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Abstract 

We extended the work of Anderson et al. (in press) by 
modeling how people learn from “over-the-shoulder” 
instructions – instructions given immediately after actions 
were executed – while participants were working on a Anti-
Air Warfare Coordinator (AAWC) task. Specifically, we 
modeled the incremental top-down influence of instructions 
on the visual search process. We constructed a model that first 
responded to and converted the over-the-shoulder instructions 
into declarative memory chunks. These declarative chunks of 
instructions were strengthened with repeated exposures to 
these instructions. The model then incrementally learned to 
improve the selection of next track as the strengths of these 
declarative chunks of instructions increased, and performance 
declined as the instructions decayed over time. The model 
was able to fit the data well, suggesting that the model was 
able to capture the effects of the instructions on learning and 
performance in this dynamic task. 

Introduction 
Anderson et al. (in press) describe a system in the ACT-R 
cognitive architecture (Anderson & Lebiere, 1998) that 
takes the initial set of instructions for a dynamic task and 
converts the set of instructions into a declarative 
representation, which is interpreted by a generic set of 
production rules. Through the production compilation 
mechanism, a set of specific productions that directly 
perform the task are generated as the task is practiced. We 
extended this effort by constructing a model that learns from 
both initial instructions and instructions given by the system 
while participants are doing the task. These “over-the-
shoulder” instructions are given to provide real-time 
feedback on participants’ actions, so that eventually the 
initial set of instructions can be strengthened, 
complemented, or overridden. These instructions are given 
based on a cognitive tutor, a technology that has been used 
successfully in a variety of educational applications to 
facilitate learning by doing (e.g. Anderson, Corbett, 
Koedinger, & Pelletier, 1995).  

Learning from Cognitive Tutors 
Cognitive tutors were computer-based instructional 
technology to help students learn from instructions. The 
idea is that instructions should be given based on a cognitive 
model of the competence that the student is being asked to 
learn. In other words, the cognitive model should 
incorporate the underlying skills that allow the model to 
perform the task the student was expected to perform. In 
ACT-R, the skills will be represented as a set of production 

rules (procedural knowledge) for executing the correct 
actions under the right conditions, and as a set of declarative 
memory elements (declarative knowledge) for the 
appropriate domain knowledge. Based on the model, the 
tutor is able to monitor actions of the student and infer the 
intentions of the student. Immediate feedback can then be 
given to the student to facilitate learning. A major challenge 
in building the model is to understand how people respond 
and learn from immediate feedback on their actions from the 
tutor, and how it influences the existing declarative and 
procedural knowledge. In this paper, we describe a model of 
how people learn from immediate feedback from the tutor. 
The model allows better understanding of the impact of 
over-the-shoulder instructions on learning and performance. 

The Task: The Anti-Air Warfare Coordinator  
The task is the same as the one described in Anderson et. al 
(in press), which was constructed based on the Georgia 
Tech Aegis Simulation Program (GT-ASP, Hodge, 
Rothrock, Kirlik, Walker, Fisk, Phipps, & Gay, 1995). GT-
ASP is a tactical decision-making computer game that 
simulates tasks facing an anti-air warfare coordinator 
(AAWC) on board a US Navy cruisers and destroyers. A 
participant assumes the role of an AAWC, which includes 
monitoring a radar screen for unknown aircraft, requesting 
and collecting information regarding the unknown aircraft, 
and updating the identity of the aircraft. The task we used is 
a simplified version of the GT-ASP, and a model-tracing1 
tutor was constructed to monitor participants’ actions. We 
refer to it as the CMU-ASP task henceforth. 

The radar screen of the CMU-ASP task (Figure 1) 
consists of three major areas. First, the radarscope shows 
various air tracks. Vectors emanating from the aircraft 
indicate speed and course. The AAWC is on a ship at the 
center of the radarscope (called ANZIO). The AAWC 
moves the mouse within the scope and “hooks” a target 
airplane by clicking the mouse button. This hooking is 
necessary whenever the AAWC tries to update identity of 
unknown aircraft. Second, there is a group of information 
boxes on the left of the screen where the participant can get 
information on tracks. Third, the menu panel shows the 

                                                           
1 Owing to the complexities and the dynamic nature of the task, the 
tutor used a grammar-based representation of procedural 
knowledge instead of the traditional production-based 
representation (Douglass, 2004). The grammar representation was 
able to capture more variations of different courses of actions more 
succinctly than the traditional production representation. However, 
the basic tracing methodology was the same. 



currently bindings of the function keys (F1 to F12 on the 
computer keyboard) that are used to issue commands. The 
AAWC spent the majority of the time in identifying the 
intent (friendly or hostile) of tracks on the screen and their 
air type (e.g., strike, or commercial). It is this identification 
task that the experiment focuses on. We will focus on the 

first unit task in the identification task – how participants 
select the next track -- with and without the over-the-
shoulder instructions. This unit task involves a selection and 
a visual search component, both of which are subject to 
significant improvement with the over-the-shoulder 
instructions. We will elaborate on this aspect below. 

 

  
Figure 1. The display in the CMU-ASP task.

Instructions 
Before the experiment participants were asked to memorize 
a set of initial instructions that were sufficient to finish the 
task (details in Anderson, et. al., in press). Half of the 
participants were assigned to a group where over-the-
shoulder instructions were given (instruction group) and the 
other half did not receive any over-the-shoulder instructions 
(no-instruction group). The over-the-shoulder instructions 
were given right after the participants finished a unit task 
(e.g. after hooking a track or after identifying a track as a 
commercial profile). In this paper, we focus on the over-the-
shoulder instructions that were given right after participants 
had hooked a track. Participants were told that their scores 
depended on the importance of the tracks classified, but the 
initial set of instructions did not explain how the importance 
of a track could be evaluated. After a track had been 
identified, a score would be displayed in the middle 
information box on the left of the screen as shown in Figure 
1. The score was calculated by the following equation (not 
known to the participants): Identification score = (speed + 3 
* (512 – range)) * at-me. Hence, the score was high if the 
speed was high, if it was close to the center of the screen 
(range was small), or if it was flying towards the ship. The 
at-me value ranges from 1.0 to 3.0, and it depends on the 
difference between the course of the track and the bearing of 
the track measured from the ANZIO. A small difference 
implies that the track is flying towards the ship, and the at-

me value will be high. Since the score decreases linearly 
over time (from 100% to 25% during the 6-min trial) and 
there is often insufficient time to classify all tracks in 6 
minutes, the final scores (calculated as the sum of all time-
weighted identification scores) depend critically on whether 
participants can classify tracks in the order of importance. 

At any point in time, the identification scores of all 
unidentified tracks were calculated and tracks were ranked 
according to their scores. In the instruction group, after the 
participant hooked a track, if the hooked track was less 
important than 20% of all unidentified tracks the tutor 
would be triggered to give an audio instruction. The most 
important track on the screen would be highlighted, and 
instruction would be given to inform the participant why the 
highlighted track was more important (e.g. it was fast and 
directly approaching the ship). Participants could then learn 
from the instructions and improve future performance by 
selecting the most important unclassified tracks. 

ACT-R 5.0 
The basic architecture of ACT-R 5.0 consists of a set of 
modules, each devoted to processing a different kind of 
information. Coordination in the behavior of these modules 
is achieved through a central production system. This 
central production system is not sensitive to most of the 
activity of these modules but rather can only respond to a 
limited amount of information that is deposited in the 
buffers of these modules. The core production system can 
recognize patterns in these buffers and make changes to 



these buffers – as for instance, when it makes a request to 
perform an action in the manual buffer, or a request to move 
attention in the visual field (e.g. to a track) or to an audio 
signal (e.g. an over-the-should instruction).  

The Experiment 
Thirty-two participants were recruited for a two-day 
experiment. Half the participants were assigned to the 
instruction group and the other half to the no-instruction 
group. On the first day they were given the set of initial 
instructions that taught them how to hook and identify a 
track, and how to use the F-keys to input the classifications 
of the tracks. On the first day participants memorized the 
instructions and were tested on 10 6-minute scenarios. On 
the second day they were tested on 10 more. Each scenario 
involved 40 tracks randomly placed on the screen. In the 
instruction group, over-the-should instructions were given 
except the first two and the last two scenarios given on each 
of the two days. In other words, in the instruction group, 
participants were given 2 no-instruction trials, followed by 6 
instruction trials, then 2 more no-instruction trials on each 
of the two days of experiment. 

The Model 
The model uses the same set of parameters as described in 
Anderson et al (in press), and uses the same declarative-to-
procedural system to process the initial set of instructions. 
The current extension processes over-the-shoulder 
instructions in a similar fashion, i.e. instructions are initially 
represented as declarative knowledge and are retrieved 
when needed. The over-the-shoulder instructions are also 
subject to the same declarative-to-procedure conversion as 
the initial set of instructions. However, the strength of the 
over-the-shoulder instructions is assumed to be much 
weaker than that of the initial set of instructions. To preview 
our results, we did find that the learning of the over-the-
shoulder instructions were slower. Besides, when the tutor 
was turned off, performance declined quickly, suggesting 
that the instructions were weakly encoded and not yet 
proceduralized as the initial set of instructions.  

To model the track selection strategies, we asked 
participants to freely write down the criteria they used to 
select the next track. The top three criteria were shown in 
Table 1. It shows that participants were able to learn to 
attend to the right features in the instruction group. It is 
interesting that even with no instruction, participants tended 
to choose tracks that were closer to the ANZIO (range), and 
apparently some of them learned that at-me and speed were 
important features. 

 
 Instruction No-instruction 

At-me 15 4 
Range 12 10 
Speed 15 4 

Table 1. The number of participants reported that they used 
the criteria to select the next track in each group.  

We represented each of the above criteria as a “search-
factor” and they were created as declarative chunks when 
the first over-the-shoulder instruction was given. The 
search-factors provided constraints to the visual search 
process. For example, a “fast” search-factor commands a 
search for a track that has a long vector emanating from the 
track, and a “range” search-factor commands a search for a 
track that was close to the ANZIO, and so on. 

When the task began, since no search-factor was 
available, the model started to select the track closest to the 
ANZIO. This assumption was based on the apparent 
tendency for participants to select tracks closer to the 
ANZIO in both groups (see Table 1). Another assumption 
was that participants would tend to minimize the search 
time required to select a track, so that they could classify as 
many tracks as possible in each trial. Under this assumption, 
when no additional information is available, the best 
strategy is to select the track closest to the track that has just 
been classified, i.e., a nearest-neighbor strategy. This will 
minimize both the visual search time and the mouse 
movement time.  
 

If aural buffer is filled, 
then create a goal to attend to audio info
and remember the current goal

Move attention to aural location
and interpret the audio info 

If it is an instruction,
then create DM chunk for each factor
given by the instruction
(e.g. speed, range, or at-me)

Hook and classify the track
recommended by the tutor

If it is NOT an instruction,
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If aural buffer is filled, 
then create a goal to attend to audio info
and remember the current goal

Move attention to aural location
and interpret the audio info 

If it is an instruction,
then create DM chunk for each factor
given by the instruction
(e.g. speed, range, or at-me)

Hook and classify the track
recommended by the tutor

If it is NOT an instruction,
then resume the previous goal

 
Figure 2. How the model responds to the over-the-shoulder 
instruction through the aural buffer. (DM = Declarative 
Memory) 

When an over-the-shoulder instruction is given, the 
instruction will be stored automatically in the buffer of the 
aural module. A production will fire whenever there is an 
audio signal in the aural buffer (see Figure 2). This 
production will also create a new goal of moving attention 
to this audio signal, and stores the current goal as part of the 
new goal so that in case the model chooses not to follow the 
instruction, it can resume the current goal. After attention is 
moved to the audio signal, the content of the audio signal 
can be interpreted. If the audio signal is an instruction given 
by the tutor, the model will interpret the instruction (we 
choose not to model the interpretation, instead the 
interpretation is done by a lisp function). The interpretation 
process generates search-factors that explain why the track 
highlighted by the tutor is important. There are three search-
factors given by the over-the-shoulder instruction: speed, 
range, and at-me. For example, if the instruction is: “This 
fast track is coming at the ANZIO and needs attention”, 
then the interpretation process will generate the “fast” and 
“at-me” search-factors. For each of the search-factors 



generated, the model will create separate chunks 
representing them in declarative memory. If there is already 
an identical chunk in declarative memory when the new 
chunk is created, the chunks will be merged and the 
activation of the chunk will be increased and its likelihood 
of being retrieved in the future increases. 

After the model repeatedly processes the over-the-
shoulder instructions, the activation of the search-factor 
chunks will be strengthened and the chunks will eventually 
be retrieved. These search-factors affect the selection of the 
next track through repeated cycles of retrieval and visual 
search (see Figure 3). When the model starts to select a 
track, it will first try to retrieve a search-factor. If a search-
factor, for example, speed, is retrieved, the model will 
search for a fast track on the radar screen. At the same time, 
retrieval for the second search-factor is initiated. The visual 
search and the retrieval compete against each other. If the 
visual search process finds a track before retrieval finishes, 
the model will satisfice on the track and stop searching. 
However, if retrieval finishes first, a new visual search will 
be initiated based on the two search-factors retrieved. For 
example, if the first search-factor is speed and the second 
factor is range, then the model will search for a track that is 
both fast and close to the ANZIO. At the same time, 
retrieval for the third search-factor will be initiated. If, 
again, a track is found based on the two search-factors 
before the retrieval for the third search-factor finishes, the 
model will proceed to hook and identify the track. If 
retrieval finishes first, a new search will be initiated based 
on the three search-factors. At this point, since all factors 
have been retrieved, the model will proceed to hook the 
track when a track is found. The flow diagram in Figure 3 
therefore shows how top-down influence of instructions can 
be incrementally combined with the visual search process. 

Retrieve a factor

If Factor retrieved then
Search for track and
Retrieve 2nd factor

If 2nd Factor retrieved then
Search for track and
Retrieve 3rd factor

If 3rd Factor retrieved then
Search for track

If Track Found, hook the Track

If Track Found, hook the Track

If Track Found, hook the Track
competing

competing

Retrieve a factor

If Factor retrieved then
Search for track and
Retrieve 2nd factor

If 2nd Factor retrieved then
Search for track and
Retrieve 3rd factor

If 3rd Factor retrieved then
Search for track

If Track Found, hook the Track

If Track Found, hook the Track

If Track Found, hook the Track
competingcompeting

competing

 
Figure 3. The model selects the next track retrieving factors 
that guides the visual search.  

The competition of the retrieval and visual search process 
allows the model to incrementally improve the selection of 
tracks. Perhaps more importantly, it allows performance to 
decline gradually as over-the-shoulder instructions were 
dropped (e.g., see Figure 7 below). This performance 
decline will be difficult to be modeled by, for example, a 
strategy-competition approach.   
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Figure 4. The activation of a chunk encountered every two 
seconds and its noiseless retrieval time. The visual search 
time is fixed at 0.185s. The encounter stops at 100s.  

In ACT-R, the retrieval time (T) is calculated as 
T=F*exp(-A) where F is a scaling factor that defaults to 1, 
and A is the activation of the chunk. The calculation of the 
activation is more complicated, but for the current purpose, 
if a chunk is created t1 before (i.e. a lag of t1), and a new 
chunk was merged to the chunk at lags t2, t3, … tn, then the 
activation of the chunk will be  

ε+= ∑
=

− )ln(
1

n

j

d
jtA  

where d is the decay parameter which defaults to 0.5, and ε 
represents normally distributed noise. Figure 4 shows how 
the retrieval time (without noise) decreases with time, 
during which the same chunk is encountered (i.e. in this 
case, merging of chunks) every 2 seconds. Figure 4 also 
shows the relationship between activation and retrieval time. 
After 50 encounters (i.e. after 100 seconds), strengthening 
of the chunk stops (i.e. the chunk is not encountered 
anymore). We can see that after this point, the activation of 
the chunk decays with time (the rate of decay is controlled 
by the value of d), and the retrieval time increases. The 
visual search time is fixed as 0.185 seconds2. We can see 
that in this simple case, as the number of previous 
encounters is more than 20 (i.e. after 40 seconds of regular 
encounters), the retrieval time is faster than the visual search 
time. However, when the encounter stops, the retrieval time 
eventually becomes larger than the visual search time. 

Results 
Figure 5 shows the final scores obtained after each scenario 
by the participants and the model in both the instruction and 
no-instruction groups. The final scores are the total scores 
                                                           
2 ACT-R assumes that it takes 85ms to encode the features of a 
visual object. However, it often requires the firing of two 
productions, one for finding the location of the visual object, the 
second for initiating the visual encoding. Each production takes 
50ms. Therefore the total time for a visual search is 185ms. 



obtained for all tracks identified during each 6-min scenario. 
The model was able to fit the data well (R2 = 0.92). 
However, the model did start off with slightly better scores 
in the first two scenarios than the participants. Apparently 
some participants might have picked less important tracks 
than the model in the beginning trials. However, given the 
good fit between the model and data at later trials, we 
consider this a good tradeoff by constructing only a single 
simple strategy (i.e. the nearest-neighbor strategy) to capture 
performance without making assumptions on the various 
strategies that might have been used by the participants at 
different stages of learning.  

Participants improved steadily across trials. The final 
scores dropped slightly at scenario 11, when the participants 
came back on the second day. In general, the improvements 
of final scores of the model were similar to those of the 
participants.  

Figure 5 shows that there was no significant difference in 
total scores between the instruction and no-instruction 
groups. However, Figure 6 shows that the number of 
identification made in each scenario was actually higher for 
the no-instruction group than the instruction group. 
Apparently the over-the-shoulder instructions had slowed 
down the participants. This is most obvious in scenario 3, 
where the over-the-instructions were first given. Combining 
the results from Figure 5 and Figure 6, participants in the 
no-instruction group had fewer scores per each track they 
identified. In other words, participants in the instruction 
group had identified more important tracks than the no-
instruction group. It suggests that although participants (and 
the model) were slower performing the task, they were able 
to choose more important tracks and obtained final scores as 
high as participants in the no-instruction group. 
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Figure 5. Final scores obtained by the participants and the 
model after each scenario. Note that the second day starts on 
scenario 11. (obs = observed data from participants) 

Participants sped up steadily across scenarios, except 
again in scenario 11 when participants came back on the 
second day. The difference between the instruction and no-
instruction group also became smaller with practice. It 
seemed that participants in the no-instruction group reached 

asymptotic performance earlier than the instruction group. 
From the analyses in Anderson et al (in press), during the 
early stages of learning, time to identify a track depended 
mostly on cognitive components. At later stage of learning, 
the time to identify a track depended mostly on perceptual-
motor components. The difference between the two groups 
indicates that the over-the-shoulder instructions may require 
more cognitive operations to process the instructions. The 
smaller difference at later stage of learning indicates that the 
processing of instructions had also sped up.  The model was 
able to capture the patterns of data well in both the 
instruction and no-instruction groups (R2=0.96).  

To further investigate the effect of the over-the-shoulder 
instructions, we derived a measure of how well participants 
were able to identify the tracks in the order of their 
importance (i.e., identify the most important first and least 
important track last). In each scenario, we calculated the 
correlation between the scores of the tracks and the order of 
their identification. For example, if tracks A, B, and C are 
identified one after the other and the scores obtained are 
900, 800, and 600 respectively, then the correlation between 
the two arrays (900, 800, 600) and (1, 2, 3) is calculated to 
be -0.98. However, if the tracks were identified in the order 
of A, C, and B, then the correlation between the two arrays 
(900, 600, 800) and (1, 2, 3) will be -0.333. In other words, 
the more negative the correlation, the better the participant 
is able to identify the tracks in the order of their importance. 
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Figure 6. The number of identifications made in each 
scenario. (IDs = identifications) 

Figure 7 shows the correlations across the scenarios for 
both groups. The correlations for the instruction group were 
lower than the no-instruction group throughout the 20 
scenarios. One may wonder whether the fewer number of 
identifications may have contributed to the lower 
correlations (more negative) in the instruction group. 
However, after checking the data we found that the 
differences were too big to be caused by the fewer number 
of identifications (except perhaps in the first two scenarios). 
                                                           
3 In the actual task, the scores will not be identical when tracks 
were identified in different orders because scores decrease linearly 
with time. 



In fact, the difference in the number of tracks identified 
between the two groups was very small (see Figure 6) in the 
second day. We conclude that participants in the instruction 
group were better at identifying the most important tracks 
first, and the least important tracks last. 

 

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scenarios

Correlations

Instruction (Obs)
Instruction (Model)
No Instruction (Obs)
No Instruction (Model)

 
Figure 7. The correlations between scores of the track 
identified and their order of identification. The more 
negative the correlation, the better the identification was in a 
decreasing order of scores. 

The effect of instructions can also be assessed from 
Figure 7 at scenarios 9 to 12, and scenarios 19 and 20 for 
the instruction group, during which the tutor was turned off. 
The instruction group shows some reduction in the 
magnitude of their correlations but still show stronger (more 
negative) correlations than the uninstructed group. 

The model captures the data well (R2 = 0.95). The model 
exhibited the same increases of correlations when the tutor 
was turned off as the data did. This shows that the model 
was able to respond and learn from the over-the-shoulder 
instructions as the participants did.  

The nearest-neighbor strategy also did a good job 
capturing the small learning curve in the no-instruction 
group. Since the strategy always started with the track 
closest to the ANZIO, it captured the general tendency to 
classify tracks closer to the ANZIO first as reported by the 
participants. Since tracks close to the ANZIO tended to have 
a high importance, the general tendency therefore led to the 
sharp decrease of correlation during early trials as the 
number of identification increased. However, after tracks 
close to the ANZIO were identified, the order of 
identification became more random than systematic, 
therefore the correlation asymptote at a much less negative 
value than that of the instruction group.  

Conclusions and Discussions 
We found that participants were able to learn from the over-
the-shoulder instructions and paid attention to more 
important tracks. To understand how people learned from 
these instructions, we extended previous work by Anderson 
et al. (in press) by constructing a mechanism that allows the 

model to learn from over-the-shoulder instructions. 
Instructions were represented as declarative memory traces. 
Repeated instructions strengthened these memory traces to 
make them more available when needed. A mechanism is 
constructed that allows visual search to be incrementally 
improved and declined based on the strengths of these 
memory traces of these top-down instructions. The ability to 
search for important tracks improved as the strengths of 
these memory traces increased. The strengths of these 
memory traces of instructions decayed when the tutor was 
turned off, leading to the decline in performance. 

The treatment of the over-the-shoulder instructions is 
basically the same as the initial instructions, except that (a) 
they take time away from the processing, and (b) we 
realistically model the slow learning of the over-the-
shoulder instructions whereas we assume that the initial 
instructions are well encoded. Intuitively, one might 
speculate that over-the-shoulder instructions might be easier 
to learn as they are presented right in the exact same 
situation. As least from our data, although the over-the-
shoulder instructions apparently had a large impact on 
performance, they did take time away from the task and 
their effect seemed to decay quite rapidly. This may suggest 
that over-the-shoulder instructions may not have the 
privileged status (as compared to practice) as believed.  

Cognitive tutors have been successfully applied in 
relatively static task domains such as algebra or geometry. 
The current line of work attempts to transfer the technology 
of cognitive tutors out from the protected classroom or 
laboratory to a real-world, complex, and dynamic task. The 
task requires all forms of learning and all buffers in ACT-R 
to interact and thus is a good test bed for the architecture. 
Our goal is to have the model eventually handles more 
complicated over-the-shoulder instructions, thus allowing 
automatic evaluation of a real-time instructional system for 
dynamic tasks.  
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