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Extrapol ating Tine Series by Discounted Least Squares
Abstract

An approximating function is fitted to a tine series, such
_és daily 6bservation. The fitting is carriédfout over all past
time by weighted |east squares with an exponential weight factore
The appkéxinating function is restricted to'be a solution of a
certaih finear di fferential eqqation of the nth order having
constant coefficients. The solution which nininizes the |east
squar e expression can be bontinued into the future. Ih particular
t onorrow's extrapol ated value is defined by this continuation.
To obtain an explicit solution of the problema formula is con-
structed whi ch gi ves the extrapol ated value as a |linear combination
of the last m observed values and the last m extrapol ated
val ues. The coefficients of this extrapol ation fornmula prove to
-be sinply related to the coefficients of the differential equation.
Anot her extrapolation formula is of vectorial nature. The com
ponents of a vector are m independent functionals of the past
observations. Then tonorrow s vector is given as a |inear function

of today's vector and t oday's scal ar observati on.

_.21 "w_

. HURT LIBRARY
CARNEGIE-MELLON UNIVERSITY




EXTRAPOLATI NG TI ME SERI ES BY DI SCOUNTED LEAST SQUARES*
R J. Duffin
CARNEGI.E I'NSTI TUTE OF TECHNOLOGY

Thi s paper is concerned mﬂth-extrapolation of an infinite
‘sequence ylAyA.., of real (or conplex)'nunbers. This is |
accohpli$hed by fitting the sequence (y,) by a function p(n)

taken from a space of functions termed expononials. The criteria

for the fit is given by discounted |east sguares. This.neans

that p(n) is that exponom al which mnimzes the 'error’ expression
E= 10 ey, - p(n)]”

Here 6 is a positive constant terned the discount factor. Then

the extrapol ated val ue of the sequences at the point x s
defined to be p(x).
In the previous paper an expononial was defined as an

exponential polynom al of the form

n

p(X) = 1, 95 83
where the fbj. are fixed conpl ex nunbers assumed di stinct and
nonzero. The coefficients dj are arbitfary conpl ex nunbers so
an mdimensional vector space results. In this paper the
definition of expononial is extended so as to perhit pol ynom al
terns of the form 'p%ﬂx g%w.j,xlilﬁgj It is seen, thepefor&
that the space of exponom als can be defined to be the solution
set of a certain linear differential equation,

jin jin-1
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3
where the coefficients e, are conpl ex constants. Thi s space
of exponoﬁials_mﬂll be denoted as XP. An inportant specfaI case
is defined by the equation d"p/dx™= 0. Then XP is the space
of polynom als of degree less than m |

There are three reéson why the extrapol ation procedure just
descri bed can treat a large class 6f problens in applied mat hemat i cs.
The first reason is that the discounted |east squares criteria is
suited to problens of nmechanics and econom cs for which the
progressive discount of the pasf seens natural. Anothef reason
is that the space' XP is invariant under an arbitrary translation
of the x axis. This invariance property nakes exponom als
~attractive functiohs for approxinafing tinme series. The third
reason for the utility of this extraipolation nmethod is that there
is an underlying algébraic structure which is both interesting
and signiffcant.

The bases £, are arbitrary. The selection of the £ . |
and the discount factor 9 shodld take into accduntfifst t he genesis
of thé_data. Al'so, account nust bé taken of the genesi s of data -
error -and the snoothing property of the extrapolation. These
quéstions are not treated in this paper. _

A central problemof this paper is the one step extrapol ation
of the sequence { yn} to obtain an extrapolated value at n = 0.

The extrapol ated value is denoted as. yz and is defined as
yE = p(0)e \When the mnimzation is carried.outz it results

that yg is given by a linear functiona
VG 2\_1 @V -

Here the coefficients Q, do not depend on the sequence




yi¥ 27 - . It is then natural to wite

oo
Yk = _Zl Y nex

and define- yL as the predicted val ue of Y based only on

t he ’pfevious val ues! Yfc+i' Yk+2' # #

‘ Theorem 3b to foIIOM/gives'a sinple'generating function

to evaluate the coefficients Q,+ Thereby the problem of one-step
extrapol ation is essentially solved. Nevertheless, the above
formula is not satisfactory from a conputational point of erw
This is so because it is an infinite series énd SO an infinjte

menory is needed. This situation is remedied by Theorem 2 whi ch

~provides the following short nenory formila,

m m

£ £x Tnyn+k + _ Ix <]c>ny£+k'
Here the T n and the (ﬁ1 are constants which do not depend

on the sequence y,. Thus, this identity gives the extrapolatién
y* as a linear conbination of the m previous val ues and'fhe

m previdus extrapol ati ons. - Consequently, the short nmenory
formula is readily adabtible for conputer'evaluatfon

Al so of inportance are extrapolation formulas for other -

linear functionals of the sequence yj,Yy .... For exanple
¢’ |

p(1/2),p" (0),p'" (-2), j p(x)dx are linear functionals. W
0 ° **

term such functions extrapolat ors. Let wx) be a vector whose

m conponents are linearly independent extrapolators. Then Theorem
7 gives the follow ng extrapol atjon fornul as.

WX) = AWX '+ 1) + byy+s.

where A is constant matrix and b is a constant vector. Thi s

is termed a very short nmenory fornula because the extrapol ation




S

is based only on ohe previ ous val ue of ﬁ/ and one previ ous
val ue of - y.

The extrapol ation of time series based on a di scount ed
| east squares criteria has previously been treated by Duffin
and Schni dt [1], Duffin and Whidden [2], and Morrison [3].
(Various other authors have proposed simlar extrapol ation fornul ae
but their work is not based on discounted | east squares.) The
present pape}.giVes a nore general treatnent of problens posed
by references [1], [2], and [3]. fn particul ar the theorens
of this paper are ained at eval uating and fnterrelating the
const ant s, P o, 8 , 11’ §1* Ah.and 73 by al gebraic formul ae

To begin the proof, let Gz) be a polynom al of degree m

inthe variable z and let G(0) = 1. Then
_ | m |
z) = 2L g, 2.
Q2) = 2L g7
Here the gj are arbitrary conpl ex constants except that

95 == 1 and q N'0. O central concern are functions p(x)

of the real variable x satisfying the difference equation
0 = goP(X) + g™p(x + 1) +eeet gup(Xx + M) .
Let X denote the translation operation defined by the relation.

Xf(x) = f(x + 1) 4 Then the difference'equation can be witten

in operation form as

' m 1
0 =&X)p(x) = ir (I-"--Xp(x)
=1
where the ~* 5 are the roots of CKZ)_ = 0. First suppose that
x is restricted to the integers. |f none of the - roots are

repeated it is seen that there are m linearly independent
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' X
solutions having the form p(x) = "3  The general solution is
a |linear conbination of such solutions. |If the root § 9 i's
repeated k tinmes there are k linearly independent solutions:
X X k-1 X ' _ _ _ _
B,é,)gﬁ.g...,x B‘g' The general solution is again a linear

conmbi nati on of such solutions and defines an mdinmensional vector
space. This is the space of exponomials and it is denoted as XP.
For sone problenms of extrapolation it is required to continue

‘exponom als to non-integral values. One way to do this is to let
a B . , Ne r, X Bx 27riLx ,. !

p= e. and then define P =—e e - where L s an
integer. A 'natural’™ choice for L is '

AT < imag B + 2L <. TT.

This choice mnimzes oscillation. The anbiguity here stens
fromthe fact that multiplying a solution of the equation by an
arbitrary function of period 1 gives another solution.

éince an exponom al satisfies the difference equation it is
seen t hat prescfibing the value of the exponom al at the integers
I,2;...,n1 determ nes the value of the exponomial for all other
positive infegers. Thus the spéce XP is mdinensional even
if Xx is restricted to the integers 1,2,...,m.

The approxi mati on schehe enpl oyed in this paper results from
enbeddi ng the finite dinmensional spaée XP in an'infinité
Hi | bert space of "discounted squares®. This Hilbert space is
denoted as DS. The elenents of DS are infinite sequences of

conpl ex nunbers yy My such that
-~
2L €] y,|*<cp.
1

Here” is a positive constant termed the discount factor. The

di scount factor is required to satisfy the inequality




of £.] <1; j =1,2,...,m
- _ :

It is readily shown fromthis inequalfty that exponomals are in
DS. Thus the space XP is a finite dinensional subspace of
DSf Let v and y denote two elenents of DS then the Hermtian

bilinear formis defined as
po

[v,y] = X °"Vn
where vn denotes the conplex conjugate off vn  The normof a
element y of DS is defined as
' ' 1/2

Wl = tv.v1*/2.

It is instructive in what follows to regard the sequence

{yn} as a tinme series of observations'. Thus Y, can be regarded
as the value of the observation at tine -x. To extrapolate the
sequence {yn} for values of n not a positive integer we first
approximate y by an el enent p of the subspace XP. By this

is meant that p is chosen to nininize the expr essi on

co)
E= [(y - plI> ="£ €"y,- p(n)]?
1
As in the references [1], [2], and [3] this is terned approxinﬁtioh
by dfsctoumtedteast—squares. - |
The following lemma is ained at determning p given a
sequence (yn}. |
temma 1. - tet p bHetheexponomat—best—approximating y T
thetHtbert—space. Fhen
©o[rayl = [r,pl”
for—every—exponemal . o
Proof. This is merely a reformulation of the basic theoren1con;

cerning Hilbert space which states that if p 1is the best approxinmation
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to y for p constrained to a subspace then p 1is the orfho-
‘gonal projection of y into the subspace.

By choosing a basis for the subspace XP the orthogonal ity
rel ation sfated by this Ilemma leads to a systemof m |'i near
.equations which could be used to determne p as a unique |inear
cdnbination of the basis el enents.

Then p is déternined uhiquely at the positive integer
points. The convention introduced above permts an exponom al,
given at the posifive i nteger points, to be detérnined for al
~real x. Thus it ié possible to define the extrapolation oflthe'
sequence-'y“y“j*** a8 the point x to be p(x).°-

Lemma 2. _Let r be a given exponom al and let. k be a

gi ven nunber. Then there is a uni que sequence of nunbers

C4.Coi - v L such that the formula_

[r,v] =7vifk + 1) + cov(k + 2)+-*-+ co(k + m

hol ds _for every expononi al V.

Conversely agiven a nunber k and a sequence -of nunbers

| *C23e" *''Gn there is a unigue exponomial , for which the above

 formula hol ds»

‘Proof. As is well known the.linear functionals f(v) in an

m di nensi onal space such as XP have the form f(v) = 1[r,v].

Mor eover, these linear functionals thensel ves forﬁ1an m di mensi ona
space. Cearly the expression on.the right side of the fornul a

of the lenma is a linear functional for any choi ce of const ant's

CT,cEfn..,c Suppose that for sone choi ce C.Y(k + 1) +... cn¥(k +n .

m

vani shes for all v in XP. However, an exponom al can be pre-
scribed arbitrarily at a sequence of m points obtained by

successive unit translations to the right. Hence all the constants
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c; must be zero. This shows that v(k+ 1), v(k+2),...,v(k +m
are m independent functionals. There can be no nore than m
i ndependent functionals and consequently the left and right side
_qf'the formul a represent the sane space of |inear functionals.

The proof of the lemma follows fromthis observation.

Theorem 1. Let r be a given exponomial and let k be a_given

nunber, then there is a uni que sequence of nunbers p~c ar # C

m

'such that the. formul a

[r.yl =gpflc + 1) +cop(k +2) +«eoe+e cop(k +1m)

holds for every y of the Hilbert space DS provided that p

is the orthogonal projection of y into the expononial subspace
XP.

Conversely given a sequence of numbers ¢, Cy*....cC t here

-

1— 2 Yz m

IS a unique exponomal r satisfying.this'fornula.

Proof. By Lemma 1 we have [r,y] = [r,p]; Then apply Lema 2

with v =p and the proof is seen to be conplete. o
A general problem of extrapolation is to extrapolate the

sequence y?,y% ... to obtain a value for y at a point X

not a positive integer. This eXirapoIated val ue is denoted by

the synbol ext(y ) and is defined as ext(y ) = p(x). The
X X

following corollary of Theorem 1 gives a formula for conputing

ext

Corollary 1. Let p(x)_be the approxinatinq expononmial to the

seguence.  y~ry~n*- — Then there is a kernel function q(x,n)
such that p(x) = bﬁ‘nq(‘x’ n)yn=1[gyl .
n-= . _

For. n fixed q(x,n) is an exponomal in x. For x fixed
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g(x~n) s an exponom al_in n. _The kernel function may depend

on O but not on .
Pr oof . I n Theorem1l take k=x -1, q. =, C2=O,...,Cm =0.
This proves the fornula of Corollary 1 wi.th g=r. To show that
Ithe' kernel function is an exponomal in x take Yn = 0
except for n = n, This is seen to conplete the proof.

A s.i gni ficant speci al caée of the formjla of Corollary 1 is
X =0. This extrapol ates the s.equen_ce y-i ij_’?- o 6ne unit to the
left to obtéin ext(yo). This one step extrapol ation is suffi-
ciently inportant to warrant a special notation and we wite

o

y* = p(0). The general  extrapol ation fornula becones
co _ A :

y4 = 2. e%a(n)y

n’
o n=1 .
Here q(n) = q(0,n) and q(n) is also ternmed a kernel.
|f the sequence y~y~... i° i" the Hilbert space DS then

the Sequences yxl-l* Yx_'_2> e o o " %S anso AN DS f or anY pOS| ti ve or

negative integer x. This follows fromthe relation
.00

- ‘
n 2 -k n 2
2 & lygl® =0 2 &y l® < o,
1 X -

As a natural extension of the previous notation |et yl*x denot e

the extrapol ation of the sequence yf_li\y x‘-uA*»« to the point

X. The extrapolation formula given by discounted |east squares is
00 :

: o
/\r;( . EL e g*{nl/n+x*

1
This fornula involves all values of the sequence y..}-Jr"y ypd o
and so is an infinite series. For this reason a fornmula of this

nature may be ternmed a |ong nenory formula. It is nowto be

shown t hat y;c is also given by a finite recursion relation and

hence by a shor t rrermry fornul a.
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Theorem 2. Let. yf be defined by the fornul a

v = Z enq(n? Yn+k

Then y£* the one step extrapolation, is given by the recursion

formula m : o
_ n
Yg = - Z In¥n+x ~ Z £.8 Ontx
=| =

Here. for convenience of notation, fn =g _/g. Aso 6_ =

y* -y and is terned the discrepancy.

Proof. Let ¢g* =0 for n<_0 and g< =q for n> 0 so

yr =2 ©'q (ny,.

) .
(e yr = > o"q' (n - x)y, -
-CD .

- - . '— ) m- .

Since G(x) is apolynomial GXG(x) =0. Thus <L g.q(x + j) =0
M _ _ . . ) o D ]

or Zog ™:g(x + m- j) =0. A polynonmial F(z) related to the

pol ynom al G z) 'plays an inportant. role in what folloms. It

i-s defined as

Fla) = X £4 = MG _2/5,
3= -

- J=
It is seen that FX)g(n - x) = 0 for al Y Consequently
FOX)d (n - x) =0 for n>x+ m or n<x so

. CD m

FOO)O%y* = & [ Hf M - x - ) 10%,
X npz-00 j=0°

xtm

o= Sy
n=x+l nn

where the s are certain absolute constants. To evaluate these

const ants, , first set Xx = O in the last relation and obtain

.(*)._ fo-)] zsy.

j=0 3 J n_]_nn
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Next let vy, = r(k) an exponomal. Since the extrapolation of
exponom als is error-free, y}’; = r(k) also. Note that fg=1

SO after substituting Y = r(k) the relation (¥) can be witten as
m - '
= - j i
r(O)_ j_Z:|(s.3 f3.9)r(1).

But since G X)r(x) =0 it is also true that
_ | . . _
((0) = - _g.r{i).
. 3=1 3_

Subtracting these two equations for r(0) gives

m
0= Z(s_- .8 + d.)r(j).
= Alsp - 138 4 g

But an exponom al can be defined arbitrarily on the integers

1,2,...,m Thus S.J = f .3-0-' - g, and relation (*) becones

m ) - . m )
vi= T (.- g)y. - 2 0%
3=l o=

This is seen to be equivalent to the short nmenory formula stated

in Theorem 2.

Corollary 2. The kernel function q(X) satisfies the constant

coefficient difference equation G X) g(x) =0, an eﬁuation pf

the nmh order. But q(x) does not satisfy any such equation of

| ower order.

Proof. Suppose q(x) satisfied the equation GT(X)g(x) =0

of order m"™ <m Then the p_[oof of Theorem 2 could be carried"

out with G" replacing G  This would lead to a relation of
the form | nf :

r(0) = H (fit » - ft.<-9)r(j)

. N 3

j =l

for every exponomal r(j). But 'an exponom al can be defi ned
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arbitrarily at m successive points. Thus take r(0) =1 but
r(j) =0 for j =1,...,m". This co.ntradi cts the- assumed rel ation
and the proof is conplete.

So far the kernel' function q(n) of the long formula has
bnly been defined inplicitly. On the other hand the coefficients
of the short formula are given explicitly in Theorem 2. However”
since the short nmenory forrmula and the Ilong_rrermry formul a are.
essentially equival ent it is poséi ble to use the short formula to
give an explicit procedure for eval ua_ting gq(n). Di f f erent ways

of doi hg this are given in Theorem 3a and Theorem 3b to follow.

Theorem 3a. The kernel function q(n) satisfies the recursion

f or mul ae: ‘
' n-1
— n H
g(m) =1, - 67y - Hffg(n- ), lsnsm
m
~a(n) =-Z. f.q(n - j) > > m.
Thus = '

q(l) = fl = egl
a(2) =f, - 6°g, - £ + of
. . 3

191

q(3) = f3 -87g 5~ 2f £ ,+ £ \-O6f 7 + 0%gn, + Bf,h .

Proof. Let Y3 =0 for all j except fhat ynzl. Then it

follows directly fromthe long formula that y*= G'q(n). It
is also seen that: y¥% = O""':'q(n-j) if j <n-1, y¥*¥ =0 if
j > n. The short fornula may be witten in the form
_ m . m
Bt jé‘elfj - 950y - jglejfj-“’?

Substituting the above special values of Y, and v inthis

formula |eads directly to the fornmulae of Theorem 3a.

HUNT LIBRARY -
CARNEGIE-MELLOH UNIVERSITY
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Theorem 3b. The kernel function q(n) satisfies t he generating

identity ° _
- 'F(Q7) - <5(z) _ n n
F(62) = }Eﬁe g(n)z"
. 1 )
provided | z| is small.
. : _ 2 .
Proof. If |z| is small the sequence |,z,z , ... s in the H | bert
space DS. Thus, substituting Y, = 2% in the long fornula gives
. . . , .
v~ /LO©q(n)z =zy*o
1 k o _
TTEn subsUtutH1g yn = 2” and , ¥t =~ z YW in the short formula
gives m m ' '
y = N - gz - Ze-f.z- y
° j=I N 3 i= n °
But f0=go= 1 =o
m . m m
W A2f0z°"= 2f62z7- Znge-z’
°j=0®” = j=oP - j=o!

and the proof is conplete.

We now turn from one-step extrapolation to nulti-step
‘extrapol ati on. Thus t he tmo-step extrapol ati on of the sequence
y-\ sYy* e e is-given by ext (y,.) =p(-1) etc.

Theorem 4a. NmJL&UmHmﬂlﬁm1ﬁuK§Jﬁ_UML§ﬂL@mL_ Y-]Ypj ..

are qgiven by the Ionq menory fornul ae:
00

P(O) = "X®'q,Y,"
, ' ' Lo
p(-1) = 2 o™ (g, + qa)y,,
e

- n+2 o 2
25:-9 (Qppo + O 9041 F D9, + Q) Y,
1

p(-2)
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| _ n+3 2.
p(-3) = 2 © [qpe3 & Qe ¥ Q) F Glayyy +
1
., 3 :

Here q is a condensed notation for the kernel q(n).
Proof. Let Y =y for n>0 and let Y =p(n) for n< 0.
oo" n - 2 n
Let Eo= k. 0"Y m P(n) | where P(n) is an expononial. Thus
o : 0o
— 2
Eo=1[6(0) .P(O)|?+ £ €e"yn. P(n)]"
1 _ .
Clearly Ep is mnimzed when P(n) = p(n). Hence applying the.
one-step extrapolation fornula to the sequence YO,Y,l, Yz,...” gi ves
B 00
R-D.- £ ©vn-|
| _ o
p(-1) = oq;p(0) + 7 6'q vy ;-
But ' co 2

P(Q =Z« r]qnyn
' ' 1

so'

cD ' 0o
: _ n+1 n+l
p{-|, - I, e gi%yn+ | € %+1Yn-
1 ' 1
This proves the forrmula for the two-step extrapol ator.
=C0 2 '
Next consider E = > 6 |Y - P(n)l. and following simlar

-1 /--N n
reasoning to that given aove dows that

p(—2) = L 6"gnV2 :
1 ’ <*>
— 7 2 n
P(-2) = eqip(-i) + Fap0) + J_ &"qy, ,
Substituting the series expression just derived for p(-1) is
seen to prove the formula given for the three-step extrapol ation.

Further fornulae are derived anal ogously and the proof is conplete.
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Theorem4b. Mitistep extl rapol at ors of thé sequence Y gy 3- - -

are given by the short nenory fornul ae;

m m - .

-p(0) = [ gy + I ef 6 >
1 1

“P(‘l) ° L IVI - glgn)yn + 6 -(efn+1 - glfn) 51_1 3
1 1

o m )

-p(-2) _ I t In+2 ~ glgn+l = 929, + 91 gn)yn

L .

m,.n,.2 | 2 _
2 e (o fn+2 - eglfn-l-l - ngn + glfn) én .
1
wher e 9 =0 '_and f n= 0O JJJ n>m
Proof: Apply the short nenory formula to the sequence YO,Y

whi ch was i ntroduced in the proof of Theoremd4a. But Y*_lz p(-1)

SO m

m .
—— n -
* L~ “n n-1 Z ot An-].'
1 1
Also Yo = p(0), /’\o =0 anq SO
' m m
p(-D =gr0) + £ gy. .+ N F6..
X 11 ilv-J» ¢~ 11 11— X
2 2 )
’ mm m-1
-PC-1) = 'g( | gwyn + | €6, * Z Ine1¥n
i I I
m-1
N n+1l
A G The B
1

This seen to prove the stated formulae for p(-1). Further

formul ae are derived anal ogously.

Theorem 5. The rel ation

CcD

F(@Z) ~/\et(n)zn
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gives a one to one l|inear correspondence between polynonm als of

m -
the form\ (z) = ~ _a%-' and conjugate _exponomals t(n) .
Pr'c_)of. ‘G ven such a pol ynoni al ’E(Z) then T(z) = H(z)/K¥$€)z)
- is a convergent power series if |z| is sufficiently small. Thus
wite - ' GD
T(z) = » ©t(n)z"
-CD

where t(n) =0 for n £0. Since %{z) = F(0z)T(z) we have
m 00
T. = jtn_j+n
Tz) = J_ Z £507 "1 e (),
0 -00 :

Let j + n =Kk so
00 K m
$(z) = £ ez" £ k- j)
- 00 : 0
Since *(z) is a polynom al of degree not exceeding m it follows

from the above relation that
m

> fot(k - §) =0 for k> m or
0
m .
Z f.Jt(x+m- j) =0 for x> 0, so
0
m .
2 f -itx+]) =0 for x> 0.

m )
0

Hence G(X)t(x)

for x> 0.

0 and it follows that f(x) is an exponomi al

We can conclude fromthis last result that the mdinensional
vector space p of polynomals of the form 't(z) is mapped linearly
into a space S of conjugate exponom als. Moreover, this is a

one to one nappi hg because power series are unique so S has
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di nrension m However, the space XP of all conj ugat e exponom al s

has dimension m so S = XP and the proof is conplete.

m 4 .
Lerma 3. Let 1(z) = $ az' be a given polynomal. Then
- - . D .
_ [
+here—are—potynotats
_ _m . m . ‘
|_KZ) = 2~ hj z_J- and K*Z) = Z kaj —
o 1 1
such that. _
'qQz) = -Hz)&z) + K(z)F(0z) .
" Hence the_syst emof 2m equations
i i :
\ < I i-1 - _
A A, = - Lo 9injh ot g ot _jles x i
' 1 1
can be used to find the coefficients h. and k.. Here Aj =1
\ D 3 +
for i <m and A. =0 for i > m

Proof. _The roots of (z) are {'6.1} and the roots of F(Qz)
are (@’\>j}. The discount factor 6 was choosen so that

ount factor

It follows that the roots of (z) are outside a circle of radius

1/2
Q' and the roots of F(0z) are inside this circle. Consequently

Gz) and F(Qz) cannot have a common root so by a basic t heor em

in the algebra ~ of polynomals

*Qz)lz = -H{z) Jz) + Ko(z)F(Gz)

where H,(2) and “o(?) 2" polynonials of degree l ess than the

degree of G and F. O course G and F are of degree m so
multiplying through by z leads to the relation stated in the

| enmma.

~Jheorem 6. Gven an arbitrary exponomial t(n) let wx) be the

correspondi ng extrapol at or
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o
Wx) = 1 e"t(n)Ynex.
Then a short formula for this extrapolato}' is
m m

W(X) = _7_1 hib, .+ zl NI

'thé h= and k; £m£LJxmﬁiLLLean.deLLned_by_Lhe_anynonLaL.'T(z)
which . is. the image of t(n) -according.to Theorem5 _and_Le_mxa_g_.

. Cco .
Proof. Let Qz) = 2L ®&'q(n)z" then according to Theorem 3b
1 [eJNe] n n .
-1 - Qz) =Gz)/F(ez). "Let T(z) = ~.et(n)z . Then according
to Theorem5 -we have T(z) = ’C(z)/F(CZ). Then Lgnna 3wth X

replacing =z gives
T(X) =HX) [QX - 1] + K(X) .
Here X is interpreted as the translation operator. Operating

on the fﬁnction y .wth the above identity we see that [QX - I]y =
- X : : X

*6 and so the short formula follows. This formalismis justified
| by the absol ute convergence of fhe resulting series when vy is'in
the Hil bert space and so the proof is conplete. |

A different proof for the exi stence of the short fornuia for
W(x) results from combining Theorem 1l with k = -m.and Theorem 4b.

The short nmenory fornulae given in Theorem 2 and Theorem 6 may
be ternmed rnfh_order formul ae because the right sides are expressed
as translation operators of order m Thus the extrapol ator - of

Theorem 6 can be witten as

m J m

Wx) = (Th. X)) 6k (1 kX v,

' 1 1
Now an nth order scalar difference equation is equivalent to a

first-order vector difference equation. This suggests that the
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nt h order scal ar extrapol ation fornula can be replaced by a
first order vector extrapolation fornmula. In fact such fornul ae
are to be found in the paper by Morrison [3]. for the special case
of pol ynom al extrapol ation. Moreover, Mrrison's paper indicates
‘that first order vector extrapolators nmay be advantageous in
nuneri cal work because of econony in nmenory.

The followng is a general theoremon first order vector

extrapol ati on fornul a.

Theorem 7. Let m&(x),...,wh(x) denote a set of- m :independent
" extrapolators. Then there is a set of constants a.. .and b.
" = - - . XI 2_
such that m -
Sra

W (x) = 21%M:; (x+ 1) +b. v,y i=1,....m.

-

This is terned a very short nmenory fornul a.

~ CO _ ,
Proof. Then w (x)- = 2L 6 r. (ny, and the exponom al s
1 .
1 _ 1 n"r-~x
- - m :
fi(n), fp(n),,..,f (n) forma basis for the space XP. Hence
13
it is possible to find constants a.. such that
1 M
G (n.+1) =9k TInji=1 ... .m
because Ofi(n + 1) is also an exponom al. These identities
are multiplied by 'dpyn+x+1 and summed. This gives
co m
CirQ r.(n+x)y ,n = C~a. .wW (x+ 1)
n=) I n+x -+l bzq 0
(oD m
l;Z=140 r,‘L( n)yn+x = jélaijwj {x + 1) + eri(l.) Yt 1

 Let b.JL = Orl(l) and this is seen to conplete the proof of the

very short formla.

Corollary 3. The extrapol ation of Yn ja m successi ve points

is given by a very short nmenory fornul a.
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Proof. The extrapolation of y, at m snccessive poi nt s ie
p(x + 1}, p(x + 2),...,p(x +m . By virtue of Theorem 1 these
are i ndependent extrapol ators and t he pr oof is-cennlete;
Lemma 4. Let x denote an afbitrarv-fixed pefnt'énd“ref V(X)
‘denote a functioﬁ of the exponom al space XP. Then

Vo)l dx | e Tisrr t
dx x:xo

| are—a-set—of m ‘+ndependent-—ttmear—functionats—onmthe—space  XP.
Proof. - The above expressions are obviously l|inear functionals.

I f they were not independent then there would be an identity of
the form - .

"1cv (x) =0; x=x

10 : °

which holds for ‘v in XP. But if v(x) is in XP so also js.

v(x + k) for every k. Hence the above identity actually holds

for all x. | t ie a differential equation of order m- 1 and can
have at nost m- 1 independent solutions. This is a contradiction

since there are m independent functions in XP,

Corollary 4. The extrapolation of y together with its deri-

vatives up tao order m- 1 evaluated of the sane point is given

hy the very short nenory formil a

1 )
r oof . e extrapolators are p(x), p ), ....,p x) eval uate
Proof. Th I (x) * 8) ml( ) I d

at a certain point x = X,. Then the corollary follows fromLenmm

4 and Theorem 7.
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