ON COMPLETIONS OF UNIFORM LIMIT SPACES

by

Oswald Wyler

Report 67-3

February, 1967
ON COMPLETIONS OF UNIFORM LIMIT SPACES

by Oswald Wyler

Weil and Bourbaki [1] introduced the category of uniform spaces, to be denoted by \(V \); in this note, they constructed a coreflective completion functor from \(V \) to the subcategory \(U \) of separated complete uniform spaces. Cook and Fischer [3] introduced the category of uniform limit spaces which we shall denote by \(J \). They pointed out that \(J \) can be regarded as a coreflective full subcategory of \(JJ \). Subsequently, the author [4] constructed a coreflective completion functor from the subcategory of separated uniform limit spaces to the smaller subcategory \(J J \) of separated complete uniform limit spaces. Cochran [2] studied this completion further, supplying the proofs not given in [3]. He also raised the following question: A uniform space \((E, \mathcal{J})\) has a completion \((E, J^C)\) in \(JJ \) and also the gourbaki completion \((E, J^C)\) in \(J J^C \). How are these two completions related? We answer this question in the present note by showing that \(J^C \) is the finest uniform structure of \(E \) coarser than the uniform limit structure \(J J^C \).

We introduce first the notations and definitions which we shall use. If \(J \) and \(\mathcal{J} \) are filters on a set \(B \), we put \(J \leq \mathcal{J} \), if \(J \) is finer than \(\mathcal{J} \), i.e., if \(\mathcal{J} \subseteq J \). With this order relation, filters on \(E \) form a complete lattice \(\mathcal{F}(E) \). If \(J \) and \(\mathcal{J} \) are filters on \(E \), then \(J \cup \mathcal{J} \) consists of all sets \(A \cup B \).

Footnotes are given at the end of this report, after the references.
A \in \mathcal{E} \iff B \text{ and } L \cap i \text{ consists of all sets } A \cap B, A \in \mathcal{F}, B \in \mathcal{F}.$

We shall use the following notations for filters on EXE. If \mathcal{F} and \mathcal{G} are filters on E, we denote by $\mathcal{F} \otimes \mathcal{G}$ the filter on $E \times E$ generated by all sets $A \times B, A \in \mathcal{F}, B \in \mathcal{G}$. For subsets U and V of EXE, we denote by $\bigcup U$ the set of all pairs (y, x) with $(x, y) \in U$, and by $U \circ V$ the set of all pairs (x, z) with $(x, y) \in U$ and $(y, z) \in V$ for some y. For filters \mathcal{F} and \mathcal{G} on E, we denote by $\mathcal{F} \cap \mathcal{G}$ the filter consisting of all sets $A \cap B, A \in \mathcal{F}, B \in \mathcal{G}$. US $p^\mathcal{F}$ and by $p^\mathcal{G}$ the filter generated by all sets $U \circ V, V \in (\mathcal{F})^\mathcal{G}$. $V^*: y^*$. We refer to $f2j$ and $f3j$ for the laws satisfied by these operations.

Cook and Fischer [3] have defined a **uniform limit structure** on a set E as a set \mathcal{F} of filters on EXE with the following three properties:

UL 1. If $p \in \mathcal{F}$ and $\forall y \in \mathcal{I}$, then $\forall y \in \mathcal{I}$.

UL 2. Let A be the filter of all subsets of $E \times E$ containing the diagonal A of E. If \mathcal{F}, \mathcal{G} are in \mathcal{J}, then $(\mathcal{F} \cap \mathcal{G}) \otimes (\mathcal{G}^\mathcal{F} \cap \mathcal{F})$ is in \mathcal{J}.

DL 3. If $C \in \mathcal{I}$, then $c^\mathcal{F} = \mathcal{F}$.

A **uniform limit space** is a pair (E, \mathcal{J}) consisting of a set E and a uniform limit structure \mathcal{J} on E. The filters of \mathcal{F} are called **uniform filters** of (E, \mathcal{J}).

A **uniformly continuous mapping** $f : (E, \mathcal{J}) \to (E', \mathcal{J}')$ of uniform limit spaces is a mapping $f : E \to E'$ such that the filter $(f(x))(\mathcal{F})$ is in \mathcal{J}' for every filter $p \in \mathcal{F}$. Uniform limit spaces and their uniformly continuous mappings are the objects and morphisms of a category which we denote by \mathcal{UQ} and call the category of uniform limit spaces.

Since $(\mathcal{F} \times \mathcal{K})^\mathcal{J} (4^\mathcal{A} \cap \mathcal{A} \cup \mathcal{F} \cap \mathcal{F}^0 \mathcal{F})$, it follows from
the axioms UL that \((P^J)^{<}\) and \((p \& y)^{<}\) are in \(\mathfrak{f}\) whenever \((p^J^{<})^\ast\) are in \(\mathfrak{f}\), and that \(A \in \mathfrak{f}\). Thus \(\mathfrak{f}\) is a dual filter of filters on \(E \times B\).

If \(\mathfrak{f}\) is a principal dual filter, i.e. \(\mathfrak{f}\) consists of all filters \(\mathfrak{f}\) such that \(\langle P \mathfrak{f} \rangle^{<}\), for a generator \(\langle p \rangle\) of \(\mathfrak{f}\), then \(\langle p \rangle\) is the filter of entourages of a uniform structure of \(E\). All uniform structures are obtained in this way; see \(f^\prime\). This means that we may (and do) regard the category of uniform spaces as a full subcategory of \(\mathcal{J}\); we denote this subcategory by \(\mathcal{J}^\prime\).

For any uniform limit space \((E_j^\prime)\) there is, as shown in \(f^\prime\), a finest uniform structure \(\mathfrak{f}\) on \(E\) such that \(\mathfrak{f} \llcorner J^\prime\) (i.e. \(\mathfrak{f} \llcorner J^\prime\)). If \(\langle P \mathfrak{f} \rangle\) is the filter of entourages of \((E_j^\prime)\), then \(\langle P \mathfrak{f} \rangle \wedge \langle P \mathfrak{f} \rangle\) for every filter \(\langle p \rangle\) of \(\mathfrak{f}\), but as Cochran \(f^\prime\) has pointed out, \(\langle \mathfrak{f} \rangle\) is in general not the supremum of all filters in \(\mathfrak{f}\). The correspondence from \((B,\mathfrak{f})\) to \((E_j^\prime)\) defines a coreflective functor from \(\mathcal{J}\) to \(\mathcal{J}^\prime\), as shown in \(f^\prime\).

We shall need the following additional definitions. Let \((E_j^\prime)\) be a uniform limit space. A filter \(\mathfrak{f}\) on \(B\) is called a Cauchy filter of \((E,\mathfrak{f})\) if \(\mathfrak{f} \llcorner\) is not the null filter of \(B\), and \(\mathfrak{f} \llcorner J\) \(\langle \mathfrak{f}\rangle\). Two Cauchy filters \(\mathfrak{f}\) and \(\mathfrak{g}\) on \(B\) are called equivalent if \(\langle P \mathfrak{f} \mathfrak{g}\rangle^{<}\). This is easily seen to be an equivalence relation. We denote by \(\mathcal{E}\) the set of all equivalence classes of Cauchy filters of \((B,\mathfrak{f})\) and by \(q(p)\) the equivalence class of a Cauchy filter \(\mathfrak{f}\).

For \(x \in E\) we denote by \(x^\prime\) the filter of all sets \(A \subset E\) with \(x \in A\). This is a Cauchy filter. We say that a filter \(\mathfrak{f}\) on \(B\) converges to \(x \in E\) if \(\mathfrak{f} \llcorner X^\prime\). This defines the induced limit space of \((E,\mathfrak{f})\); see \(f^\prime\). Every convergent filter on \(E\) is a Cauchy filter. The uniform limit space \((E_j^\prime)\) is
called complete if, conversely, every Cauchy filter converges to some point of E.

We call (E,J^c) separated if $\forall x, y \in E$ only if $x \succ y$.

We denote by \mathcal{J}^c the subcategory of separated complete uniform limit spaces and their uniformly continuous mappings. As shown in [2J], \mathcal{J}^c is basically the same as the category of separated (i.e. Hausdorff) limit spaces. We denote by \mathcal{J}^p the intersection of the subcategories \mathcal{J} and \mathcal{J}^c of \mathcal{J}.

For any uniform limit space (E, j), we construct a separated complete uniform limit space (E, J^c) as follows. E is the set of equivalence classes of Cauchy filters of (E, j), We define $j : E \rightarrow E^c$ by putting $j x = q(x)$ for $x \in B$. For a Cauchy filter J of (E, j) and $J \prec p(F)$, we put

$$y \perp (5(1) \wedge x) \cup (j(F) \cup F^c).$$

With these notations, $\{x\}$ is the dual filter of filters on $E \times E$ generated by all filters of the form

$$(j \times j)(\phi) \cup \bigcup_{i=1}^{n} y_{E_i} \cup \cdots \cup y_{E_n},$$

where $(b \in E, A$ is the diagonal of $E \times E$ and F_1, \ldots, F_t are Cauchy filters of (E, j). As pointed out in [J5], the following theorem is valid.

Theorem 1. For any uniform limit space (E, j), (E^c, J^c) is a separated complete uniform limit space, and the mapping $j : (E, j) \rightarrow (E^c, J^c)$ is uniformly continuous. Moreover, whenever $f : (E, j) \rightarrow (E^c, J^c)$ is uniformly continuous and (E', j') separated and complete, then there is a unique uniformly continuous mapping $f^c J : (E, J^c) \rightarrow (E^c, J^c)$ such that $f \circ f^c j$.

In other words, Theorem 1 states that the correspondence from \((B,jj)\) to \((E^{\text{ff}}, fJ)\) defines a coreflective functor from \(JJ\) to the subcategory \(\mathcal{J}\). We refer to [2] for the proof. In [5], only separated uniform limit spaces \((B,\ell)\) were considered, but the extension to the general case is trivial. The only change is this. If \((B,jj)\) is separated, and only in this case, \(j : (E,\ell) \rightarrow (E^c,\ell^c)\) induces an isomorphism of \((B,jj)\) and a dense subspace of \((B,\ell^c)\).

For a uniform space \((E,J)\), with filter \(C^j\) of entourages, we have of course the completion \(\overline{(E,J)}\), and the finest uniform structure \(J^{\text{fp}}\) of \(E^c\) which is coarser than \(\ell^c\). We also have the itouxbaki completion \(j : (E,\ell) \rightarrow (\overline{(E,J)}^c,\ell^c)\). constructed as follows. The set \(E\) and the mapping \(j : E \rightarrow E^c\) are the same as for \((E^{\text{ff}}, C)\). For an entourage \(U \subseteq C\), let \(U^b\) be the set of all pairs \((fV) \subseteq C\) such that there are Cauchy filters \(\ell\) and \(\ell\) of \((E,J)\) with \(\ell \subseteq q(\ell)\) and \(U\subseteq E\). The filter of entourages \(0^b\) of \((E^c, J)\) is generated by the sets \(U^b\) and \(V^b\).

Lemma \(jJ^c \cong jJ^c\).

Proof \(j^c \circ j^c\) is clear. For \(j : E \rightarrow E^c\), there is, by Theorem 1, a uniformly continuous mapping \(j^c : (\overline{(E,J)}^c,\ell^c) \rightarrow (E^c,\ell^c)\) such that \(j \circ j^c = j\).

For a Cauchy filter \(\ell\) of \((E,J)\), the filter \(jC^p\) converges to \(q(\ell)\) in \((E^c,\ell^c)\) and \(j^c(q(\ell)) = q(\ell)\). Thus \(j^c\) is the identity mapping, and \(j^c \circ b = b\) follows. Since \(\ell\) is principal, also \(\ell^c \cong J^c\).

Theorem \(j^b\). If \((E,J)\) is a uniform space, then the uniform structure \(j^b\) of \(E^c\) is the finest principal structure \(J^{\text{fp}}\) coarser than the uniform limit.
structure \(J^c \), \(JT \) is the supremum of all filters \(\{ P^c \} \), and \(\{ P^b \} \) the filter of entourages of \(J^b \), then \(\{ P^b \} = S I \circ J T \circ f \).

Proof. If \(0^P \) is the filter of entourages of \(C \), then \(J \subseteq L < L^P \cap 0^b \) and \((j)^P \cap (j)^P \). Thus \(S I \circ S I \circ S I \subseteq 0^P \), and \(0^b \cap \text{il}' \circ J T \circ f \) implies that \((f)^h \cap S I \circ S I \circ f \subseteq 0^V \), and hence \(C \subseteq 0^b \).

Let now \(V \subseteq T \). Since \((j X j)(<^{<x}) \subseteq i T \), and \(\quad P \cap \text{il} \) for every Cauchy filter \(P \) of \(B \), there is an entourage \(U \subseteq V \) such that \((j X j)(u) \subseteq V \), and for every Cauchy filter \(f \) of \(E \), and \(j' \subseteq q(f) \), there is a set \(A \subseteq (f) \) such that \(A^1 X A^1 \subseteq V \), and \(A \subseteq J(A) \subseteq \{ \} \). Now consider \((j X j) \subseteq U^b \).

There are Cauchy filters \(L \) and \(L \) of \(B \) and \(L \subseteq L \) such that \(L = q(\mathbb{R}) \), \(\eta = q(\mathbb{R}) \), and \(A \subseteq B \subseteq U \subseteq B \). Replacing \(A \) and \(B \) by smaller sets of \(P \) and \(L \) if necessary, we can assume that \(A^1 X A^1 \subseteq C \), and \(B^1 \subseteq J(B) \subseteq \{ \} \). Thus if \(x \in A \) and \(y \in B \), then \((x, j(y)) \subseteq V \), \((jW, j(y)) \subseteq V \), and \((j(y), <^{<x}) \subseteq f \). But then \((j, <^{<x}) \) is in \(V \circ V \circ V \), and thus \(U^b \subseteq C \circ V \circ V \circ V \). As the sets \(V \circ V \circ V \), \(V \subseteq E \), generate \(S o S X \circ S I \circ 9 \), we have proved \((f) \subseteq \{ jQloj7 \} \circ o^l \subseteq f \), and hence the Theorem.

A simple example shows that the equation \(S I \circ S I \circ S I \circ 0^b \) cannot be improved in general. If \((E, j) \) is the set of rational numbers with the usual uniform structure, then \((B^c, j^P) \) is the set of real numbers with the usual uniform structure. In this case, \(S X \) is strictly finer than \(S I \& S 2 \) and \(j T L o S h \) is strictly finer than the filter \(\{ p^b \} \) of entourages of the real numbers. We leave the details of this to the reader.
References

Footnotes

1. In the terminology of Mitchell [4].

2. Called uniform convergence spaces in [2] and [3].

3. Many authors prefer the dual notation, \(\uparrow \) for "finer". We shall consistently use \(\uparrow \) for "finer", regardless of inclusion relations, since this leads to a very manageable formalism.

A. We modify the definition of a filter on \(E \) by allowing the empty set to be an element of a filter. This adds the null filter on \(B \), consisting of all sub-sets of \(E \), to the collection of all filters on \(E \).

5. We prefer this to the term "ideal" used by many authors.

6. Called induced convergence space in [2] and [3].