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ABSTRACT
While distributed applications need replication for the pur-
poses of fault-tolerance, realistic and feasible deployments
cannot afford to replicate every single component within the
system. Potentially, over the lifecycle of such deployments,
the consistency and fault-tolerant properties might be com-
promised when replicated and unreplicated components in-
teract. We describe some of the challenges in providing end-
to-end fault-tolerance under the mixed semantics. Our ap-
proach facilitates communication between the unreplicated
and replicated components of a distributed client-server ap-
plication, without compromising the consistency of the repli-
cated servers and without restricting any concurrent TCP
semantics that unreplicated clients expect. We describe the
resulting architectural and implementation enhancements to
the MEAD system and provide an empirical evaluation of
our new mechanisms.

1. INTRODUCTION
Replication is a common technique used for providing fault-
tolerance to distributed applications. With replication, the
idea is to provide multiple copies, or replicas, of various ap-
plication components so that even if one replica crashes or
fails, another replica can take over and continue the oper-
ation. The fundamental property underlying replication is
consistency, i.e., the replicas of every component must pro-
duce the same output and undergo the same state changes
when processing a given operation; otherwise, the replicas
might produce different results and diverge in their internal
states. Inconsistent replicas defeat the purpose of replication
as a fault-tolerance mechanism because they cannot serve as
replacements for each other in the event of failures.

To achieve consistent replication, most replicated systems
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require a number of mechanisms, such as the identical order-
ing of messages delivered to replicas, the detection and sup-
pression of duplicate messages, etc. Frequently, the fault-
tolerance infrastructure that supports such replicated appli-
cations employs an underlying totally ordered, reliable group
communication system (GCS) to convey all of the messages
to and from the replicated components.

For real-world distributed applications, fault-tolerance might
be required only for specific, critical parts of the application,
and it would be overkill to replicate all of the application’s
components and host them atop a fault-tolerance infrastruc-
ture. There are several reasons for this, including: (i) the
presence of components that necessarily exist/run outside
the purview of the fault-tolerance infrastructure because of
logical, physical or administrative constraints, (ii) the re-
quirement to support non-GCS protocols for communication
between some of the application’s components, and (iii) the
fact that fault-tolerance comes at a price, which means that
not all of the components can afford the runtime overheads
that inevitably accompany a useful, but complex, concept
such as replication.

Recognizing this need to support interacting replicated
and unreplicated components simultaneously within a dis-
tributed system, the Fault-Tolerant CORBA standard [8]
introduced the concept of a fault-tolerance, or replication,
domain. This is a logical decomposition of the application
where all of the components assigned to the fault-tolerance
domain are replicated and hosted over a fault-tolerance in-
frastructure. Components that are relegated to being the
fault-tolerance domain are unreplicated, and obviously, not
fault-tolerant.

If the unreplicated components kept to themselves, i.e.,
they did not communicate with the replicated components,
no interesting or difficult issues arise. The challenges emerge
when we consider the possibility that the unreplicated and
replicated components might communicate with each other,
as an intrinsic part of end-to-end operations that span both
the fault-tolerant and non-fault-tolerant domains. The prob-
lem is partly due to the fact that, on one hand, the un-
replicated components communicate using TCP/IP with its
FIFO delivery guarantees, while the replicated components
communicate using GCS messages with their totally ordered
delivery guarantees. Furthermore, to ensure determinis-
tic operation, operations that are delivered to replicated
components via GCS are often serialized (i.e., with block-
ing semantics for end-to-end synchronous operations) while
TCP/IP-supported entities can have concurrent access (i.e.,



connections are independent of each other and do not need
to block each other).

We have previously explored the idea of connecting un-
replicated clients to replicated CORBA [7] servers through
the use of gateways [6]. In this case, a gateway is a non-
CORBA, unreplicated, system-level process executing on
some node in the distributed system; its sole purpose is
to forward messages back and forth between a single un-
replicted CORBA client and a replicated CORBA server.
While the gateway was useful in serving as a proof-of-concept
of the Fault Tolerant CORBA (FT-CORBA) standard’s gate-
way support for unreplicated clients, it merely scratched
the surface of the issues that can arise when unreplicated
and replicated components are allowed to interact in a dis-
tributed system.

In this paper, we go beyond the simple concept of a FT-
CORBA gateway. Our objective is to enable reliable com-
munication between unreplicated and replicated components
for a distributed CORBA application, without compromis-

ing the consistency of the replicated components and with-

out restricting concurrent TCP semantics that unreplicated

components expect. We introduce the concept of a singleton,
an application-level CORBA component whose underlying
infrastructure functions as a natural bridge for end-to-end
synchronous CORBA operations where the origin of the op-
eration is an unreplicated client and the target is a repli-
cated server. This infrastructural-bridging enhancement to
our MEAD fault-tolerant middleware [5] enable us to host
singletons that can service both TCP and GCS connections.

Concretely, the contributions of our approach are (i) the
design and implementation of the singleton-based infras-
tructural bridging approach for integrating replicated and
unreplicated semantics in end-to-end operations, (ii) the de-
scription of the challenges involved in combining the two dif-
ferent (TCP/unreplicated and GCS/replicated) semantics
in distributed client-server operation, and (iii) an empirical
evaluation of our singleton-based approach in order to eval-
uate its performance overheads, under both fault-free and
faulty conditions.

2. BACKGROUND AND RELATED WORK
The Common Object Request Broker Architecture (CORBA)
[7] middleware supports applications that consist of objects
distributed across a system, with client objects invoking
server objects that return responses to the client objects af-
ter performing the requested operations. CORBA’s TCP/IP-
based protocol, the Internet Inter-ORB Protocol (IIOP), al-
lows client and server objects to communicate regardless of
differences in their operating systems, byte orders, hardware
architectures, etc.

CORBA client-server applications can be multi-tiered in
structure. We use the term tier to refer to a pure client,
a pure server or a client+server component in an end-to-
end CORBA operation. For example, consider the chain of
requests when a client A invokes a server S1 that, in turn,
invokes another server S2; assume that, after S2 returns a
reply to S1, the latter, in turn, sends a reply to A. We
consider this to be a three-tier application, with A, S1 and
S2 representing tier 1, tier 2 and tier 3, respectively; the
end-to-end synchronous operation, A

→

← S1
→

← S2, spans all
three tiers, as shown in Figure 1.

The Fault Tolerant CORBA standard [8] specifies reliabil-
ity support through the replication of the CORBA servers,

and the subsequent distribution of the replicas of every server
across the nodes in the system. The idea is that, even if a
replica (or a node hosting a replica) crashes, one of the other
server replicas can continue to uphold the server’s availabil-
ity. Replication does not alter the number of tiers in the
application, i.e., replicating S2 is a logical feature that does
not change how many tiers the end-to-end operation must
pass through. Also, as shown in Figure 1, in the multi-
tiered CORBA example, a pure client C might remain un-
replicated but still continue to use GCS to communicate
with a replicated server such as S2. We refer to such un-
replicated clients as GCS clients to differentiate them from
unreplicated TCP clients such as A (that reside outside the
GCS domain and that communicate via TCP/IP). While our
mechanisms target support for both GCS and TCP clients,
the consistency issues differ across the two kinds of clients
because the GCS clients can exploit totally ordered messag-
ing guarantees while the TCP clients cannot, making them
more complicated to handle.

The Fault Tolerant CORBA standard outlines a list of
interfaces that constitute a fault-tolerance service and em-
phasizes that strong replica consistency should be provided
in order to ensure effective fault-tolerance. Several fault-
tolerant CORBA systems (Eternal, OGS, IRL, FTS, AQuA,
DOORS, Orbix+Isis, Electra) [3] have emerged over the past
decade. These systems have tended to require all of the ob-
jects of the CORBA application to be replicated and hosted
over the fault-tolerant system. The Fault Tolerant CORBA
standard, driven in part by the needs of vendors and real-
world customers, incorporated the notion of fault-tolerance
domains for scalability and ease of adminstration. Each
fault-tolerance domain handled the replication of only its
constituent objects, thereby making it possible to manage
the large fault-tolerant applications by decomposing them
into appropriate fault-tolerance domains.

The standard introduced the idea of a gateway to allow
unreplicated clients running over non-fault-tolerant CORBA
systems to invoke replicated objects that were located within
fault-tolerance domains. However, the standard remains
sketchy in its description of the gateway’s implementation
details, merely mentioning that the gateway’s addressing in-
formation needs to be supplied to unreplicated clients out-
side the domain. Gateways [2, 6] and (predecessor) gateway-
like client-side support [10] represent successful designs for
supporting two-tier CORBA applications with an unrepli-
cated client. However, to the best of our knowledge, this pre-
vious work does not include an in-depth critical look at the
end-to-end consistency issues in mingling unreplicated/TCP
and replicated/GCS semantics, and has also not included
any empirical assessment of the attendant scalability and
performance issues. The approach that we describe in this
paper was born out of the lessons that we learned first-hand
in implementing such a gateway [6] – thus, we aim to un-
derstand, articulate and resolve the underlying consistency
challenges, as well as to quantify the actual performance
overheads of the resulting system.

3. APPROACH
The MEAD system [5] that we have developed at Carnegie
Mellon University is a fault-tolerance infrastructure that
supports the transparent replication and recovery of com-
ponents in stateful CORBA applications. In order to ensure
the system-wide consistency of replicas of every CORBA
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Figure 1: Example scenario used to show the min-
gling of TCP and GCS across unreplicated (A, B

and C) and replicated (S1, S2 and S3) components.

component, MEAD exploits the guarantees of the underly-
ing Spread group communication system [1] to convey the
replicated application’s messages. In addition, to ensure
exactly-once semantics for processing requests and replies
in the presence of replication, MEAD perfoms the detection
and suppression of duplicate requests and replies before de-
livering messages to the application.

MEAD goes beyond previous fault-tolerant CORBA sys-
tems in aiming for adaptive fault-tolerance (where the key
replication properties of the system can be modified at run-
time based on various system conditions), proactive fault-
recovery (where pre-failure symptoms can be extracted from
the system to provide advance notice of an impending fail-
ure, thereby paving the way for preemptive recovery action)
and support for nondeterministic applications (where the
application is analyzed for nondeterministic actions and ap-
propriately handled, rather than forbidding programming
practices such as multithreading).

This paper focuses on MEAD’s support for the bridging
of unreplicated (TCP) and replicated (GCS) semantics in
multi-tier CORBA applications. As straightforward as it
sounds to add support for TCP connection establishment
and communication into a system, the interesting technical
issues emerge because of the need to maintain replica con-
sistency in the face of the dichotomy of (communication,
ordering, connection and consistency) semantics in the re-
sulting hybrid replicated+unreplicated system.

3.1 Challenges
Several challenges arise in the design and implementation of
a solution that aims to keep the mingling of replicated and
unreplicated semantics as transparent and as consistent as
possible to the application.

Transparency. The TCP/IP-based components must con-
tinue to experience behavior that is consistent with their
expected TCP/IP semantics. For example, when a client
establishes a TCP connection, there might be various socket-
related options, flow-control mechanisms, timeouts and error-
reporting behavior that it expects. None of these mecha-
nisms should be invalidated by the presence of a GCS con-
nection somewhere in the end-to-end path of the operation
that originates at the TCP client. While metrics such as
the client-side response time will likely change, the client-
side communication behavior (e.g., expectations of specific
TCP exceptions under error conditions) should remain the

same. In addition, a component should be unaware, at run-
time, of whether it has been contacted via GCS or TCP. The
idea is to divorce the application programmer from worry-
ing/knowing about mixing the different semantics and to
let the MEAD infrastructure handle them transparently in-
stead.

Consistency. Point-to-point TCP client or server connec-
tions should not be allowed to communicate directly with an
individual replica, e.g., in Figure 1, A should never be al-
lowed to communicate with an individual replica of S1. Such
out-of-band non-GCS communication is prohibited because
that replica’s state might be modified unilaterally and sub-
sequently start to diverge from the states of its fellow repli-
cas. In the interests of consistency, any communication with
a replicated component should occur atomically across all of
its replicas so that they all receive the same ordered sequence
of messages. When the intended recipient of a TCP message
is a replicated component, the TCP message must be con-
veyed over the GCS protocol. Of course, on the outbound
path from a replicated component to a TCP recipient, a
TCP message must be constructed out of the corresponding
GCS messages. However, additional care is required – when
GCS requests or replies originate from a replicated compo-
nent, multiple identical copies (one from each replica) of a
message might be generated and sent. If a receiving com-
ponent were to process all of these duplicate messages, its
state would likely be incorrect. Therefore, such duplicate
messages must be detected and suppressed in order to de-
liver a single, non-duplicate message to the intended TCP
recipient.

Concurrency. TCP messages are ordered on a first-in-
first-out (FIFO) basis while the GCS messages that sup-
port component replication are totally ordered. The mix-
ing of the different ordering schemes (FIFO vs. total order)
can cause interesting side-effects when multiple unreplicated
TCP components are involved.

Any mechanism that we insert to bridge between TCP and
GCS semantics needs to support concurrent operation be-
cause multiple, independent TCP components might wish to
communicate with various replicated components simultane-
ously. Within a replicated domain, common approaches to
maintaining consistency include the serialization of requests
with client-side blocking, which means that every participat-
ing tier in an end-to-end operation can effectively not service
any other invocation as long as the end-to-end operation is
ongoing at some other tier. This is the quiescence property
that fault-tolerant systems require in order to ensure that
nondeterministic multithreading does not lead to inconsis-
tent replication. A request can only be delivered to a server
that is quiescent, which means that the server is not waiting
on a response and is also not processing any request1. We
could require that TCP clients also be serialized this way,
i.e., every TCP client must wait its turn before accessing any

replicated component, for fear that concurrent, dependent
TCP invocations might result in state inconsistencies within
the replicated domain. Not only is this requirement restric-
tive, but it forces independent TCP clients to synchronize
their actions and block on each other’s operation, when the

1The anticipation is that a quiescent server is idle and not
modifying its internal state; clearly this might be voided if
we consider servers that might actively and asynchronously
change their states even while not processing any request.



need for this might not exist. Thus, if we insert a mecha-
nism such as a singleton to serve as the entry-point into the
GCS domain, we should permit the singleton’s bridging in-
frastructure to allow multiple, distinct TCP clients to pass
through it simultaneously.

Of course, this only works under the assumption that all
TCP clients are independent of each other. If dependencies
arise, e.g., if clients A and B in Figure 1 dispatch invocations
to S1 and these invocations modify some shared piece of
state at S1, then, these operations cannot be allowed to
execute concurrently and serialization of all TCP messages
would be warranted. Note that it does not matter whether
S1 is a singleton or a replicated server; as long as S1 resides
within the GCS domain, it has the potential to influence the
consistency of replicated components. Thus, the assumption
of independent TCP clients and independent GCS clients
described in Section 3.2.

Note that this assumption can be relaxed if state con-
sistency can be guaranteed at the application level, i.e., if
the application was programmed such that concurrent in-
vocations do not share state or they share it safely without
inconsistency side-effects. In that case, we could support
concurrent and dependent TCP clients. However, in the
absence of application-level state consistency guarantees for
dependent invocations, our infrastructure needs to assume
the worst-case scenario and prohibit dependencies.

Reconnection and failure scenarios. As an extension of
our transparency objective, failures within the replicated do-
main should ideally be hidden from the unreplicated TCP
components (because the latter have no concept of repli-
cated semantics). This means that, if a replica of a compo-
nent fails, the reconfiguration should be internal to the repli-
cated domain and not be made visible to any TCP clients
or servers.

3.2 Assumptions
In order to make progress towards addressing some of these
challenges in a practical system implementation, we make
some assumptions. We assume that the operations for both
the replicated and unreplicated components of the applica-
tions takes place in a distributed asynchronous system sup-
porting non-blocking server semantics such as multiplexed
I/O2. This inherently results in the interleaving of requests
and replies when using non-serialized communication pat-
terns. MEAD’s fault model for the replicated part of our
distributed system comprises communication faults such as
message losses, node-crash faults and process-crash faults.
Arbitrary faults are outside the scope of the work described
in this paper.

We also make specific assumptions about the CORBA ap-
plications that we support. We assume strictly synchronous
request-reply operation on the part of the application, i.e.,
when a pure client sends a request to a server, the client
blocks, waiting for a reply from the server, and unblocks only
when the reply has been received. Note that the blocking
semantics only refer to pure (tier 1) clients, and not to the

2A non-blocking server can support simultaneous commu-
nication with multiple clients. At the communication level,
this effectively causes the multiplexing of the server’s dis-
patching and processing across I/O that it receives from
multiple clients on a select system call. In contrast, a
blocking server serializes requests that it receives, using a
one-client-at-a-time and a one-request-at-a-time approach.

client-side roles that a middle tier (tier ≥ 2) client+server
component assumes for a multi-tier operation. While a pure
client always blocks as a part of an end-to-end, multi-tier,
synchronous operation, intermediate client-side tiers do not
block because they might be processing multiple, simulta-
neous end-to-end operations. Focusing only on synchronous
requests, we do not consider CORBA oneway operations,
where a client dispatches a fire-and-forget message to the
server, expecting only unreliable, best-effort semantics for
message delivery.

For the singleton’s infrastructural support in MEAD, we
place maximum, yet adequate, bound on the number of in-
coming client connections. This is used to ensure a resource-
effective server-side duplicate detection and suppression mech-
anism for concurrent messaging systems. To preserve state
consistency for communication through the singleton, we
also require TCP clients to be independent of each other,
and of GCS clients.

We place no bounds on the number of replicated GCS-
based servers or the number of tiers involved in the appli-
cation. We expect that any kind of client, TCP-based or
GCS-based, might need to communicate with the single-
ton, depending upon various deployment scenarios. In our
current implementation, the singleton is not replicated (Sec-
tion 4.4 discusses how to overcome this limitation).

4. SYSTEM IMPLEMENTATION
Figure 2 shows the singleton, an application-level component
that, through infrastructural support from the underlying
MEAD system, can communicate transparently using both
TCP and GCS messages. MEAD’s infrastructural support
for the singleton includes the capability for encapsulating
(extracting) TCP messages into (from) GCS ones, and for
performing duplicate detection and suppression.

4.1 The MEAD System
MEAD’s various features, such as adaptive and proactive
fault-tolerance and compensation for nondeterminism, are
described elsewhere [5]. Only the details of MEAD that
are relevant to the singleton concept are covered here. Sec-
tion 4.3 discusses the specific architectural enhancements to
MEAD in order to support the singleton.

MEAD exploits library interpositioning [4] to intercept a
process’ network system calls by using the dynamic linker’s
run-time support. Using the LD PRELOAD environment vari-
able, we load the MEAD system as a shared object library
into the address space of each GCS-hosted component and
of the singleton, ahead of all of the other dynamically linked
system and application libraries. The MEAD library over-
rides some socket and network functions (such as socket,
connect, bind, read, write, etc.) to perform the transpar-
ent re-routing of the CORBA application’s IIOP messages
over the Spread GCS [1].

4.2 The Singleton Concept
Our infrastructural-bridging approach differs from the pre-
vious work on gateways in that our singleton is not a sep-
arate process that adds one more layer of indirection. In-
stead, we identify the first application-level entry-point of a
TCP component’s communication into a replicated system
and exploit that entry-point as an application-level bridge,
without its knowledge. Returning to the example of Fig-
ure 1, an ideal candidate for the singleton in the invocation
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path A
→

← S1
→

← S2 would be server S1, particularly if S2
is the critical component that must be replicated. Clearly,
one issue is how to protect S1 against failures if S1 is just
as critical as S2; we elaborate on this further in Section 4.4.

For the purposes of describing the singleton bridging, as-
sume that we have selected S1 to be a singleton. We can
consider S1 to be two-sided3 because in its client role (when
invoking the replicated server S2) it uses GCS, and in its
server role it uses either TCP (when invoked by client A)
or GCS (when invoked by client C). We can host a single,
unreplicated instance (hence the term, singleton) of S1 over
the MEAD system, and use its underlying MEAD infras-
tructure to perform the bridging between TCP and GCS
semantics. Note that S1 is unaware of the fact that it is a
singleton (just as any component within the GCS domain is
unaware of the fact that it is replicated), and simply par-

ticipates in end-to-end operations (such as A
→

← S1
→

← S2

and C
→

← S1
→

← S2) without any knowledge of which con-
nection is TCP and which is GCS; in fact, due to MEAD’s
transparency, S1 will still continue to believe that all of its
communication still occurs over CORBA’s standard TCP-
based protocol.

The MEAD way of performing the TCP-GCS bridging in-
troduces additional considerations for the implementation of
its infrastructure. The singleton that forms the bridge be-
tween unreplicated TCP clients and replicated servers must
also support GCS clients, albeit in a mutually exclusive man-
ner. It is perfectly possible for the end-to-end operations
passing through the singleton to arise from either TCP or
GCS clients. Returning to Figure 1, singleton S1 interacts
with both TCP client A and GCS client C.

3To visualize this in Figure 1, pretend that S1 is unrepli-
cated, and then move it to the left so that it is neither
completely in the TCP domain nor in the GCS domain, but
is located at the boundary between the two domains.

4.3 Bridging Mechanisms
Because MEAD operates at the network/socket level of the
CORBA application (in user space, underneath the ORB,
but not within the kernel), its operation hinges upon the
sequence of network-level interactions that CORBA clients
and server undergo during connection establishment, dur-
ing normal communication of requests and replies, and dur-
ing connection teardown. For synchronous CORBA client-
server communication, the MEAD library underneath either
the GCS client or server is typically driven off interrupt-
driven I/O (through a select system-call with a timeout
value set to NULL, indicating that call blocks until inter-
rupted by a signal indicating incoming I/O) whenever it re-
ceives notifications of received GCS messages that are wait-
ing for processing.

The singleton infrastructure is assigned to a separate group
of its own, which allows it to communicate over the GCS
protocols within the replicated domain. The singleton’s ad-
dressing information (a group identifier for GCS access and
an IP address and port number for TCP access) is made
available to its GCS and TCP clients.

Because MEAD conveys the application’s messages through
GCS, any component supported by MEAD will have its con-
nections funneled/mapped by MEAD onto a single socket
connection to the local Spread GCS daemon. Effectively,
when a CORBA client/server/singleton is supported over
MEAD, there is only way into and out of that component
through MEAD, and this “GCS channel” (accessed via a
SP receive blocking call on the Spread GCS API) supplies
only totally ordered messages. As long as it delivers (to its
hosted clients and server) only the ordered sequence of mes-
sages that it receives off this GCS channel, MEAD can en-
sure replica consistency because every MEAD-hosted server
replica will “see” the same requests and replies.

Any connection from the TCP domain to the singleton will
take the form of a separate socket connection at the MEAD
infrastructure. These sockets are channels of communica-



tion that are distinct from MEAD’s preferred GCS channel,
into and out of the singleton. In fact, from MEAD’s view-
point, every TCP connection represents out-of-band com-
munication with the singleton that can potentially compro-
mise its consistency because the TCP messages (especially
when there exist multiple TCP connections) are not totally
ordered across the system. While we could opt to handle
the TCP communication also in an interrupt-driven fash-
ion, as we did with the GCS communication, the two sets of
interrupts can become arbitrarily interleaved and make for
tricky concurrent programming.

We chose the simpler and more controllable solution of
using polling-based I/O for the TCP connections. Although
this keeps the MEAD infrastructure in a “busy-wait” state,
polling periodically for TCP-based I/O, this allows for the
careful scheduling of when TCP communication can inter-
leave with the GCS communication, through the appropri-
ate adjustment of the polling frequency. Effectively, the
file-descriptors associated with the TCP connections are in-
serted into a select system-call with a fixed timeout value;
we note that this does change application semantics because
a standard CORBA application (without replication or GCS
involved) would use interrupt-driven I/O.

Because the GCS channel and the TCP sockets are man-
aged separately by MEAD, the infrastructure underlying the
singleton can differentiate between the two kinds of messages
and handle the bridging seamlessly. Because the singleton
must handle multiple TCP or GCS clients simultaneously,
MEAD needs to perform concurrent duplicate detection-
and-suppression across all of the various virtual end-to-end
connections that pass through the singleton. For each in-
coming connection, MEAD maintains some book-keeping
information, such as the last-seen request identifiers on that
connection, in order to ensure state consistency.

4.4 Critique
Our current approach has limitations that are artifacts of
our implementation and our transparent approach. As next
steps in this research, we intend to investigate how we might
overcome these limitations.

It is easy to see how the polling mechanism for the TCP
connection (see Section 4.3) makes the singleton’s perfor-
mance sensitive to the value of the polling timeout. It is im-
portant to select effective timeouts when mixing interrupt-
driven and polling-based I/O within the same infrastruc-
ture. We also need to take care to implement the polling-
mechanism to prevent starvation and deadlock. We avoid
this in our current implementation by requiring that all TCP
and GCS clients remain independent of each other and not
share resources; this is not likely to be realistic for many
applications. In fact, carrying this further, it is also essen-
tial that all singletons in the system be independent of each
other. Relaxing the strict requirement of independence of
the various entities is an issue for further investigation.

All of the TCP connections must be polled by MEAD
in turn to ensure that all of them are fairly serviced. We
might, in the process, run the risk that any timing-sensitive
TCP messages might be delayed and need to wait for their
corresponding file descriptors to be polled before they can
be serviced. Thus, it might be inappropriate to use the same
timeout value across all TCP connections.

Concurrent duplicate detection-and-suppression comes at
a cost; the amount of book-keeping information increases

with the number of connected clients. There is an intrinsic
performance vs. resource trade-off here: supporting concur-
rent clients requires more resources at the infrastructural
level, but provides increased performance (unless the re-
source cost becomes so prohibitive that the singleton be-
comes a bottleneck).

The singleton, as described here, is admittedly a single
point of failure in our current architecture. In future versions
of our system, we intend to exploit cold passive replication
and TCP failover to support fault-tolerant singletons. We
also need to consider the state of the singletons to ensure
consistent recovery.

5. EMPIRICAL EVALUATION

5.1 Configuration
Testbed. Our empirical evaluation was conducted in the
Emulab distributed environment [11]. In our experiments,
we used upto 10 nodes (850MHz processor, 256KB cache,
512MB RAM, running RedHat Linux kernel 2.6.11-1.27 FC3)
to host the various components of the application and our
MEAD infrastructure (version 1.5) with its underlying Spread
group communication protocol (version 3.17.1) [1]. Our
CORBA test application was built by using the TAO ORB
(ACE version 5.4.6 and TAO version 1.4.6) [9].

Test Application. We used a simple three-tier distributed
CORBA application. The pure client in tier 1 invokes the
server+client in tier 2 (also the singleton tier), passing in
a long integer as a part of the request. The singleton tier
2 invokes the pure server in tier 3, again passing in a long

integer. In processing this request, the pure server in tier
3 increments a local counter and sends the counter’s value
in its reply to tier 2. In processing the reply received from
tier 3, the tier 2 singleton adds the return value in the reply
to its own incremented local counter; it then returns the
value of its local counter in its reply to the client in tier 1.
While MEAD supports both active and passive replication
styles, we chose to actively replicate the back-end tier 3 –
this means that all of the replicas of tier 3 simultaneously
service all of the requests and responses intended for tier
3. Because the back-end tier is a pure server in our test
application, in our graphs and the text below, “x servers”
implies “x replicas of server in tier 3”.

While this test application is relatively simple, it serves
its purpose in exercising the three tiers for our experiments.

Metrics. We focus on the end-to-end round-trip time (RTT)
under both fault-free and faulty conditions. By comparing
RTT across various scenarios, we gain some idea of the over-
head of our infrastructure for those scenarios. The piecewise
decomposition of the RTT across the tiers allows us to un-
derstand which tier contributes most to the overhead.

5.2 Experiments
Scalability. In this case, we perform separate experiments
for TCP and GCS clients, increasing the number of clients
from 1 to 5 in each case. We also increase the number of
tier 3 replicas from 2 to 4. This examines the singleton’s
scalability to the number of TCP or GCS clients and the
number of server replicas. We compute the average RTTs
over 2500 end-to-end invocations, discarding the warm-up
period (the first 100 invocations) and focusing on steady-
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Figure 3: Scalability of the singleton’s performance
in supporting varying numbers of TCP clients, GCS
clients, and server replicas.

state performance. These results are shown in Figure 3.

Piecewise behavior. We perform the scalability experi-
ments again to measure the breakdown of the RTT in terms
of its contributions from tier 1 latencies (client-to-singleton
traffic) and tier 2 latencies (singleton-to-server traffic). We
measure the RTT from the client and we also instrument the
singleton to measure the round-trip latency for the request-
reply pair between the singleton and the replicated server.
While our measurements are slightly skewed by the presence
of the timing instrumentation at the singleton, the overall
trends are still visible, as shown in Figure 4.

Fault injection. These experiments measure how faults in
the replicated domain impact the performance of the single-
ton, with TCP and GCS clients. In all cases, the back-end
tier 3 server has two replicas. We inject replica-crash fail-
ures at various points in the end-to-end path of an invoca-
tion from either a single TCP or GCS client. As shown in
Figure 5 and Figure 6, the fault-injection points include: (i)
case 1: application failure, i.e., before the server returns a
response, (ii) case 2: when MEAD executes a writev call,
(iii) case 3: when MEAD executes a read call, (iv) case 4:
before MEAD executes an SP receive to extract a message
from the Spread GCS, and (v) case 5: after MEAD has
executed a SP receive call.

We take the average of the RTTs over 10 fault-injection
runs of 500 consecutive end-to-end invocations, discarding
the warm-up oeriod (the first 100 invocations), and injecting
one of the failures in (i)-(v) at the 250th invocation.

5.3 Observations
As we add clients, early performance gains from TCP clients
seem to diminish marginally, leading to similar times and
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Figure 4: Piecewise decomposition of the RTT
across tier 1 (client-to-singleton) and tier 2
(singleton-to-server) for varying numbers of TCP
clients, GCS clients, and server replicas.

trends observed for increasing numbers of TCP and GCS
clients. It is not clear whether this trend will continue to
manifest for very large numbers of clients. For one, GCS
clients will be limited by the scalability of their underlying
group communication protocols; frequently, as in the case of
the Spread GCS, these protocols are based on logical token
rings and their internal timeouts and configuration param-
eters are carefully tuned for specific bounds on the number
of nodes involved in the protocol. TCP clients will not be
exposed to the GCS subtleties directly, but might face them
indirectly if their end-to-end invocations have a GCS com-
ponent in their paths; however, the effect is likely to be more
pronounced for GCS, rather than TCP, clients of the single-
ton. We note that increasing the number of server replicas
does not significantly affect the RTTs perceived by the GCS
and TCP clients; again, we have not tested the system for
a high degree of server replication, where GCS scalability
characteristics might manifest themselves.

From a piecewise-RTT perspective, the tier 2 (singleton-
to-GCS) costs seem to be fairly constant, for both TCP and
GCS clients and for increased degree of server replication,
as seen in Figure 4. For increased number of TCP or GCS
clients, the dominant increasing factor appears to be the tier
1 (client-to-singleton) costs. This contribution of the tier 1
cost to the overall RTT appears to increase proportional to
the number of GCS or TCP clients.

From the fault-injection experiments, the TCP clients seem
not to be as affected by the replica-crash failures as the GCS
clients. This is likely due to the fact that the GCS clients
participate in the GCS protocol and experience, indirectly,
the effects of any GCS reconfiguration due to membership
changes (i.e., a replica leaving the group upon failing). Look-
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Figure 5: Percentage increase in RTT upon fault
injection at various points (labeled cases 1-5) in the
end-to-end execution.
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Figure 6: Impact of replica-crash failures at various
fault-injection points, for TCP and GCS clients.

ing across the various fault-injection points, although there
is some variation across the overheads, there is not one sin-
gle fault-injection point that stands out as being the worst
case in terms of failover overhead.

We note that we did observe a few significantly high out-
liers in our experimental runs, and that we eliminated these
in computing the average RTT numbers reported in the
graphs. Fortunately, the outliers constituted a small frac-
tion of the measurements – the percentage of outliers was
less than 0.5% across all experimental runs.

6. CONCLUSION
This paper describes the challenges that exist in supporting
true end-to-end consistency of multi-tier CORBA applica-
tions that span replicated and unreplicated components. We
introduce the concept of a singleton and the MEAD bridging
infrastructure that exploits the multi-tiered nature of these
applications to combine unreplicated and replicated compo-

nents. From the empirical evaluation of the performance
of the singleton, we demonstrate reasonable overheads un-
der both fault-free and faulty conditions at the replicated
servers, and also under scaling of the numbers of TCP and
GCS clients that the singleton can support. We outline in
Section 4.4 how we propose to overcome some of the limita-
tions and challenges that remain.
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