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Abstract

Network-reprogramming is a valuable service for maintaining sen-
sor networks. Network-reprogramming services need to be not only
efficient and reliable, but secure as well. A number of strategies for
providing authentication and integrity have been proposed and eval-
uated, but the tradeoff space has yet to be explored to any signifi-
cant depth. The recently proposed strategies are mainly distinguished
through their structure, granularity and strength of hashing. We pro-
pose a configurable, secure data dissemination scheme that uses a dif-
ferent hash-structure to allow for a high degree of flexibility in choosing
from a full spectrum of hash granularities and strengths. Using this
structure, we are able to experimentally explore the tradeoffs inher-
ent in choosing a hash-granularity under different attack scenarios and
densities.

1 Introduction

Network reprogramming has emerged as a necessary service for wireless sen-
sor networks. These services disseminate large data objects, such as code
images, efficiently and reliably through large, multi-hop networks of wireless
sensor nodes. This allows nodes to be reprogrammed remotely, obviating
the need to collect and flash nodes by hand.

Initial network-reprogramming protocols focused on efficiency and reli-
ability, but provided no inherent security mechanisms [4, 8, 18]. The lack
of authentication was particularly worrisome, as it allowed any party with
network access the ability to disseminate and install arbitrary code images.
Due to the epidemic nature of the protocols in question, an attacker could
gain complete control of an entire deployed network by compromising just
a single node and leveraging it to inject malicious code.
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A number of researchers have recently proposed authentication mecha-
nisms that aim to prevent such attacks [1, 2, 10]. These mechanisms typically
use a combination of hash functions and digital signatures to provide authen-
ticity and integrity for the disseminated data. They differ mainly in their
precise structure (e.g., hash-trees vs. hash-chains), granularity (e.g., indi-
vidual packets vs. groups of packets called pages), and strength of hashing
(e.g., full vs. truncated). These differences imply a number of tradeoffs. For
example, a hash-tree [1] allows data packets to be verified in arbitrary order,
but incurs more overhead than a simple hash-chain. Likewise, hashing at the
granularity of a page incurs less overhead than hashing individual packets,
but forces nodes to re-request a larger amount of data when a hash verifi-
cation fails. Using a truncated hash reduces the amount of cryptographic
data that needs to be transmitted, but increases the hash’s vulnerability to
compromise.

Existing authentication mechanisms are fairly rigid with regard to these
tradeoffs. For example, schemes that apply packet-level hashing are usually
forced to truncate the hash in order to offer acceptable overhead. Arguments
in favor of both packet-level and page-level hashing have been made, but no
comparative data has been presented to support either strategy over the
other [2, 10]. A sensor-network developer faced with many choices of secure
update strategies needs more information to make an informed choice for
his/her system.

The concrete contributions of this paper are:

• A configurable approach. We propose a configurable, secure data
dissemination scheme that explores security-performance tradeoffs, by
using a hash-list as an alternative to previous hash structures. Our
application of the hash-list combines the strengths of hash-chains and
hash-trees, and allows a high degree of flexibility in choosing appro-
priate parameters such as hash size and hashing granularity.

• A prototype implementation. We describe a prototype of the
configurable approach, and discuss various issues that arose in bringing
it from theory to implementation.

• An experimental evaluation. We evaluate the effect of the hash
granularity under two likely attack scenarios, and explore the resulting
tradeoffs. We find that pure page-level and pure-packet level strategies
are less efficient than strategies that strike a balance between the two.

The remainder of this paper is organized as follows. We describe existing
approaches and motivate our configurable approach in Section 2. We present
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Figure 1: Deluge splits an update into pages, and then packets.

our new approach in Section 3, and a brief qualitative discussion in Section 4.
Our implementation is detailed in Section 5. The results of our experimental
evaluation are in Section 6. Section 7 has a brief discussion of additional
related work, and Section 8 discusses future work. Finally, we summarize
our conclusions in Section 9.

2 Motivation

A number of protocols have been proposed that facilitate efficient and reli-
able network-reprogramming services for sensor networks. Most of the pro-
tocols employ an epidemic dissemination strategy, whereby nodes propagate
received data to their in-range neighbors, which then propagate them fur-
ther downstream, and so on. The most prominent network-reprogramming
protocol, Deluge, is distributed with TinyOS and is enabled by default in
many sample TinyOS applications [4, 12].

Prior to dissemination, Deluge segments an data object into fixed-size
fragments called pages. Each page is further broken up into fixed-size packets
(see Figure 1). Deluge leverages the page construct to enable pipelining,
whereby nodes can forward completed pages before they have received all
of the pages that form a complete data object. Pipelining takes place under
the condition that pages must be transmitted in-order (i.e., a node must
have received page n before page n + 1 can be forwarded).

Existing network-reprogramming protocols generally assume correct op-
eration among all of the nodes in the network. The lack of authentication
implies that any party with access to the wireless communication channel
can advertise, and initiate the propagation of, arbitrary data objects. While
symmetric-key based mechanisms exist for controlling access to the wireless
medium [5, 14, 16], physical node compromise remains a serious concern. If
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an attacker is able to compromise a single node, that node could be used
to disseminate code updates to its neighbors, and so on. The epidemic na-
ture of data-dissemination protocols thus allows local vulnerabilities to have
network-wide consequences. To protect against node compromise, the data
object itself needs to be verified as arriving unmodified from an authorized
source.

Recent research has sought to provide more secure network reprogram-
ming services by augmenting existing data dissemination protocols with au-
thentication and integrity mechanisms. These schemes typically leverage
digital signatures and cryptographic hashes, but apply those primitives in
different ways. The recently proposed schemes are mainly distinguished
through their structure, granularity and strength of hashing.

Hash-structure The hash-structure describes the way multiple hashes
are combined in order to ensure the integrity of a single, large data object.
Common hash structures are hash-trees [15], one-way hash-chains [9], and
hash-lists.

Hash-granularity The hash-granularity describes what amount of object
data is covered by a single hash value and what level of data verification is
possible. If a hash verification fails, the integrity of the data covered by
that hash is uncertain and cannot be trusted. Current schemes adopt either
a page-level or a packet-level approach. Page-level hashing provides coarse
granularity by employing a single hash for each page. Packet-level hashing
provides fine granularity by hashing each data packet individually.

Hash-strength The hash-strength describes the size of the hash value
used for verification, relative to the size of the value produced by the hash-
function1. Some schemes use full-strength hashes, where the output of the
hash-function is used as is. Other schemes truncate the hash value, using
just the first few bytes of output. For a given hash-function, its truncated
output will generally provide weaker security guarantees than a full-strength
hash.

Sections 2.1 and 2.2 describe a few different schemes with regard to these
characteristics. Table 1 provides a summary of those differences.

1Note that our definition is not meant to imply anything regarding the cryptographic
security of the hash-function itself. For example, both a 128-bit MD5 digest and a 160-bit
SHA-1 digest would be categorized as “full-strength” hashes, regardless of their respective
cryptographic weaknesses. The criteria for choosing a “good” hash-function are beyond
the scope of this paper.
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Structure Granularity Strength
Sluice chain page full
SecureDeluge chain packet truncated
Deng-tree tree packet truncated
Deng-hybrid tree+chain packet truncated

Table 1: Summary of three different secure dissemination schemes.

2.1 A Page-Level Approach

Lanigan et. al. proposed Sluice, one of the first authentication mechanisms
designed specifically for network reprogramming protocols like Deluge [10].
Since compatibility was one of the desired goals, Sluice leverages existing
characteristics of Deluge (e.g., pages and pipelining) in its application of
cryptographic primitives.

The basic idea of Sluice is to compute a one-way hash-chain over the
pages of an update, by hashing each page and then including that hash in
the previous page. The first page of the update is digitally signed, which
creates a commitment to the entire chain. Figure 2 shows the sequence of
n pages that results with Sluice, where each page’s hash is computed and
appended to the previous page’s payload, e.g., the hash hn−1 of page pn−1 is
computed and concatenated with the payload of the previous page, thereby
forming page pn−2.

The head of the hash-chain, h1, is included in the first page, p0, which
has been digitally signed. The digital signature serves to authenticate the
source of the data, and to verify the integrity of the payload and the hash
contained in that page. Once the head of the hash-chain has been verified,
the remaining pages can be verified through the one-way hash-chain prop-
erties, i.e., hash hi+1 contained in page pi serves to verify both the payload
and the hash hi+2 contained in page pi+1.

One potential drawback of a chain-based scheme is that each hash in
the chain must be verified in-order. Deluge already enforces the ordered
transmission of pages, so the hash-chain allows each page of the data object
to be verified as soon as it is received. Embedding hashes in pages instead
of in packets allows Sluice to avoid truncating hashes in order to accommo-
date relatively small packet sizes. Using only a single hash per page also
minimizes the number of hashes needed for each data object, reducing the
amount of data transmitted and the computations required at the sensor
nodes to verify the hashes.
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Figure 2: Sluice’s hash-chain construction.

The main drawback of Sluice’s page-level approach is that nodes are
forced to re-request a large amount of data when a hash verification fails.
Since a node has no way of knowing which packet(s) corrupted the page, it
would be forced to re-request the entire page. This could potentially give an
attacker an asymmetric advantage when launching a DoS-attack, wherein
the attacker would only need to send a few malicious packets in order to
induce a large number of retransmissions.

2.2 Packet-Level Approaches

The primary advantage of a packet-level approach over a page-level approach
is that a single bad packet will not trigger the retransmission of an entire
page. Packet-level approaches have been proposed by both Dutta et. al. [2]
and Deng et. al. [1].

In SecureDeluge [2], Dutta et. al. propose using a chain structure simi-
lar to the one used by Sluice, except that the chaining is done over packets
instead of pages. In order to leave sufficient room for data in each page, the
underlying packet size is increased and the hashes are truncated. Unlike the
arrival of pages, there are no guarantees on the order of packet arrival. Se-
cureDeluge mitigates this problem by optimistically buffering packets that
arrive out-of-order. Moreover, the increased packet size implies higher prop-
agation delays and more packet losses.

Deng et. al. take a different approach to dealing with out-of-order
packets [1]. Their tree-based approach uses a multi-level tree made up of
index packets, which contain hashes, and data packets, which do not. The
data object is split up into data packets that make up the leaves of the
tree. Each data packet is hashed, and the hash value is placed in an index
packet at the next higher level in the tree. The index packets themselves
are hashed, and these values are placed in higher-level index packets. The
process continues, until there is a single index packet at the root. The root
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Figure 3: Deng et al., hybrid construction.

packet is then digitally signed, providing a commitment to the entire tree.
Like the chain-based approach, this scheme allows for packet-level ver-

ification. Moreover, it allows a higher number of packets to be verified if
they are received out-of-order. Data packets, in particular, may be received
in any order once all of the index packets have been received and verified.
The main drawback to this approach is that it does not consider the fact
that packets are typically grouped into pages. Constructing a single hash-
tree for large data objects would require a significant amount of memory
to store the index packets while the dissemination is in progress. Multiple
hash-trees could be constructed for each individual page, but that would
require expensive per-page digital signatures.

Deng et. al. also propose a hybrid approach that combines hash-trees
and hash-chains (see Figure 3). This approach considers that a large update
is broken up into pages, as is the case with Deluge. First, a hash-tree is cre-
ated for each page, over all of the packets in that page. Then, a hash-chain
is constructed over the root packets of each page. A single digital signature
provides a commitment for the hash-chain, and the chain provides commit-
ments for the root of each tree. Like the tree-based approach, the hybrid
approach allows for out-of-order, packet-level verification. It improves on
the tree-based approach by requiring only a single digital signature for each
code update.

2.3 Toward a Configurable Approach

There are a number of security-performance tradeoffs to consider when
choosing an appropriate hash-granularity. For example, packet-level hashing
imposes high overhead in the steady (i.e., non-attack) state, but can be more
efficient under attack. On the other hand, page-level hashing imposes lower
overhead in the steady state, but can be less efficient under attack. High
steady-state overhead is incurred by all nodes in the network, regardless
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of whether the nodes are actively receiving corrupt data. However, attack
overhead (e.g., re-requests for corrupted data) is limited to nodes within
the broadcast range of the attacker, because secure dissemination schemes
inherently limit the propagation of corrupt data.

Other important considerations arise when choosing an appropriate hash-
strength. For many deployments (e.g., short-term environmental monitor-
ing), a truncated hash could provide adequate security. More sensitive appli-
cations (e.g., critical infrastructure monitoring) might require larger hashes.
The hash-strength should ideally be chosen to reflect the sensitivity of the
application. However, packet-based approaches are limited in this sense. For
example, the standard TinyOS packet size allows for 23 bytes of payload,
while a full SHA-1 hash is 20 bytes. In this case, embedding a full SHA-1
hash in a standard TinyOS packet would only leave 3 bytes for object data.

When we first set out to explore these tradeoffs, we realized a few things.
First, current schemes are fairly rigid with regard to the hash-granularity
and hash-strength. Page-level solutions like Sluice allow the hash-strength
to be changed fairly easily, because hash values of any size can be embedded
in a page, regardless of the packet size. However, Sluice is limited in that
it only supports a very coarse granularity. Packet-level solutions, such as
[1] and [2] could be easily extended to support a more coarse granularity
by hashing an arbitrary number of packets, but finding a place to put these
hashes is a bit more complicated. Moreover, if a stronger hash is needed,
the sensor-network developer is seriously constrained by limited packet size.

To address these limitations, we decided to use a different hash-structure
that supports a wide range of hash-granularities and hash-strengths, re-
gardless of the underlying packet-size (within reason, of course). This con-
figurable approach should allow developers to balance competing interests
by tuning the granularity and strength for their particular deployment and
application. Furthermore, the degree of out-of-order verification should be
directly related to the hash-granularity.

3 Approach

For this work, we adopt a system model similar to that proposed in [10].
Specifically, we assume untrusted sensor-nodes that might behave arbitrarily
or leak cryptographic material. Malicious or compromised nodes may be
located anywhere in the network. The wireless medium is insecure, and can
be used by an adversary to inject, capture, or modify packets. This work
is not concerned with the confidentiality of data objects, or with recovering
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Figure 4: Utilizing hash-lists to provide authenticity and integrity.

nodes that have already been compromised.
Our approach takes cues from the methods discussed in Section 2, but

uses a hash-list as the underlying structure. We describe the signing and
verification procedures of our approach below, and provide pseudocode in
Figures 6 and 7.

3.1 Data Signing

An appropriate hash-granularity, g, corresponding to the number of pack-
ets covered by each hash, must be chosen before constructing the hash-list.
Then, a hash-size sh must be chosen according to the security requirements
of the particular application. Like Sluice, our solution embeds hashes at the
page level, so sl = g ∗ sh bytes must be reserved in each page to store the
hash-list. Unlike Sluice, there can be more than one hash in each page. The
two parameters, g and sh, directly determine the amount of cryptographic
data that must be transmitted with each page. A coarse granularity will
have fewer hashes per page, and more packets will be covered by each hash.
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Conversely, as the granularity becomes finer, the number of hashes embed-
ded in each page will increase, while fewer packets will be covered by each
hash (see Figure 5). Note that the page size itself does not increase, but the
number of pages likely will, because there is less room for data in each page
(note that this increase is not represented in the figures).

Hashing then begins at the last page of the data object, and proceeds
forward (see Figure 4.) Every g packets in page pi make up a segment, dj ,
that is hashed. The hashes are concatenated together to form a hash-list li.
The hash-list li is placed in the reserved space in the previous page, pi−1.
The hash-list l0 produced from the first page is concatenated with optional
meta-data m, and digitally signed to produce a signature σ. These values
together form the root block, r = (σ|h0|m).

3.2 Data Verification

The root block contains all of the information needed to begin verifying the
data object. Therefore, it must be disseminated prior to the data pages.
This can be done in a number of ways. The simplest way to integrate this
with an existing protocol like Deluge would be to create a special “signature”
page, ps, containing only the root block, and prepend this page to the data
object. This solution is slightly wasteful, as the signature page would contain
a large amount of padding (recall that pages are all a fixed size). Once the
root block has been sent, the Deluge dissemination could commence.

When a node receives the root block, it verifies the authenticity and
integrity of the meta-data and the initial hash-list using the digital signature.
The meta-data can be used to provide information about the data object,
such as the number of pages it contains or a hash of the entire object2. Each
individual hash in hash-list li can then be used to verify the corresponding
packet(s) in the next page, including the following hash-list li+1.

4 Discussion

Embedding the hash-list within pages allows network architects a great deal
of flexibility in choosing an appropriate strength and granularity. Using a
smaller hash-strength can allow the system designer to offset the increase

2This prevents a potential attack where an adversary advertises an already signed data
object with a new version number, but a reduced number of pages. The signature would
verify, but the nodes would think that the data object is complete before it really is.
This could potentially cause the nodes to write an incomplete code image into program
memory, and begin executing the corrupted code, causing them to crash.
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Figure 5: Utilizing hash-lists to provide authenticity and integrity with dif-
ferent hash-granularities.

in overhead caused by a fine granularity. For example, a granularity of
g = 4 and a strength of sh = 20 will produce the same amount of per-page
overhead as a granularity of g = 8 and sh = 10. In fact, existing methods
like Sluice and SecureDeluge can both be described by this model. When
g = 1 and sh = 20, our method is essentially equivalent to Sluice. With
g = 48 and sh = 4, our method looks very similar to SecureDeluge; it really
only differs in its placement of the hash data.

The hash-list scheme allows out-of-order verification without the addi-
tional overhead required to send branches in a tree-based scheme like that
proposed in [1]. Once a page has been completed, every segment in the fol-
lowing page can be verified as soon as it received because the correct hashes
were already sent and verified.

5 Prototype Implementation

We implemented the hash-list approach in TinyOS as a modification to
Deluge. The structure of the existing Deluge codebase, combined with a
desire on our part to keep the modifications as minimally invasive as pos-
sible, forced a number of compromises that would be less than ideal in a
production-quality (rather than a prototype, as is currently the case) imple-
mentation.

The first issue was determining how to distribute the root blocks. The
most straightforward approach was to embed the root block in first page,
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partition data object into n pages p0, p1, . . . , pn−1

for all (i← n− 1 to i = 0) do
partition pi into g segments d0, d1, . . . , dg−1

for all (j ← 0 to j = g − 1)) do
hj ← Hash(dj)

end for
li ← [h0, h1, . . . , hg−1]
if (i > 0) then

pi−1 ← (pi−1|li)
end if

end for
σ ← Sign(l0|n)
r ← (σ|l0|n)

Figure 6: Data signing procedure.

before any of the object data. Certain Deluge modules expect a 256-byte
block of CRC values (a 2-byte CRC for each of a maximum of 128 pages)
at the beginning of the data object; thus, we placed the root block immedi-
ately following the CRC block in the first page. We choose to decouple the
root block from the rest of the object data by padding the remaining space
in the first page with zero bytes, effectively creating a dedicated root page
followed by subsequent data pages. This abstraction led to a simplification
of data structures in our experimental prototype, and allows future flexibil-
ity for determining the most efficient way to distribute the root block (see
Section 7).

This approach did lead to some unforeseen problems, mainly related to
the way Deluge handles the CRCs. Recall that in our construction, the
digital signature is meant to provide a commitment to the hash-list. We
intentionally did not extend the signature to the padding bytes. Nodes
know a priori how many padding bytes there are, and therefore will not use
the padding for anything. Suppose though, that a malicious node sends a
corrupted packet that contains a part of the padding. Nominally, it does not
matter to a node if the bytes are zero or non-zero; they should simply be
ignored. As long as the root hash-list is not corrupted, the digital signature
will pass verification. However, some lower-level Deluge modules still check
the page’s corresponding CRC, and reject it. This can cause a large number
of retransmissions (and hence signature re-computations) for the root page
even though the signatures were perfectly valid. We fixed this problem by
having each node explicitly zero-out the padding bytes after receiving the
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root page, and before passing the page on to the lower-level modules. Future
versions might avoid requesting packets containing padding bytes altogether.

A more complicated issue arose with the CRC block itself. This problem
was similar to that experienced with the padding; the CRC block was not
included in the digital signature, so if it was corrupted, the root page would
be rejected by lower-level modules although the root block passed the signa-
ture verification. Our solution was to completely disable the CRC checks. It
would probably be better to include the CRC block in the digital signature,
but this turns out to be a “catch-22” situation [3]. The CRC value for the
root page is computed over all of the data embedded in that page (including
the digital signature). The digital signature would need to be computed
over all of the data in the CRC block, including the first CRC value. Yet
we cannot compute one before the other is known. A more elegant solution
would be to place the signature in the first few bytes of the root page, and
not include it in the computation of the CRC. However, this would have
required extensive changes to the Deluge code-base.

6 Evaluation

In order to evaluate the performance of the different hash schemes in an
attack scenario, we implemented two attacker models. These models rep-
resent an attacker that aims to waste network resources by causing nodes
to re-request corrupted data. In both models, a “malicious” node randomly
chooses a single target packet from each page to corrupt. The two models
differ in how they behave with respect to the underlying Deluge protocol.

In the forwarding model (fwd), malicious nodes follow the correct Deluge
protocol. These nodes respect all of the rules regarding back-offs and mes-
sage suppression, and only respond to those requests addressed to the nodes
themselves. When a target packet is requested from a malicious node, it
responds with corrupted data. Otherwise, malicious nodes forward correct
data.

In the non-forwarding model (nofwd), malicious nodes follow the Deluge
protocol with respect to receiving data, but not with respect to sending
data. They respond to every overheard request for their target packets, not
just those addressed to them directly. They do not forward correct data,
nor do they respect back-off or message suppression rules.

13



g # of pages
0 (no verification) 3
1 4
4 4
8 4
16 4
24 4
48 5

Table 2: Number of pages required to disseminate BlinkM for various
verification-granularities.

6.1 Experimental Results

Our experimental results were obtained using TOSSIM [11], a simulator for
TinyOS. We tested both the fwd and the nofwd attacker models. All of our
experiments were conducted using 100 simulated nodes arranged in a 10x10
node topology, attempting to disseminate the BlinkM sample application
included with TinyOS. This application simply toggles the sensor node’s
built in LED. The number of pages required to disseminat BlinkM directly
depends on the values of g and sh (see Table 2). For each experimental
run, we varied the hash-granularity g, and the probability, pmal, that an
individual node would be malicious. We fixed sh = 4 for all experiments.

We had originally planned to run each experiment for 1800 simulated
seconds. However, in many cases this was simply not enough time for the
data object to be completely received by all of the nodes. We then increased
the simulation time to 3000 seconds, which was enough time for all nodes
to completely receive the data object in all cases. However, due to the
extremely long running nature of TOSSIM, we were not able to complete
the nofwd data set for 3000-second test cases.

Dissemination progress One important performance characteristic is
the progress of the data-dissemination protocol. Figure 8 shows the percent-
age of nodes having completely received the data object after 1800 seconds.
For the fwd model, nodes are, for the most part, able to make progress in
the presence of malicious packets. The only exception is for the page-level
(g = 1) granularity, where some nodes are not able to complete in time.
These nodes are most likely being kept busy re-requesting large amounts of
data due to the coarse verification-granularity.
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Nodes in the nofwd model fare much worse. A few nodes in each run are
unable to complete even with as little as only 10% of them being malicious.
The progress drops off rapidly as the network becomes saturated with mali-
cious nodes, suggesting that the absence of “good” data has a much greater
effect on progress than the presence of “bad” data.

Data efficiency An interesting metric to quantify the efficiency of data
dissemination is the amount of redundancy experienced through the course
of disseminating a data object. We define redundant data as data that is
dropped by node because it has received and verified a duplicate packet. For
example, a node might request and receive a given packet, and then later
overhear it yet again because a different node requested the same packet as
well.

Figure 9 shows the amount of redundant data for the entire network,
as the percentage of dropped data packets out of the total number of data
packets sent. For both the fwd and nofwd models, there appears to be a
large amount of redundant data. To some extent, this is due to the fact
that Deluge only suppresses redundant control packets and not redundant
data packets. Based on previous experimental results, we would expect
around 60% redundancy [4]. Our observed increase is likely due to the
compromised nodes forcing re-requests. It it interesting to note that the
nofwd case exhibits increasing redundancy as the saturation of malicious
nodes grows, while the fwd case remains relatively constant.

Overall efficiency Our main goal was to determine whether increasing
the hash-granularity resulted in desirable tradeoffs, as compared to the total
amount of data transferred. To a node trying to complete a data object, it
does not matter whether extra data is transmitted over the radio because it
has been re-requested or because it is cryptographic data needed to verify
the data object. It all takes up energy, all the same.

In Figure 10, we see that page-level hashing (g = 1) results in a sharp
increase in data traffic as opposed to finer granularity strategies (g > 1). The
massive amount of re-requested data has overwhelmed any savings gained
by only using a single hash per page.

However, pure packet-level hashing (g = 48) sends significantly more
data packets than any of the medium hash-granularity strategies. The
packet-level scheme adds a large amount of cryptographic data in order to
guard against unnecessary retransmissions. In fact, the packet-level scheme
needs an entire extra page to contain the data object (see Table 2). However,
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this increase is not offset by the increased resolution with which nodes can
re-request data. For all of the medium hash-granularity cases, the number
of data packets transmitted is comparable.

Figure 11 shows that in addition to requiring fewer messages to complete
a data object, the medium-granularity cases require less time as well.

Malicious traffic In the fwd model, the amount of malicious traffic in
the network was actually very low with respect to the amount of good data
traffic (see Figures 12 and 13). This shows that even a small amount of
malicious traffic can have a relatively large effect on the operation of a the
network. Also note that the ratio of malicious traffic to data traffic does
not grow as quickly as the raw number of data packets. A doubling of
malicious traffic results in more than a doubling of data traffic, causing a
less drastic increase in the percentage of malicious versus data traffic. This
shows the asymmetric effect of the attacks. In this case, a higher percentage
of malicious traffic is a good sign, because it shows that fewer good packets
were needed to complete the data object.

7 Related work

One commonality between the approaches described in Sections 2.1 and 2.2
is the need to distribute a secure commitment to the hash structure. While
these approaches utilize a digital signature, other researchers have looked for
ways to leverage less expensive cryptographic primitives [6, 7]. Both Kim et
al. and Kronti et al. use page-level chaining mechanisms identical to Sluice,
but verify the head of the hash-chain in different ways.

Kim et al. developed Castor, which avoids digital signatures through
the use of MACs and one-way keychains with delayed key disclosure [6].
This results in end-to-end dissemination latency that is significantly better
than Sluice, and only marginally worse than Deluge. However, delayed key
disclosure requires the network to be loosely time synchronized. In networks
where this is an acceptable requirement, Castor could be combined with our
configurable approach to provide more efficient verification of the root block.

Kronti et al. leverage an r-time signature scheme to verify the head of
the hash-chain. This signature scheme uses symmetric cryptographic primi-
tives (specifically, a cryptographic hash function) to provide authentication.
Their method allows tradeoffs to be made between security level, signature
size, and memory overhead. Combining their signature scheme with the
hash-list approach proposed here would provide configurability for both the
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authentication of the root block, and the verification of the data pages.
All of the work discussed so far has focused on disseminating data objects

in the presence of compromised nodes. Other researchers have proposed
methods for detecting and repairing compromised nodes. SCUBA, devel-
oped by Seshadri et al., is one such method [17]. It allows a sensor-network
administrator to remotely verify that a data object was indeed installed on a
sensor-node, even if that node has been compromised. Remote-verification
techniques such as SCUBA, and secure dissemination techniques such as
ours are complimentary; together, they can provide robust, secure network
reprogramming services.

8 Future work

Our approach provides flexibility and is very efficient for verifying the in-
tegrity of the data pages, but there are likely better ways to distribute the
root block. It would be interesting to explore the possibility of adapting the
techniques described in Section 7 to distributing the root block. Also, the
dissemination problem is different for large (tens of kilobytes) vs. small (a
few bytes) data objects. Another alternative might be to use a dissemina-
tion protocol that is specifically designed for smaller data objects, such as
Trickle [13], to quickly spread the root block through the network. It might
also be worthwhile to explore the use of different data structures in order
to provide a finer granularity for the root block. However, the root block is
typically only a few packets so the improvement would probably be limited.

In the future, additional work is needed to evaluate more sophisticated
attacker models. Our models are naive in that they randomly pick their
target packets. Smarter attacks could target specific packets (e.g., packets
containing parts of the signature) to further disrupt the protocol. It would
also be interesting to experiment with more varied topologies.

Ultimately, we would like to provide a theoretical model that encom-
passes a variety of network and threat characteristics and allows sensor-
network developers to easily determine the most efficient dissemination pa-
rameters for their specific application.

9 Conclusion

In this paper, we presented a method for verifying the integrity and authen-
ticity of data disseminated with network reprogramming protocols like Del-
uge. This method is more flexible than previously presented approaches be-
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cause it allows the user to tune the hash-granularity and hash-strength, with-
out altering basic network characteristics such as packet size. Our method al-
lows sensor-network developers to configure the security-performance trade-
offs to suit their particular needs. After all, enterprise level security protocols
often support a number of options for choosing cryptographic functions and
key sizes. This same flexibility should be extended to sensor networks as
well.

We further presented experimental data to suggest that neither pure
packet-level, nor pure page-level approaches are optimal. Page-level hash-
ing appears to only be efficient when there are very few, if any, malicious
nodes. Packet-level hashing rarely appears to be the most efficient strategy.
However, it is possible to reach an efficient balance between the two. This
result gives sensor-network developers an incentive to look more closely at
performance-security tradeoffs, and to take advantage of the configurability
provided by our approach.
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b← VerifyRoot
while b 6= true do

b← VerifyRoot
end while

i, j ← 0
l← l0
for all j ← 0 to j = g − 1 do

need[j]← true
end for

while (i < n) do
while (need[0] ∨ need[1] ∨ . . . ∨ need[g − 1] =

true) do
receive d′j
h← Hash(d′j)
if (h = l [j]) ∧ (need[j]) then

dj ← d′j
needed[j]← false

end if
end while
pi ← (d0|d1| . . . |dg−1)
ACCEPT(pi)

end while

——————————

procedure VerifyRoot
receive r
(σ|l0|n)← r
return Verify(σ, l0|n)

end procedure

——————————

procedure Accept(p)
mark p as complete
save p to flash
(p|l)← p
i← i + 1
for all j ← 0 to j = g − 1 do

need[j]← true
end for

end procedure

Figure 7: Data verification procedure.
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Figure 8: Showing the dissemination progress, as the number of nodes com-
pletely receiving the disseminated object.
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Figure 9: Fraction of total data traffic that was redundant for 1800 seconds
of simulated time.
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Figure 10: The number of data packets received by of the all nodes in the
network during dissemination.
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Figure 11: The dissemination latency for the entire network.
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Figure 12: The number of malicious packets sent.
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Figure 13: The percentage of packets that were malicious.
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