
Carnegie Mellon University
Research Showcase @ CMU

Department of Psychology Dietrich College of Humanities and Social Sciences

7-2004

Learning from Real-Time Over-the-Shoulder
Instructions in a Dynamic Task
Wai-Tat Fu
Carnegie Mellon University

Daniel Bothell
Carnegie Mellon University

Scott Douglass
Carnegie Mellon University

Craig Haimson
Aptima, Inc.

Myeong-Ho Sohn
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/psychology

This Conference Proceeding is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research
Showcase @ CMU. It has been accepted for inclusion in Department of Psychology by an authorized administrator of Research Showcase @ CMU. For
more information, please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fpsychology%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/psychology?utm_source=repository.cmu.edu%2Fpsychology%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hss?utm_source=repository.cmu.edu%2Fpsychology%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/psychology?utm_source=repository.cmu.edu%2Fpsychology%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Authors
Wai-Tat Fu, Daniel Bothell, Scott Douglass, Craig Haimson, Myeong-Ho Sohn, and John Anderson

This conference proceeding is available at Research Showcase @ CMU: http://repository.cmu.edu/psychology/63

http://repository.cmu.edu/psychology/63?utm_source=repository.cmu.edu%2Fpsychology%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages

Learning From Real-Time Over-The-Shoulder Instructions in a Dynamic Task

Wai-Tat Fu1, Daniel Bothell1, Scott Douglass1, Craig Haimson2, Myeong-Ho Sohn1, John Anderson1

1Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Aptima, Inc, Washington, DC 20005, USA

Abstract

We extended the work of Anderson et al. (in press) by
modeling how people learn from “over-the-shoulder”
instructions – instructions given immediately after actions
were executed – while participants were working on a Anti-
Air Warfare Coordinator (AAWC) task. Specifically, we
modeled the incremental top-down influence of instructions
on the visual search process. We constructed a model that first
responded to and converted the over-the-shoulder instructions
into declarative memory chunks. These declarative chunks of
instructions were strengthened with repeated exposures to
these instructions. The model then incrementally learned to
improve the selection of next track as the strengths of these
declarative chunks of instructions increased, and performance
declined as the instructions decayed over time. The model
was able to fit the data well, suggesting that the model was
able to capture the effects of the instructions on learning and
performance in this dynamic task.

Introduction
Anderson et al. (in press) describe a system in the ACT-R
cognitive architecture (Anderson & Lebiere, 1998) that
takes the initial set of instructions for a dynamic task and
converts the set of instructions into a declarative
representation, which is interpreted by a generic set of
production rules. Through the production compilation
mechanism, a set of specific productions that directly
perform the task are generated as the task is practiced. We
extended this effort by constructing a model that learns from
both initial instructions and instructions given by the system
while participants are doing the task. These “over-the-
shoulder” instructions are given to provide real-time
feedback on participants’ actions, so that eventually the
initial set of instructions can be strengthened,
complemented, or overridden. These instructions are given
based on a cognitive tutor, a technology that has been used
successfully in a variety of educational applications to
facilitate learning by doing (e.g. Anderson, Corbett,
Koedinger, & Pelletier, 1995).

Learning from Cognitive Tutors
Cognitive tutors were computer-based instructional
technology to help students learn from instructions. The
idea is that instructions should be given based on a cognitive
model of the competence that the student is being asked to
learn. In other words, the cognitive model should
incorporate the underlying skills that allow the model to
perform the task the student was expected to perform. In
ACT-R, the skills will be represented as a set of production

rules (procedural knowledge) for executing the correct
actions under the right conditions, and as a set of declarative
memory elements (declarative knowledge) for the
appropriate domain knowledge. Based on the model, the
tutor is able to monitor actions of the student and infer the
intentions of the student. Immediate feedback can then be
given to the student to facilitate learning. A major challenge
in building the model is to understand how people respond
and learn from immediate feedback on their actions from the
tutor, and how it influences the existing declarative and
procedural knowledge. In this paper, we describe a model of
how people learn from immediate feedback from the tutor.
The model allows better understanding of the impact of
over-the-shoulder instructions on learning and performance.

The Task: The Anti-Air Warfare Coordinator
The task is the same as the one described in Anderson et. al
(in press), which was constructed based on the Georgia
Tech Aegis Simulation Program (GT-ASP, Hodge,
Rothrock, Kirlik, Walker, Fisk, Phipps, & Gay, 1995). GT-
ASP is a tactical decision-making computer game that
simulates tasks facing an anti-air warfare coordinator
(AAWC) on board a US Navy cruisers and destroyers. A
participant assumes the role of an AAWC, which includes
monitoring a radar screen for unknown aircraft, requesting
and collecting information regarding the unknown aircraft,
and updating the identity of the aircraft. The task we used is
a simplified version of the GT-ASP, and a model-tracing1
tutor was constructed to monitor participants’ actions. We
refer to it as the CMU-ASP task henceforth.

The radar screen of the CMU-ASP task (Figure 1)
consists of three major areas. First, the radarscope shows
various air tracks. Vectors emanating from the aircraft
indicate speed and course. The AAWC is on a ship at the
center of the radarscope (called ANZIO). The AAWC
moves the mouse within the scope and “hooks” a target
airplane by clicking the mouse button. This hooking is
necessary whenever the AAWC tries to update identity of
unknown aircraft. Second, there is a group of information
boxes on the left of the screen where the participant can get
information on tracks. Third, the menu panel shows the

1 Owing to the complexities and the dynamic nature of the task, the
tutor used a grammar-based representation of procedural
knowledge instead of the traditional production-based
representation (Douglass, 2004). The grammar representation was
able to capture more variations of different courses of actions more
succinctly than the traditional production representation. However,
the basic tracing methodology was the same.

currently bindings of the function keys (F1 to F12 on the
computer keyboard) that are used to issue commands. The
AAWC spent the majority of the time in identifying the
intent (friendly or hostile) of tracks on the screen and their
air type (e.g., strike, or commercial). It is this identification
task that the experiment focuses on. We will focus on the

first unit task in the identification task – how participants
select the next track -- with and without the over-the-
shoulder instructions. This unit task involves a selection and
a visual search component, both of which are subject to
significant improvement with the over-the-shoulder
instructions. We will elaborate on this aspect below.

Figure 1. The display in the CMU-ASP task.

Instructions
Before the experiment participants were asked to memorize
a set of initial instructions that were sufficient to finish the
task (details in Anderson, et. al., in press). Half of the
participants were assigned to a group where over-the-
shoulder instructions were given (instruction group) and the
other half did not receive any over-the-shoulder instructions
(no-instruction group). The over-the-shoulder instructions
were given right after the participants finished a unit task
(e.g. after hooking a track or after identifying a track as a
commercial profile). In this paper, we focus on the over-the-
shoulder instructions that were given right after participants
had hooked a track. Participants were told that their scores
depended on the importance of the tracks classified, but the
initial set of instructions did not explain how the importance
of a track could be evaluated. After a track had been
identified, a score would be displayed in the middle
information box on the left of the screen as shown in Figure
1. The score was calculated by the following equation (not
known to the participants): Identification score = (speed + 3
* (512 – range)) * at-me. Hence, the score was high if the
speed was high, if it was close to the center of the screen
(range was small), or if it was flying towards the ship. The
at-me value ranges from 1.0 to 3.0, and it depends on the
difference between the course of the track and the bearing of
the track measured from the ANZIO. A small difference
implies that the track is flying towards the ship, and the at-

me value will be high. Since the score decreases linearly
over time (from 100% to 25% during the 6-min trial) and
there is often insufficient time to classify all tracks in 6
minutes, the final scores (calculated as the sum of all time-
weighted identification scores) depend critically on whether
participants can classify tracks in the order of importance.

At any point in time, the identification scores of all
unidentified tracks were calculated and tracks were ranked
according to their scores. In the instruction group, after the
participant hooked a track, if the hooked track was less
important than 20% of all unidentified tracks the tutor
would be triggered to give an audio instruction. The most
important track on the screen would be highlighted, and
instruction would be given to inform the participant why the
highlighted track was more important (e.g. it was fast and
directly approaching the ship). Participants could then learn
from the instructions and improve future performance by
selecting the most important unclassified tracks.

ACT-R 5.0
The basic architecture of ACT-R 5.0 consists of a set of
modules, each devoted to processing a different kind of
information. Coordination in the behavior of these modules
is achieved through a central production system. This
central production system is not sensitive to most of the
activity of these modules but rather can only respond to a
limited amount of information that is deposited in the
buffers of these modules. The core production system can
recognize patterns in these buffers and make changes to

these buffers – as for instance, when it makes a request to
perform an action in the manual buffer, or a request to move
attention in the visual field (e.g. to a track) or to an audio
signal (e.g. an over-the-should instruction).

The Experiment
Thirty-two participants were recruited for a two-day
experiment. Half the participants were assigned to the
instruction group and the other half to the no-instruction
group. On the first day they were given the set of initial
instructions that taught them how to hook and identify a
track, and how to use the F-keys to input the classifications
of the tracks. On the first day participants memorized the
instructions and were tested on 10 6-minute scenarios. On
the second day they were tested on 10 more. Each scenario
involved 40 tracks randomly placed on the screen. In the
instruction group, over-the-should instructions were given
except the first two and the last two scenarios given on each
of the two days. In other words, in the instruction group,
participants were given 2 no-instruction trials, followed by 6
instruction trials, then 2 more no-instruction trials on each
of the two days of experiment.

The Model
The model uses the same set of parameters as described in
Anderson et al (in press), and uses the same declarative-to-
procedural system to process the initial set of instructions.
The current extension processes over-the-shoulder
instructions in a similar fashion, i.e. instructions are initially
represented as declarative knowledge and are retrieved
when needed. The over-the-shoulder instructions are also
subject to the same declarative-to-procedure conversion as
the initial set of instructions. However, the strength of the
over-the-shoulder instructions is assumed to be much
weaker than that of the initial set of instructions. To preview
our results, we did find that the learning of the over-the-
shoulder instructions were slower. Besides, when the tutor
was turned off, performance declined quickly, suggesting
that the instructions were weakly encoded and not yet
proceduralized as the initial set of instructions.

To model the track selection strategies, we asked
participants to freely write down the criteria they used to
select the next track. The top three criteria were shown in
Table 1. It shows that participants were able to learn to
attend to the right features in the instruction group. It is
interesting that even with no instruction, participants tended
to choose tracks that were closer to the ANZIO (range), and
apparently some of them learned that at-me and speed were
important features.

 Instruction No-instruction

At-me 15 4
Range 12 10
Speed 15 4

Table 1. The number of participants reported that they used
the criteria to select the next track in each group.

We represented each of the above criteria as a “search-
factor” and they were created as declarative chunks when
the first over-the-shoulder instruction was given. The
search-factors provided constraints to the visual search
process. For example, a “fast” search-factor commands a
search for a track that has a long vector emanating from the
track, and a “range” search-factor commands a search for a
track that was close to the ANZIO, and so on.

When the task began, since no search-factor was
available, the model started to select the track closest to the
ANZIO. This assumption was based on the apparent
tendency for participants to select tracks closer to the
ANZIO in both groups (see Table 1). Another assumption
was that participants would tend to minimize the search
time required to select a track, so that they could classify as
many tracks as possible in each trial. Under this assumption,
when no additional information is available, the best
strategy is to select the track closest to the track that has just
been classified, i.e., a nearest-neighbor strategy. This will
minimize both the visual search time and the mouse
movement time.

If aural buffer is filled,
then create a goal to attend to audio info
and remember the current goal

Move attention to aural location
and interpret the audio info

If it is an instruction,
then create DM chunk for each factor
given by the instruction
(e.g. speed, range, or at-me)

Hook and classify the track
recommended by the tutor

If it is NOT an instruction,
then resume the previous goal

If aural buffer is filled,
then create a goal to attend to audio info
and remember the current goal

Move attention to aural location
and interpret the audio info

If it is an instruction,
then create DM chunk for each factor
given by the instruction
(e.g. speed, range, or at-me)

Hook and classify the track
recommended by the tutor

If it is NOT an instruction,
then resume the previous goal

Figure 2. How the model responds to the over-the-shoulder
instruction through the aural buffer. (DM = Declarative
Memory)

When an over-the-shoulder instruction is given, the
instruction will be stored automatically in the buffer of the
aural module. A production will fire whenever there is an
audio signal in the aural buffer (see Figure 2). This
production will also create a new goal of moving attention
to this audio signal, and stores the current goal as part of the
new goal so that in case the model chooses not to follow the
instruction, it can resume the current goal. After attention is
moved to the audio signal, the content of the audio signal
can be interpreted. If the audio signal is an instruction given
by the tutor, the model will interpret the instruction (we
choose not to model the interpretation, instead the
interpretation is done by a lisp function). The interpretation
process generates search-factors that explain why the track
highlighted by the tutor is important. There are three search-
factors given by the over-the-shoulder instruction: speed,
range, and at-me. For example, if the instruction is: “This
fast track is coming at the ANZIO and needs attention”,
then the interpretation process will generate the “fast” and
“at-me” search-factors. For each of the search-factors

generated, the model will create separate chunks
representing them in declarative memory. If there is already
an identical chunk in declarative memory when the new
chunk is created, the chunks will be merged and the
activation of the chunk will be increased and its likelihood
of being retrieved in the future increases.

After the model repeatedly processes the over-the-
shoulder instructions, the activation of the search-factor
chunks will be strengthened and the chunks will eventually
be retrieved. These search-factors affect the selection of the
next track through repeated cycles of retrieval and visual
search (see Figure 3). When the model starts to select a
track, it will first try to retrieve a search-factor. If a search-
factor, for example, speed, is retrieved, the model will
search for a fast track on the radar screen. At the same time,
retrieval for the second search-factor is initiated. The visual
search and the retrieval compete against each other. If the
visual search process finds a track before retrieval finishes,
the model will satisfice on the track and stop searching.
However, if retrieval finishes first, a new visual search will
be initiated based on the two search-factors retrieved. For
example, if the first search-factor is speed and the second
factor is range, then the model will search for a track that is
both fast and close to the ANZIO. At the same time,
retrieval for the third search-factor will be initiated. If,
again, a track is found based on the two search-factors
before the retrieval for the third search-factor finishes, the
model will proceed to hook and identify the track. If
retrieval finishes first, a new search will be initiated based
on the three search-factors. At this point, since all factors
have been retrieved, the model will proceed to hook the
track when a track is found. The flow diagram in Figure 3
therefore shows how top-down influence of instructions can
be incrementally combined with the visual search process.

Retrieve a factor

If Factor retrieved then
Search for track and
Retrieve 2nd factor

If 2nd Factor retrieved then
Search for track and
Retrieve 3rd factor

If 3rd Factor retrieved then
Search for track

If Track Found, hook the Track

If Track Found, hook the Track

If Track Found, hook the Track
competing

competing

Retrieve a factor

If Factor retrieved then
Search for track and
Retrieve 2nd factor

If 2nd Factor retrieved then
Search for track and
Retrieve 3rd factor

If 3rd Factor retrieved then
Search for track

If Track Found, hook the Track

If Track Found, hook the Track

If Track Found, hook the Track
competingcompeting

competing

Figure 3. The model selects the next track retrieving factors
that guides the visual search.

The competition of the retrieval and visual search process
allows the model to incrementally improve the selection of
tracks. Perhaps more importantly, it allows performance to
decline gradually as over-the-shoulder instructions were
dropped (e.g., see Figure 7 below). This performance
decline will be difficult to be modeled by, for example, a
strategy-competition approach.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 40 80 120 160
Time (seconds)

Retrieval/Visual
Search Time (s)

-0.5

0

0.5

1

1.5

2

2.5

Activation

Activation

Retrieval Time

Visual Search Time

Figure 4. The activation of a chunk encountered every two
seconds and its noiseless retrieval time. The visual search
time is fixed at 0.185s. The encounter stops at 100s.

In ACT-R, the retrieval time (T) is calculated as
T=F*exp(-A) where F is a scaling factor that defaults to 1,
and A is the activation of the chunk. The calculation of the
activation is more complicated, but for the current purpose,
if a chunk is created t1 before (i.e. a lag of t1), and a new
chunk was merged to the chunk at lags t2, t3, … tn, then the
activation of the chunk will be

ε+= ∑
=

−)ln(
1

n

j

d
jtA

where d is the decay parameter which defaults to 0.5, and ε
represents normally distributed noise. Figure 4 shows how
the retrieval time (without noise) decreases with time,
during which the same chunk is encountered (i.e. in this
case, merging of chunks) every 2 seconds. Figure 4 also
shows the relationship between activation and retrieval time.
After 50 encounters (i.e. after 100 seconds), strengthening
of the chunk stops (i.e. the chunk is not encountered
anymore). We can see that after this point, the activation of
the chunk decays with time (the rate of decay is controlled
by the value of d), and the retrieval time increases. The
visual search time is fixed as 0.185 seconds2. We can see
that in this simple case, as the number of previous
encounters is more than 20 (i.e. after 40 seconds of regular
encounters), the retrieval time is faster than the visual search
time. However, when the encounter stops, the retrieval time
eventually becomes larger than the visual search time.

Results
Figure 5 shows the final scores obtained after each scenario
by the participants and the model in both the instruction and
no-instruction groups. The final scores are the total scores

2 ACT-R assumes that it takes 85ms to encode the features of a
visual object. However, it often requires the firing of two
productions, one for finding the location of the visual object, the
second for initiating the visual encoding. Each production takes
50ms. Therefore the total time for a visual search is 185ms.

obtained for all tracks identified during each 6-min scenario.
The model was able to fit the data well (R2 = 0.92).
However, the model did start off with slightly better scores
in the first two scenarios than the participants. Apparently
some participants might have picked less important tracks
than the model in the beginning trials. However, given the
good fit between the model and data at later trials, we
consider this a good tradeoff by constructing only a single
simple strategy (i.e. the nearest-neighbor strategy) to capture
performance without making assumptions on the various
strategies that might have been used by the participants at
different stages of learning.

Participants improved steadily across trials. The final
scores dropped slightly at scenario 11, when the participants
came back on the second day. In general, the improvements
of final scores of the model were similar to those of the
participants.

Figure 5 shows that there was no significant difference in
total scores between the instruction and no-instruction
groups. However, Figure 6 shows that the number of
identification made in each scenario was actually higher for
the no-instruction group than the instruction group.
Apparently the over-the-shoulder instructions had slowed
down the participants. This is most obvious in scenario 3,
where the over-the-instructions were first given. Combining
the results from Figure 5 and Figure 6, participants in the
no-instruction group had fewer scores per each track they
identified. In other words, participants in the instruction
group had identified more important tracks than the no-
instruction group. It suggests that although participants (and
the model) were slower performing the task, they were able
to choose more important tracks and obtained final scores as
high as participants in the no-instruction group.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Scenarios

Final scores

Instruction (obs)
No instruction (obs)
Instruction (model)
No instruction (model)

Figure 5. Final scores obtained by the participants and the
model after each scenario. Note that the second day starts on
scenario 11. (obs = observed data from participants)

Participants sped up steadily across scenarios, except
again in scenario 11 when participants came back on the
second day. The difference between the instruction and no-
instruction group also became smaller with practice. It
seemed that participants in the no-instruction group reached

asymptotic performance earlier than the instruction group.
From the analyses in Anderson et al (in press), during the
early stages of learning, time to identify a track depended
mostly on cognitive components. At later stage of learning,
the time to identify a track depended mostly on perceptual-
motor components. The difference between the two groups
indicates that the over-the-shoulder instructions may require
more cognitive operations to process the instructions. The
smaller difference at later stage of learning indicates that the
processing of instructions had also sped up. The model was
able to capture the patterns of data well in both the
instruction and no-instruction groups (R2=0.96).

To further investigate the effect of the over-the-shoulder
instructions, we derived a measure of how well participants
were able to identify the tracks in the order of their
importance (i.e., identify the most important first and least
important track last). In each scenario, we calculated the
correlation between the scores of the tracks and the order of
their identification. For example, if tracks A, B, and C are
identified one after the other and the scores obtained are
900, 800, and 600 respectively, then the correlation between
the two arrays (900, 800, 600) and (1, 2, 3) is calculated to
be -0.98. However, if the tracks were identified in the order
of A, C, and B, then the correlation between the two arrays
(900, 600, 800) and (1, 2, 3) will be -0.333. In other words,
the more negative the correlation, the better the participant
is able to identify the tracks in the order of their importance.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Instruction (obs)
No instruction (obs)
Instruction (model)
No instruction (model)

Num IDs

Scenarios

Figure 6. The number of identifications made in each
scenario. (IDs = identifications)

Figure 7 shows the correlations across the scenarios for
both groups. The correlations for the instruction group were
lower than the no-instruction group throughout the 20
scenarios. One may wonder whether the fewer number of
identifications may have contributed to the lower
correlations (more negative) in the instruction group.
However, after checking the data we found that the
differences were too big to be caused by the fewer number
of identifications (except perhaps in the first two scenarios).

3 In the actual task, the scores will not be identical when tracks
were identified in different orders because scores decrease linearly
with time.

In fact, the difference in the number of tracks identified
between the two groups was very small (see Figure 6) in the
second day. We conclude that participants in the instruction
group were better at identifying the most important tracks
first, and the least important tracks last.

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scenarios

Correlations

Instruction (Obs)
Instruction (Model)
No Instruction (Obs)
No Instruction (Model)

Figure 7. The correlations between scores of the track
identified and their order of identification. The more
negative the correlation, the better the identification was in a
decreasing order of scores.

The effect of instructions can also be assessed from
Figure 7 at scenarios 9 to 12, and scenarios 19 and 20 for
the instruction group, during which the tutor was turned off.
The instruction group shows some reduction in the
magnitude of their correlations but still show stronger (more
negative) correlations than the uninstructed group.

The model captures the data well (R2 = 0.95). The model
exhibited the same increases of correlations when the tutor
was turned off as the data did. This shows that the model
was able to respond and learn from the over-the-shoulder
instructions as the participants did.

The nearest-neighbor strategy also did a good job
capturing the small learning curve in the no-instruction
group. Since the strategy always started with the track
closest to the ANZIO, it captured the general tendency to
classify tracks closer to the ANZIO first as reported by the
participants. Since tracks close to the ANZIO tended to have
a high importance, the general tendency therefore led to the
sharp decrease of correlation during early trials as the
number of identification increased. However, after tracks
close to the ANZIO were identified, the order of
identification became more random than systematic,
therefore the correlation asymptote at a much less negative
value than that of the instruction group.

Conclusions and Discussions
We found that participants were able to learn from the over-
the-shoulder instructions and paid attention to more
important tracks. To understand how people learned from
these instructions, we extended previous work by Anderson
et al. (in press) by constructing a mechanism that allows the

model to learn from over-the-shoulder instructions.
Instructions were represented as declarative memory traces.
Repeated instructions strengthened these memory traces to
make them more available when needed. A mechanism is
constructed that allows visual search to be incrementally
improved and declined based on the strengths of these
memory traces of these top-down instructions. The ability to
search for important tracks improved as the strengths of
these memory traces increased. The strengths of these
memory traces of instructions decayed when the tutor was
turned off, leading to the decline in performance.

The treatment of the over-the-shoulder instructions is
basically the same as the initial instructions, except that (a)
they take time away from the processing, and (b) we
realistically model the slow learning of the over-the-
shoulder instructions whereas we assume that the initial
instructions are well encoded. Intuitively, one might
speculate that over-the-shoulder instructions might be easier
to learn as they are presented right in the exact same
situation. As least from our data, although the over-the-
shoulder instructions apparently had a large impact on
performance, they did take time away from the task and
their effect seemed to decay quite rapidly. This may suggest
that over-the-shoulder instructions may not have the
privileged status (as compared to practice) as believed.

Cognitive tutors have been successfully applied in
relatively static task domains such as algebra or geometry.
The current line of work attempts to transfer the technology
of cognitive tutors out from the protected classroom or
laboratory to a real-world, complex, and dynamic task. The
task requires all forms of learning and all buffers in ACT-R
to interact and thus is a good test bed for the architecture.
Our goal is to have the model eventually handles more
complicated over-the-shoulder instructions, thus allowing
automatic evaluation of a real-time instructional system for
dynamic tasks.

Acknowledgments
This research is supported by the ONR grant N00014-99-
10097.

References
Anderson, J. R., Bothell, D., Byrne M. D., Douglas S.,

Lebiere, C. & Qin, Y. (in press). An Integrated Theory of
the Mind. Psychological Review.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., &
Pelletier, R. (1995). Cognitive Tutors: Lessons learned. The
Journal of the Learning Sciences, 4, 167-207.

Anderson, J. R., Lebiere, C. (1998) Atomic components of
thought. Mahwah, NJ: Erlbaum

Douglass, S. A. (2004). Using the PLASTIC framework
to augment scenario-based training systems with
instructional agenst. In Proceedings of the 48th Annual
Meeting of the Human Factors and Ergonomics Society.

Hodge, K., Rothrock, L., Kirlik, A., Walker, N., Fisk, A.,
Phipps, D., & Gay, P. (1995). Trainings for tactical decision
making under stress: Towards automatization of component
skills. Atlanta, GA: Georgia Institute of Technology.

	Carnegie Mellon University
	Research Showcase @ CMU
	7-2004

	Learning from Real-Time Over-the-Shoulder Instructions in a Dynamic Task
	Wai-Tat Fu
	Daniel Bothell
	Scott Douglass
	Craig Haimson
	Myeong-Ho Sohn
	See next page for additional authors
	Authors

	tmp.1226956607.pdf.dgzeA

