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Abstract. It was the best of situations. It was the worst of situations. Markov Chain Monte
Carlo techniques have played an important role in both physics and statistics, and yet, while
the algorithms may be the same in these fields, the perspectives with which the techniques
are used are strikingly different. With both statisticians and physicists in our group, we have
learned a number of interesting lessons during our long collaboration, regarding both
methodology and philosophy. In this paper, we relate some of our experiences in the context
of a statistical problem in thermal physics. Perhaps these observations will help
collaboration between these two fields reach a far, far better place.

1. Introduction

The views presented in this paper, and in the talk
given at the conference, have evolved from an ongoing
collaboration between a group of statisticians and
physicists. The collaboration has been intellectually
stimulating, occasionally confrontational, and very
rewarding. As in many successful collaborations, it has
gone off in unexpected directions, and revealed things
about our individual assumptions that we had not
previously thought to be at issue. In keeping with the
intended, and successfully realized, interdisciplinary
nature of this conference, we would like to share some
of our experiences, along with the insights we have
found while exploring paths that were not previously
known to exist. The text of this paper was written after
the conference. It will attempt to record some
consequences of the rich discussion that took place in
conjunction with both this talk and during the rest of the
conference. Those of us who attended the conference
(J.BK. and R.H.S.) were very impressed by the wide-
ranging and knowledgeable discussions that included
such diverse physics topics as renormalization group
theory and Anderson localization. At the end of this
paper, we will make some comments about some
possible future directions of research in oceanography,
which might combine the extraordinary progress
oceanographers have made in modeling the flow of
ocean currents, with the viewpoints of renormalization-
group studies. This was not the first interdisciplinary
collaboration for the members of our group. Indeed, we
had had extensive experience in other such

collaborations, which prepared us for some of the |
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features of our discussions. An important role that we
have found is that whenever somebody from another
field seems to have taken leave of their senses and is
saying things that cannot possibly be true, pay attention!
What you are hearing is often something that is both
true and obvious to people in another discipline. It is
the most clearly distinguishing earmark of an impending
breakthrough.

2. The Language of Collaborations

The first hurdle any collaboration has to get over is
the illusion that we speak a common language. If two
languages are obviously different, like French and
Japanese, an immediate effort is made to learn the
language of your colleagues, or at least find an accurate
method of translation. However, the languages of
different scientific fields use many words in common,
often creating the erroneous impression that we are all
talking about the same thing. Some differences in
terminology are immediately recognizable. In
performing computer simulations, physicists talk of the
“equilibration” of the system, in analogy to the time
required in experiments to make sure that different
components of the system are in thermal equilibrium
with each other. Statisticians use the more colorful
term, “burn in,” to describe the same aspect of the
simulation. Other terms can be more difficult. The
physicist’s term for an efficient approach to simulation
using random numbers is the “Monte Carlo” method
[Binder, 1992]. The statistician’s term for exactly the
same method is “Markov Chain Monte Carlo,” [Gilks et
al., 1996] because an essential feature of the method is
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setting up a Markov chain to preferentially sample the
important states of the system. This would not be too
bad, if it weren’t for the fact that statisticians use the
term “Monte Carlo” by itself to mean a kind of random
sampling that physicist would refer to as an infinite-
- temperature simulation. The use of the term “Monte
Carlo” does not, therefore, always produce a flag that
something is wrong, since the other meaning might be
regarded as possible in the context of some discussions.
This sort of gap can exist even within a discipline, and
one of us (R.H.S.) has encountered dramatic differences
in vocabulary even between different fields of physics.
In discussing Monte Carlo simulations of lattice gauge
models, he discovered that the terms “action” (particle
physics) and “Hamiltonian” (statistical mechanics) refer
to the same concept. Even more confusing is the term
“mass” in particle physics, which corresponds to an
inverse correlation length in statistical mechanics.
However, the worst confusions were caused by the use
of “strong” and “weak” coupling, which have reversed
meanings in the two fields.

3. From Vocabulary to Patterns of Thought

Some of the differences in terminology reflect
different patterns of thought. Encountering these
differences can be extremely frustrating at first, but
very fruitful later on in the collaboration in opening up
the range of possibilities for attacking problems. One
example of this is the apparently innocuous word,
“model,” which we discussed at the conference. In
physics, “model” means a simplified mathematical
representation of a real system. An example that
formed a focal point of our collaboration is the Ising
model of magnetism, which represents molecular
magnetic moments with simple variables located on the
sites of a lattice, and point either up or down in response
to a magnetic field and interactions with each other. In
statistics, “model” means an assumed mathematical
relationship between data and a set of parameters, plus
knowledge (or beliefs) about the values of the
parameters. The discussion that this distinction raised
during the conference clearly illustrated the kinds of
difficulties it can cause. There was an immediate focus
on which definition was “correct,” with different
participants presenting different points of view. The
essential point is that both definitions are correct.

physics definition probably arose from the early
treatment of simulations as experiments performed on a
computer. Different definitions can reflect different
ways of approaching the analysis of a problem, and it is
precisely the interactions between methods from one
field and problems from another field that produce the
most powerful collaborative results.

4. What We
Collaboration

Have Learned From the

For the physicists in the group, the most dramatic
change brought about by the collaboration has been the
introduction to Bayesian methods and the
accompanying patterns of thought. The distinction
between “frequentist” and “Bayesian” views of
probability is familiar to most people at the conference.
Put briefly, the frequentist regards probability as the
ratio of successes to the total number of trials in a long
series of experiments. The Bayesian view is that
probability is an expression of a degree of belief based
on evidence. For a statistician looking at a physics
department, it is startling to realize that almost all

physics books dealing with probability and statistics
give the frequentist view as the only valid possibility
[Reif, 1965; Bevington and Robinson, 1992]. The
Bayesian approach is rarely discussed, thus depriving
physicists of a very useful set of tools and modes of
thought for dealing with the problems they encounter.

. Learning to use Bayesian methods has proved to be

Definitions are arbitrary, and they are defined by the .

members of a group in a way that they have found by
experience to be useful. Another example of a key word
with different meanings is “data.” In statistics, “data”
refers to the result of a measurement of some quantity
that describes the real world. In physics, the word is
used in a much more general sense, which includes
‘numbers obtained from computer simulations. The

46

extremely valuable. In particular, our understanding of
what you are really assuming when you truncate a series
has changed drastically as a result of this collaboration,
giving rise to an entirely new way of analyzing series
expansions that is beyond the scope of this paper. For
the statisticians in the group, there were a number of
approaches to performing and analyzing (Markov
Chain) Monte Carlo simulations that have proved to be
valuable in other contexts. Some of these are discussed
explicitly below.

5. (Markov Chain) Monte Carlo

The main theme of our collaboration is not restricted
to the explicit properties of Ising models, which are
admittedly of limited interest to oceanographers, but
deals with understanding the properties of general
physical systems. The unifying methodology is the
Bayesian approach and the use of Monte Carlo (or
Markov Chain Monte Carlo) computer simulations to
study the model [statistics definition] under
consideration. Because the use of MC (MCMC) in such
analyses is increasingly becoming a standard tool, we
hope our results will have a wide applicability. The
essential feature of (Markov Chain) Monte Carlo
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simulations is the creation of stochastic process for
creating sequences of states of the system under
consideration that leads to states being selected
according to their importance. In physics, this
importance might be their thermal probability; in
statistics, this might be the Bayesian posterior
distribution. In all cases, an equation of detailed
balance is constructed as cleverly as possible, and
sequences of states are realized with the use of pseudo-
random numbers. The method is attractive because of
its relative simplicity, efficiency, and applicability to a
wide range of problems. We would like to comment on
two aspects of these simulations that occur in almost all
applications. In fact, the problems we will address also
occur in simulations using methods that might seem to
be based on entirely different principles. We believe
that they are particularly applicable to computer
simulations of the flow patterns in the ocean. Which is
better: one long simulation, or many short simulations?
The usual answers to this question depend on the field
of application [Geyer, 1992; Gelman and Rubin, 1992
a,b]. This partly reflects the different natures of the
probability distributions encountered in different sorts
of applications. As people accumulate experience with
one class of problems, they develop standard
approaches that work effectively, but which might break
down in more complex situations. Although it is often
the case that one long simulation is superior to many
short ones, this can be very dangerous when the global
properties of the system are not well known (which, of
course, is the most useful case). It is quite possible for
the probability distribution under investigation to have
multiple maxima, each of which is plausible, but
different in important ways. This phenomenon is
known in physics as the problem of metastable states. If
a system is in a metastable state, it’s parameters are near
.a local maximum in the probability distribution, but not
near the global maximum that represents the most
probable behavior. Metastability is not a defect in the
mathematical representation, but usually reflects an
important aspect of reality. Shifting patterns in ocean
currents provide examples of metastable states. Ice ages
are metastable states in the world’s climate, in which
different states are thought to be roughly equally
probable. In performing a computer simulation, it is
perfectly possible for a correct program of a valid model
to produce a result that differs from observations if a
metastable state is encountered. It is very difficult, if
not impossible, to detect metastability from a single
computer run. However a series of runs made from

different starting points creates the possibility of

detecting metastable states by the different predictions

of different runs. Since encountering and failing to
recognize a metastable state can invalidate the results of
a simulation, it is comforting to know that different runs
give the same result. A technical warning: If the initial
state of a simulation is varied only by using a new set of
random numbers, it is possible to encounter the same
metastable state in every run. This can give a false
impression of security when the results are incorrect. It
is important to use your knowledge of the system to
construct starting states that differ in significant ways.
An illustration from physics would be starting from a
random configuration of spins or particles. This would
correspond to starting at infinite temperature, regardless
of the particular set of random numbers. Starting in an
ordered or crystalline state can, in some cases, produce
very different behavior. How long do you have to run a
simulation? A full analysis of this question depends on
the concept of a correlation time, #.4;, such that the
correlations between states decay as exp[-#/ o). The
burn-in or equilibration time, legs must be much greater
than t,0pp. If N runs with different starting
configurations are simulated for a total time 70747,
the error will be proportional to Miiller-Krumbhaar and
Binder [1973].

[+ 2 teor) I (TOTAL - N teg )1+1/2.

Clearly, it is important to have at least a rough idea of
the magnitude of the correlation time. If that
information can be obtained, it is fairly simple to
determine how long to run a simulation to obtain the
desired accuracy. Note that if t70747, >> N legs there is
little loss of accuracy from making several runs, so that
testing for metastability is not very expensive.

6. Some Observations and Speculations About
Oceanography

A final observation that we made during the very
interesting discussions at the conference is that there is a
very strong similarity between the properties of the
oceanic flow patterns seen in computer simulations and
the properties of magnets and fluids near a critical point.
A “critical point,” such as the temperature at which a
magnet loses its magnetization, is characterized by (a)
fluctuations on all length scales, from atomic through
the maximum dimensions of the system, (b) interactions
between fluctuations on different length scales, so that
the large-scale properties of the system depend
sensitively on the small-scale properties, and (c) large
fluctuations at the longest length scales, possibly taking
the system from one apparently metastable state to
another. These properties are at least approximately
true for models of the ocean, the atmosphere, and the
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long-term prediction of the climate. The sensitivity of
the properties of the system to small-scale fluctuations
is reflected in the importance of the grid size, which
limits the representation of small-scale fluctuations.
The chief value of this analogy lies in the possibility of
dealing with the problem of grid size by using the
methods of renormalization-group theory to calculate
effective interactions between the variables at the grid
points. It is possible, in principle, to model (physics
definition) the relationship between different grid points
so as to correctly reproduce the large-scale patterns
without introducing more fitting parameters. Although
it is impossible to anticipate the technical problems that
might arise, we believe that this line of research might
be extremely fruitful.

7. Conclusion

We believe that this overview of an interdisciplinary
collaboration is characteristic of such collaborations. It
has ranged over a wide variety of topics that might seem
disconnected at first, but are really closely tied together
in ways that enhance the understanding both fields more
“deeply.
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