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Abstract

Binding of a spherical colloid to a fluid membrane, which is an interplay
between the energies of adhesion and elastic deformation, is studied within
the framework of a Helfrich Hamiltonian. The solution of the full nonlinear
shape equations for the membrane profile reveals a continuous binding and
a discontinuous envelopment transition, the latter with a tension dependent
substantial energy barrier. In the bending dominated regime this scenario is
analytically confirmed by a small gradient expansion.

1. Introduction

The adsorption of micro- or mesoscopic particles onto soft surfaces provides the possibility—
absent in the case of rigid substrates—that the degrees of freedom of the surface feature
prominently in the interaction. A particularly important example for such surfaces is lipid
bilayers, mostly of course due to their ubiquity in biology, and one often wishes to study their
interactions with for instance proteins in a well controlled set-up—without losing fluidity and
local elasticity. This has, among other things, led to the development of supported membranes,
separated from the solid substrate by a thin water layer or by a soft polymer cushion [1].

However, for objects which are still small but no longer comparable in size to the membrane
thickness, a different surface response will become a likely participant in the adhesion balance:
out-of-plane bending. Clearly, such a deformation, which is a prerequisite for any adhesion
to a curved object, will entail a bending energy penalty which opposes the original binding.
This effect will be significant if only the object’s curvature is sufficiently high—for typical cell
membrane parameters radii of curvature of a few tens up to a few hundred nanometres will be
in the right range. This is unfortunately below optical resolution, explaining why systematic
studies of such membrane deformations are difficult.

There is one prominent biological example where such adsorption events have been studied
quite carefully: viral budding, the process by which many enveloped animal viruses leave their
hostcell [2]. After entering the cell (typically via receptor mediated endocytosis or other active
processes [3]) and completion of the viral replication steps, the new virions leave their host by
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Figure 1. A spherical colloid adheres partially and cylindrically symmetric to a membrane with
degree of penetration z = 1 — cos . Due to the possibility of overhangs, the profile is described
by specifying the angle ¥ with respect to the horizontal as a function of arc length s.

having their nucleoprotein capsid wrapped by the plasma membrane (or some other membrane
of the secretory pathway). This not only sets them free, they also acquire their final coating.
A particularly well studied model case is provided by Semliki forest virus, which utilizes viral
(“spike’-) proteins to mediate binding between capsid and membrane [4-8].

Many other realizations of such adhesion and wrapping events exist. Boussif ef al [9]
recently proposed an efficient gene transfection system, in which DNA is complexed by the
cationic branched polymer polyethylenimine into a globular complex, which then enters the
cell by an adhesion driven invagination process. Moreover, many biophysical experiments
require the adhesion of microbeads to cells. For instance, cell tension is routinely probed
by measuring the force necessary to pull a thin membrane tether [10]; and the centripetal
membrane motion, relevant for cell locomotion, is visualized by imaging adhering marker
beads [11]. These are actually engulfed by the cell without involvement of the endocytosis
machinery, provided the membrane tension is low enough [12].

This paper presents a theoretical study of the generic features of such processes, in which
adhesion of a colloid to a fluid membrane results in a nontrivial binding balance. The main
ingredient is the Helfrich Hamiltonian [13], which thus identifies the stage for all that follows
as the regime in which continuum elasticity theory is applicable.

2. Definition of the model

2.1. Relevant variables and energetics

The purpose of this paper is to study the local deformation of a fluid membrane occurring
after binding to a spherical colloid. The situation is fully specified by the following variables
(see figure 1): the membrane is characterized by a bending stiffness « [13], zero spontaneous
curvature, and an applied lateral tension o (which in the biological situation is adjusted by
the cell [14]). The combination A := ./k/o then defines a length scale intrinsic to the
membrane. Taking typical values of the bending stiffness (¢ >~ 20kg T [15]) and lateral tension
(o ~ 0.02 dyn cm~! [14]) we find A ~ 64 nm. Next, the colloid has radius a and adheres with
an energy w per unit area to the membrane. The amount of wrapping can be specified either
by the detachment angle «, or more conveniently by the expression z = 1 — cos «, which we
term the degree of penetration, and which varies between zero (just touching) and two (fully
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enveloped). Since k and a provide a natural energy and length scale, respectively, we define
the following dimensionless variables:

E:=—, w = , 0 i=—= )

K K K
The size of typical viral capsids is a few tens of nanometres, hence viral budding sits squarely
in the crossover regime in which a ~ A and thus & ~ 1. In terms of these variables, the energy

of a wrapping complex can be expressed as

E=—(—4z+62 + Efee(z, 6), 2
where Eﬁ—ee = FEfee/mk is the rescaled energy of the free part of the membrane. Its
determination is the tricky bit of the problem, because the membrane shape first has to be
found by minimizing the deformation energy (see below). However, neglecting it in a first
crude approximation immediately yields the result that colloids do not adhere if w < 4 and
become fully enveloped once w > 4 +46. In between they adhere partially with a degree

of penetration given by z = (w — 4)/26. For o = 0 this agrees with the earlier predictions
in [16, 17].

- E . 2wa? oa (a)Z

2.2. Shape equations for the free membrane

The energy of the free membrane is a functional of its shape. Within the parametrization of
figure 1 the two local principal curvatures are found to be v and (sin v)/r, the dot indicating
a derivative with respect to the arc length s. The energy functional can then be written as
Et~ree = fooo ds L, where the Lagrangian L is given by

. siny\? 26 , o
L=r|ly+ +—2(1—COSI/I) + A (F —cos) + Ap(h — sinr). 3)
r a
The terms in square brackets are the curvature and tension energies, respectively, while the
remaining two expressions fix the nonholonomic parametrization constraints # = cos ¢ and

h = sin ¥ by means of the Lagrange parameter functions A, and A;. The momenta canonically
conjugate to v, r and h are

oL . osiny oL oL
Py 3=w=2”<‘ﬁ+ - )a Pr :ZWZ)\M Ph :zﬁzkha “4)
and thus the Hamiltonian is given by
H = 1.ﬁp1/,+ffpr+hph — L
2 . ~
:p—w—pr]nl/f—@(1—COSI//)+prCOSI//+phSin1ﬂ. )
4r r a?

Since the Lagrangian does not depend explicitly on arc length s, the Hamiltonian is conserved.
Finally, the shape equations for the membrane are the associated Hamilton equations:

i = 1;_1// _siny (6a)
r r

F = cos Y (6D)

h = sinyr (6¢)

2%

Py = (% - Ph) cosy + <% + p,) sin ¥ (6d)

p,:@(p—d’—sm—w>+%(l—cosvf) (6e)
r \ 4r r a

pn = 0. (6
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2.3. Boundary conditions

The shape equations (6a)—(6f) have to be solved subject to appropriate boundary conditions.
At contact, s = 0, the membrane must smoothly touch the colloid, implying

r(0) = asina, h(0) = —acosa, ¥ (0) = a. (7

If the membrane is free to choose the point of detachment, a further condition on the contact
curvature applies [18, 19]:

ayr(0) =1 — V. ®)

However, since we will be interested in the profile energy at any given degree of penetration,

the above condition cannot be enforced. It will later emerge to hold for equilibrium profiles,

where dE/dz = 0 (see the appendix in [20]). Still, the fact that the equilibrium point of

detachment has to be determined self-consistently is one of the tricky aspects of the problem.
The notion of asymptotic flatness will be taken care of by requiring

lim yr(s) =0, lim ¥ (s) =0, ©)

which in particular implies that curvature and tension energy density vanish as one moves
away from the wrapping site. Note that we do not require the slightly stronger condition that
h should approach a constant.

If ¢ (s) vanishes sufficiently rapidly (which an asymptotic analysis of the shape equation
confirms, see (13) in section 4), energetic contributions beyond some large cut-off arclength
S are negligible. We may thus impose (9) at s = S, such that variations of S and v (S) are no
longer allowed. However, (S) and #(S) are still free and give the boundary conditions [21]

oL
0=—1 =p(O9), 0

= — = pr(S). 10
o7 | _ o | pn(S) (10)

Together with (6f) the second condition shows that p, = 0, so this variable entirely drops
out of the problem. The first equation can be turned into a condition at contact by making
use of the constancy of the Hamiltonian and the flat profile requirement, which together imply

H=H(S) =% p.(S) = 0. Solving H = 0 for p,(0) then yields

V(2 —2)
Z

ap,(0) = [1 +267 — (al/’f(O))z] . (11

1 —
The only remaining unknown contact variable is v/ (0). For given values of  and z the shape
equations now have to be integrated (e.g. by using a shooting method) and the value(s) of v (0)
have to be found which result in an asymptotically flat profile. This basically comes down to
a nonlinear eigenvalue problem. Its delicacy is illustrated in figure 2.

3. Numerical results

Numerically determining the equilibrium membrane shape and inserting it back into the energy
functional yields the energy E(z) of the complex as a function of the degree of penetration.
This provides knowledge about the equilibrium structure of the complex as well as possible
energy barriers.
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Figure 2. The solid curve shows the membrane profile for a detachment angle of 120° and an
applied tension of & = 0.5. This requires a contact curvature of about ay/(0) = —1.187 490 57.
The dashed and the dotted curves show how the calculation deviates from the flat profile if this
contact curvature is off by a factor of 1.001 or 0.999, respectively.

W = ot Y =

D =N

Figure 3. Energy E(z) as a function of penetration z for a rescaled tension & = 1. From top
to bottom the rescaled adhesion energy takes the values w = 2.738 (upper spinodal), 4 (onset
of binding), 6 (4 + 25, enveloped state has zero energy), 6.141 983 (envelopment transition) and
7.464 10 (lower spinodal). Increasing w will first lead to a smooth binding transition, followed by
a discontinuous envelopment transition. Its energy barrier is indicated by the double arrow. The
fine solid curve is the locus of all extrema.

3.1. Equilibrium structure

Figure 3 shows an example of E(z) as a function of z for successively larger values of the
adhesion strength w. The minimum! identifies the equilibrium state. At w = 4 partial binding
sets in, which, since the condition is independent of ¢, results from a balance between adhesion
and curvature alone. Indeed, (2) shows that this balance takes place one order lower in z than the
tension contribution, which enters quadratically (for Efree this follows from a small gradient
expansion; see (15) in section 4). Further increasing w will lower the energy of the fully
enveloped state until it reaches the energy of the free state. Since in the limit z — 0 we also
have Et‘ree (z) — 0 (ideal necks have no energy [22]), the point at which E (z=2)= E (z=0)

' The contact curvature condition (8) follows from oF /dz = 0. However, this is also satisfied at maxima, and it is
not satisfied at boundary minima, at which the slope need not vanish.
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Figure 4. Phase diagram of the wrapping complex in the small tension regime ¢ < 1. The
smooth transition from free to partially wrapped (at & = 4) can be seen, as well as the strongly
discontinuous envelopment transition (roughly at w = 4 +26). Both lines meet at (w = 4,6 = 0)
at which the discontinuous jump in z is maximal, but at which also the energy barrier vanishes. At
o = | the ‘van der Waals loop’ is indicated as a dotted curve. At that point, and for k = 20k T,
the barrier height would be about 66kg 7', showing that the system will locally rather follow the
metastable branches and thus display hysteresis.

is readily seen to occur at w = 4 + 26. For slightly larger values of w the energy of the
fully enveloped state drops below the shallow equilibrium low z minimum. This behaviour is
depicted for the low tension case in the structural phase diagram of figure 4.

3.2. Envelopment barrier

The jump to the enveloped state is not only discontinuous in z, it also requires an energy
barrier AE to be overcome (see figures 3 and 5). At o = 1 its value is AE ~ 1, which for
k = 20kgT yields AE ~ 66kgT. This is large compared to thermal energy, hence the system
will not readily change its structure at the transition point but rather display hysteresis and
follow the metastable wrapping and unwrapping branches. The concomitant ‘van der Waals
loop’ is indicated for the case ¢ = 1 in figure 4.

For small & the energy barrier can be empirically fitted by AE_(6) = 1.54 5°%¢, while
for large & it will asymptotically reach the expression AE- (5) ~ 3.5 /3.2 In the latter case
the exponent 1/3 can be derived by a scaling argument [20]. Figure 5 also indicates that this
change in exponent between the low tension and high tension regimes finds its counterpart in the
jump-size Az: at low tension the jump is large, while at large tension it is small, the crossover
coinciding with the crossover of the energy exponent. For large & one has Az ~ 3.17 5~!/3,
with the exponent —1/3 again following from scaling [20].

The deeper reason for the existence of an energy barrier is the fact that partially
wrapped states deform the membrane more strongly than somewhat wrapped or fully wrapped
states. They thus store a substantial elastic energy in the free membrane which impedes the

2 The expression [AE ;1 + AE; =1 approximates AE for all & with about 10% accuracy.
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Figure 5. Log—log plot of the barrier height A E as a function of rescaled tension & (solid curve,
left vertical scale). The two dotted lines indicate the asymptotic power law exponents. The dashed
curve (right scale) shows the corresponding jump in z. The crossover in the exponent of the energy
scaling is reflected in a change from a large jump Az at small tension to a small jump at large
tension.

envelopment transition. However, the situation is a bit more subtle. Let us define the rotal
penetration d as the vertical distance between the asymptotic membrane and the lowest point of
the colloid (i.e., how deep the colloid penetrates on the other side with respect to the membrane
plane). Figure 6 shows this total penetration d in units of the colloid radius a as a function of
the usual penetration z for various membrane tensions ¢. Several observations are noteworthy.

e For any given value of the (usual) penetration z the total penetration d is bigger if the
applied tension is lower. This holds because high tensions pull the membrane flat and
prevent a large total penetration.

e For low tension the transition point for envelopment occurs at rather low values of z or d,
as has previously been seen in figures 3 and 4.

e The (lower) spinodal line, at which the (wrapping) barrier vanishes, occurs at significantly
larger penetrations. However, it does not correspond to the maximum in d(z), at which
the total penetration (and thus the global deformation) is largest.

e The position of the maximum in d(z) coincides with the nontrivial value of z at which the
equilibrium contact curvature avy(0) = —1. This establishes a remarkably simple link
between a local property (contact curvature) and the global shape of the profile. Due to
the lack of an analytical solution the origin for this is as yet obscure, but it may be related
to the following observation: from the contact curvature condition (8) and the fact that
binding only sets in for w > 4 it follows that the equilibrium contact curvature can be at
most —1. This then is the weakest possible bending at contact and might thus give rise
to the slowest profile flattening.

Combining this with the results on the energy barrier we find that increasing the tension reduces
the total penetration, and thereby flattens the profiles, but increases the energy stored in the
membrane. This indicates that the dominant source of free membrane energy is tension, even
though the reason why the profile is not simply flat is the curvature. Separating tension and
bending contributions to the energy of the free membrane confirms this suspicion (not shown).
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Figure 6. Total penetration d (see text) as a function of the usual degree of penetration z for various
rescaled tensions ¢ as indicated by the numbers. Lower tensions lead to higher total penetrations
d. The line marked ‘P’ indicates where the envelopment transition occurs. Line ‘S’ indicates the
spinodal. Line ‘M’ joins the maxima of all curves d(z). The grey region below the dotted line
d/a = z is never reached, since the total membrane penetration is always at least as big as the
detachment penetration z. For tensions somewhat larger than & ~ 4.7 the high z behaviour is
complicated by a profile instability.

4. Small gradient expansion

If the membrane slope ¥ remains small (as is for instance the case for the small degrees of
equilibrium wrapping occurring at low tension), one may expand the shape equations to lowest
orderin ¥. This approximationis very commonly used, for instance when calculating capillary
interactions [23]. Itis quickest done in the functional itself, but a derivation from the Hamilton
equations themselves is also quite illustrative.

Equation (6e) shows that p, is quadratic in the v variables (counting v also of order
Y¥), hence up to linear order p, = 0 and together with equations (6f) and (10) we find that
both p, and p;, vanish identically. Next, in linear order (6a) becomes ry = % py — ¥ and
differentiation yields riy = 1 (py /r +25ry/a*) —2¢ (since # = 1+O(?)). Differentiating
once again and inserting (6d) gives

r? r\r2 a2

Noting finally that in linear order A’ := 9h/0r =  and 9/dr = 3/ds, we can rewrite (12)
as A(A — A7 2)h(r) = 0, where A is the cylindrical Laplacian and A = /k/o. The general
solution of this linear differential equation is a linear combination of the eigenfunctions of
the Laplacian with eigenvalues 0 and A~2, and the only two for which the profile does not
diverge are a constant and the modified Bessel function K. Fixing the contact conditions (7)
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of smooth touching, the solution is readily found to be
ro Ko(r/2) — Ko(ro/2)

h(r) = ho + A , (13)
ho Ki(ro/2)
where contact distance ryp = a sin @ and contact height ) = —a cos« have been used. An
immediate result from this is the total penetration d:
d h G
d_q e <1 —In ﬁ>z+(9(z2), (14)
a a E

where E = 2% ~ 0.6305 and y = 0.5772... is the Euler-Mascheroni constant.
Inserting (13) back into the small gradient energy functional, performing the integrals, and
expanding the result in powers of z, one finally gets [24]

Epee = —267%1In % + 0. (15)

Equation (15) together with (2) yields the total energy of the wrapped complex in the small
gradient approximation, and the equilibrium penetration again follows from dE /9z = 0. Due
to the logarithm in (15) this unfortunately cannot be expressed in terms of elementary functions,
but one can give the following closed expression:

w4 ith W = W) =W w4 16
aGW with W= Ww) = "( AE ) (16)
where VW_ is the branch — 1 of the so-called Lambert W function [25], which is the inverse of
xe* and which for small negative arguments behaves roughly like W_; (x) >~ In|x| — In|In|x]||.
Incidentally, for adsorbing cylinders one also finds z oc o1, but the increase with w beyond the
onset of binding is quadratic, and Ef.(z) o z + O(z?) [26].
Together with the condition® E () = E (2) = —2(w—4)+40 one obtains the envelopment

boundary
25 1 1 [ p—4\""
27 e 1 —r—— | "2 14 (s Y . (17)
w—4 2 2W o (2W)?2 4E
In particular, this also shows that w = 4 + 2¢ is the correct asymptotic behaviour in the limit
6 — 0 (in which w — 4), and that the corrections are essentially logarithmic.

=

5. Summary and conclusion

The results of the previous two sections offer a clear picture of the adhesion and wrapping
scenario: initially adhesion is only opposed by bending, tension energy setting in later to
determine the degree of wrapping. At sufficient adhesion strength the colloid should become
enveloped, but a substantial energy barrier gives rise to hysteresis. This holds even for most
of the small tension regime 6 < 1, because a tension energy small compared to bending need
not be small compared to the thermal energy. Indeed, at ¢ = 1 the tension energy scales as
Ewn = 0a’® = k, and k is usually large compared to kg T. Increasing the tension can promote
unwrapping, but not unbinding, which is independent of .

Since w and 6—the relevant variables of the structural phase diagram—can be controlled
externally with relative ease, many quantitative experimental tests of the presented theory are
possible. In order to avoid the small length scales it would then be advisable to focus on model

3 Note that here we use an exact result from the full shape equation (namely, the ideal neck theorem [22]), which
cannot be derived within the small gradient framework. Also, it does not hold for wrapped cylinders.
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membranes with significantly larger bending constants, for instance membranes built from
block-copolymers. It is also worth pointing out that tuning of these variables is very likely
exploited by any biological system which relies on such wrapping events. For instance, in the
case of viral budding the virus has various control possibilities over the adhesion strength: if
electrostatic interactions play arole,changes in the pH will titrate the charges of the weak amino
acids present in the capsid proteins. Moreover, if the virus synthesizes spikes for mediating the
binding, their concentration in the plasma membrane of the host will determine the effective
adhesion energy per unit area [7, 8]. Furthermore, the virus is, during its ‘lifetime’, in contact
with various different membranes, at which it has to wrap or unwrap, and their tensions are
not necessarily the same.

Let us finally remember that the above theory only studied the energetics of binding.
Entropic aspects, most notably the influence of membrane fluctuations, have been left out.
Their presence will most likely lead to an additional repulsion between colloid and membrane,
the precise form of which will be the subject of future work.
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