Four-digit NACA airfail
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Figure 5.5: Parameterization of airfoil using splines.
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Chapter 6

Conclusions

We have presented an infeasble path method for the optimal design of systems governed by
nonlinear boundary vaue problems. In particular, we have considered shape optimization
of arfails in compressible potential flow. The infeasible path method avoids full resolution
of theflow at each iteration by including the governing equations as equality constraints. A
null space basis for the constraint Jacobian is defined, resulting in a method which requires
solution of just two or three linear systems at each optimization iteration. The coefficient
matrix of these systems is just the finite dement diffness matrix, thereby enabling the
method to leverage effident finite dement solvers. Examples demonstrates that the overdl
number of iterations is about the same as a path-following method, while sgnificantly
reducing the work per iteration.
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