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A novel method for measuring the bending rigidity of model lipid

membranes by simulating tethers

Vagelis A. Harmandaris? and Markus Deserno®
Max-Planck-Institut fiir Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

(Received 24 August 2006; accepted 2 October 2006; published online 27 November 2006)

The tensile force along a cylindrical lipid bilayer tube is proportional to the membrane’s bending
modulus and inversely proportional to the tube radius. We show that this relation, which is
experimentally exploited to measure bending rigidities, can be applied with even greater ease in
computer simulations. Using a coarse-grained bilayer model we efficiently obtain bending rigidities
that compare very well with complementary measurements based on an analysis of thermal
undulation modes. We furthermore illustrate that no deviations from simple quadratic continuum
theory occur up to a radius of curvature comparable to the bilayer thickness. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2372761]

INTRODUCTION

Bilayer-forming lipids are the basic structural compo-
nent of biological cell membranes. In these amphiphilic mol-
ecules a hydrophilic group is connected to one or two hydro-
phobic hydrocarbon chains. When dissolved into water they
spontaneously assemble into a variety of structures. In nature
lipid bilayers form the outer plasma membrane of cells as
well as the walls of the different cellular compartments and
organelles, such as the endoplasmic reticulum, the Golgi ap-
paratus, and the nucleus.'

Lipid bilayer membranes display interesting physics on
many different length and time scales. On atomistic length
scales this includes questions such as how do lipid tail length
and its degree of saturation influence the bilayer state, how
does a specific hydrophilic head group facilitate solubiliza-
tion, or how can water permeate the hydrophobic region? On
somewhat larger scales the embedding of transmembrane
proteins or bilayer fusion is being studied. And on scales
exceeding several times the bilayer thickness, one may ask
how vesicles are formed and what shape they have, which
forces go along with a particular bilayer geometry, or how
the demixing of a multicomponent membrane can trigger
morphology changes. These different sets of questions re-
quire different techniques for their treatment. In the present
article we focus on the physics happening on the large scale
end, i.e., on the continuum level that may be employed on
length scales beyond a few tens of nanometers, when a mem-
brane may be viewed as a two-dimensional fluid elastic
sheet.

As is typical in any coarse-graining scheme, many de-
tails pertaining to a physical system on a given scale get
condensed into a few effective parameters on a larger level.
Indeed, on the continuum level what remains of all lipid
details are three material parameters: two moduli describing
the softest deformation, which is bending, and one length
scale describing a spontaneous curvature. The respective
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Hamiltonian, proposed in the early 1970s (Refs. 2-4) can be
written as a surface integral over the entire membrane:

E=fdA{%K(K—C0)2+EKG}. (1)

Here, the extrinsic curvature K=1/R;+1/R, is the sum of
the two local principal curvatures, and the Gaussian curva-
ture K;=1/(R|R,) is their product. The inverse length C,
indicates any spontaneous curvature which the bilayer might
have, so the first term quadratically penalizes deviations of
the local extrinsic curvature from C,. The two moduli « and
k belonging to the two quadratic curvature expressions are
referred to as bending modulus and saddle splay modulus,
respectively. If the membrane has two identical leaflets, C,
=0 by symmetry, a situation which does seldomly hold for
biological membranes but very frequently for artificial lipid
bilayers and vesicles. Furthermore, since the surface integral
over the Gaussian curvature K; can be expressed as a bound-
ary integral plus a topological term, the second term in Eq.
(1) most often only contributes a constant and can then be
ignored. Under these conditions there remains only a single
physical parameter characterizing the membrane, the bend-
ing modulus «, and it is thus the most important one to
determine.

Bending rigidities have been measured experimentally
by various techniques,s_15 all ultimately based on one of two
general approaches: One may either utilize the dependence
of thermal undulations on a membrane’s rigidity or measure
the force needed to actively bend it. The traditional realiza-
tion of the first approach is to monitor the fluctuations of
vesicles as a function of wavelength by light microscopy, a
method termed “flicker spectroscopy.”sf7 A related experi-
mental method is based on micropipette manipulation tech-
niques. There, the flicker spectrum is successively sup-
pressed by increasing the pipette pressure, and the bending
rigidity can then be obtained from the low-tension regime of
the tension-area curve.”"' The second approach is typically
implemented by measuring the force needed to pull nano-
scale bilayer tubes (tethers) from vesicles.'”™" Since the for-

© 2006 American Institute of Physics
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mation of a tube involves the creation of a high curvature,
the work to pull a tether is basically done against bending
energy; hence the modulus « can be determined from it.

Determination of the bending rigidity is of course
equally important in computer simulation studies of lipid bi-
layers, and the spectrum of available methods is the same.
However, by far the most common approach in simulations
is flicker spectroscopy, both for atomistic simulations'®™"® as
well as for various coarse-grained methods.'®%* Only re-
cently den Otter and Briels have proposed a method by
which constraining forces are applied to actively deform the
membrane,” and Farago and Pincus have proposed a scheme
based on the change in free energy of deforming the
bilayer.26 Unfortunately, both active methods involve signifi-
cant technical and conceptual sophistication. This may ex-
plain why the idea is not commonly employed, despite the
fact that particularly for stiff membranes fluctuation based
schemes encounter difficulties (in experiments as well as in
simulations), because the thermally excited amplitudes de-
crease with bending modulus and become difficult to resolve
at some point.

In the present article we propose an alternative simula-
tion approach for studying the curvature elasticity of mem-
branes by an active deformation. Our setup essentially in-
volves measuring the force necessary to hold a membrane
tether, and it is thus conceptually identical to its experimental
“counterpart.” As we will see, complications of earlier active
schemes are avoided, and the simulations are very easy to
perform and analyze. We apply this method to a recently
proposed coarse-grained solvent-free simulation model**?
and find results that agree very well with data from the
analysis of the thermal fluctuations. Moreover, the method
permits us to check, up to which curvatures the quadratic
model from Eq. (1) remains valid. Our results indicate that
curvature radii close to the bilayer thickness can be imposed
without noticeable deviations from Eq. (1). While the precise
location for the breakdown of quadratic theory may well be
model dependent, its validity up to length scales comparable
to bilayer thickness is in agreement with experimental
findings.15

CURVATURE ELASTICITY

In this section we first briefly review the fluctuation ap-
proach towards bilayer elasticity and discuss some of its dif-
ficulties. We then introduce the alternative scheme based on
holding a membrane tether.

Flicker spectroscopy

The energy expression in Eq. (1) requires knowledge of
the local membrane curvature. For essentially flat mem-
branes, which can be described by specifying their height
h(x,y) above some reference plane (“Monge parametriza-
tion”), this curvature is given by

Vh ‘Vh|<l
V1 +(Vh)?

where V is the two-dimensional nabla operator on the base
plane. The approximation in the second step is the lowest
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FIG. 1. Flicker spectrum of a fluctuating membrane, plotted in such a way
that in the limit ¢— 0 the expression approaches «, see Eq. (4). The dashed
line is a fit of the form (kzT/k+c,(qo)2)~" which helps to find the
asymptotic value; the inset shows the unscaled spectrum. The fit leads to
k=12.5kpT, with an error estimated to be +1kz7T. The system is the same
lipid bilayer model (Refs. 22 and 23) that will be used for the tethers, see
below.

order term in a small gradient expansion. On this level the
Hamiltonian (1) becomes quadratic and can be diagonalized
by Fourier transformation. Assuming an L X L membrane
patch with periodic boundary conditions and writing A(r)
=3, h,e"", one finds

E=35L2 |h(xkg* + 367, (3)
q

where we for completeness also added a surface tension term
3, times excess area. From the equipartition theorem we then
see that the mean squared amplitude of each mode, i.e., the
fluctuation spectrum or the static structure factor, is given by

UADE %
L*(kq* +2q°)
A fit of the fluctuation spectrum measured in the simulation
to this expression yields bending modulus « and tension 3.
Since for wave vectors smaller than g,,;,= >/ k the fluctua-
tions are tension dominated, it is best to simulate at zero
tension in order to avoid unnecessary damping of the most
relevant modes. In this case the expression 1/ (q4(|hq|2)L2)
approaches «/kgT in the limit ¢ — 0, as is illustrated in Fig. 1
for a model simulation®* described in more detail below.
For wave vectors approaching g,,.,=2m/w, where w is the
bilayer thickness, discrete lipid fluctuations such as protru-
sions require a more careful analysis.24
There are clear limitations for the calculation of « using
thermal fluctuations. The first and obvious one is that large
values of « lead to very small amplitudes. Considering (i)
that «/kgT is typically of order 10 and (ii) how strongly the
amplitudes decay with increasing wave vector, one realizes
that it requires substantial statistics to be able to resolve the
spectrum. Particularly unpleasant in this context is that the
most important low-g modes equilibrate slowest, with a time
scale diverging like ¢g~*.
Also, it must be appreciated that the curvatures probed

(4)
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this way are very weak. Since (in the tensionless state)
<K2>=q4<|h3|>=kBT/L2K, the average (root-mean-square) ra-
dius of curvature is given by E=<K2>_]/2=LVK/ICBT, i.e., sev-
eral times the box length. These curvatures are much weaker
than the ones which one usually imposes on systems if one
studies vesicles, budding, tubes, or fusion. This leaves the
question open how relevant the measured elastic constants
really are.

It is also these limitations which den Otter and Briels”
had in mind when they proposed ways for obtaining larger
curvatures, either by more advanced sampling techniques,
such as umbrella sampling, or by explicitly creating undula-
tions with larger amplitudes by suitable constraints. They
found that for larger amplitudes the membrane seemed to
stiffen, which might suggest that the simple curvature elastic
model underlying Eq. (1) breaks down. However, an alterna-
tive explanation would be provided by the neglect of higher
order terms in the small gradient approximation for the cur-
vature in Eq. (2). Indeed, for a mode h(x,y)=a sin(gx), it is
easy to verify that the ratio between linear and nonlinear
predictions of the curvature energy is given by

=13 3
= —qa+ <
Enonlin 8 32

Ej;

n

(ga)™" + O((ga)™), (5)

which diverges linearly with growing amplitude. While this
is qualitative what den Otter and Briels observe, the magni-
tude of their stiffening is bigger than what Eq. (5) would
predict. The observed deviation for large amplitudes appears
more likely to be a result of a residual tension stemming
from their simulations being done at constant box volume.

Stretching tethers

Here we present a method for the calculation of « based
on a different approach. The basic idea is to impose a defor-
mation of the membrane, specifically by creating a curved
cylindrical vesicle, and then measure the force required to
hold it in this deformed state. In the experiment such tethers
are typically created by first attaching adhesive beads to a
suitably fixated giant vesicle (or a cell) and then pulling it
away with a laser tweezer that permits the measurement of
the involved force. In the simulation such a tether can simply
be stabilized by “spanning” a cylindrical vesicle through the
simulation box, across the periodic boundary conditions.
One thus simulates a system which is perfectly cylindrical
(i.e., there are no end effects), and the axial pulling force is
readily obtained from the component of the stress tensor
along the box-spanning direction.

With a vesicle radius R and a box length L, in the direc-
tion of the spanned vesicle, see Fig. 2, the curvature energy
is

k(1\? 7KL,
=515 2™ RL= (6)

The axial force under the constraint of fixed area A=27RL,
is obtained from F,=(JE/JL.),=27k/R; hence the bending
modulus is given by

J. Chem. Phys. 125, 204905 (2006)

FIG. 2. Snapshots of two tether simulations with 20 000 lipids and different
radii of curvature: (a) (R)=240 and (b) (R)=120.

K= ——. (7)

Since both F, and R are easily measurable, « can be readily
determined in the simulation. In fact, it is this point where
implementing the tether method in a simulation shows its
biggest advantage over its experimental counterpart: In a real
experiment R cannot be measured directly, since its typical
magnitude is suboptical. It is thus usually reexpressed in
terms of the membrane tension 2, leading to R= \/E and
thus k=(F,/ 27)2/23,, but then the tension needs to be moni-
tored independently by other means. Recently, however, Cu-
velier et al."”” devised a clever setup involving two tethers
which avoids such complications.

Even though the above analysis is standard in the tether
literature,' " it is still only approximate. Notice that this
time we have neglected thermal fluctuations altogether. The
formula (7) relies entirely on a “ground state” argument. This
is justifiable in two ways. First, for not too small radii of
curvature, the fluctuation contribution to the force, as esti-
mated for instance by a simple plane-wave ansatz for the
cylindrical modes, turns out to be very small. And second,
the two most obvious effects which fluctuations have on the
two terms in Eq. (7) that need to be determined, F, and R, are
working in opposite directions. While clearly the mean axial
force (F.) will increase (for exactly the same reason that it
takes a force to pull a fluctuating polymer straight), the
fluctuation-corrected mean radius (R) of the vesicle will de-
crease, since the total area is constant and the area needed for
fluctuations has to come from somewhere. Within a plane-
wave approximation these two effects cancel. A more accu-
rate investigation is a fair bit more subtle.”’

By performing various simulations of tethers with differ-
ent curvature radii R, we can thus address the question how
far the present quadratic theory remains valid. Assuming
symmetric membranes, the next terms by which the Hamil-
tonian density in Eq. (1) needs to be amended are quartic
ones, and these are K*, K’K;, Kz, and the gradient term
(V,K)(V*K), where V, is the metric-compatible covariant
derivative.” Since for cylinders K;=0 and |V,K|=0, the
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J. Chem. Phys. 125, 204905 (2006)

TABLE 1. List of all simulation geometries, sorted by the number of lipids (first column) and their tether length (in units of o, first row). In all tuples the top
value indicates (R) (in units of o), and the bottom value is (F_) (in units of €/o). We always used w,=1.60 and kzT=1.1e.

No. of
lipids L.=20 30 40 50 60 70 80 90 100 120 160 200 240
5000 24.0+0.5 16.1+04 122+03 9.8+0.2 8.3+0.2 7.2+0.1 6.3+£0.1 5.7+0.1
3.96+0.9 54+08 6.12+0.8 8.28+0.8 10.44+0.8 11.52+0.8 12.6+0.8 13.68+0.8
10000 47.8+0.6 24.0+£0.4 16.0+0.4 12.2+0.2 9.9+0.2 8.3+0.1 6.3+0.1
1.8+0.7 3.24+0.7 4.68+0.8 6.8+0.8 8.28+0.8 10.5+0.7 12.5+0.8
20 000 47.7+0.6 24.0+0.4 16.0+0.3 12.1+0.2 99+0.2 8.3+0.1
1.7£0.8 3.5+0.8 47+0.8 6.6£0.8 8.3+0.8 104+0.8

only remaining term is K*. Adding §x4K* to the energy den-
sity and repeating the steps leading to Eq. (7), we then find
F.R
2

= K+ 1% = W1+ (€,K)7],

(8)

where €,=Vk4/ K is a characteristic length scale associated
with corrections beyond quadratic order, and one typically
assumes that it is related to bilayer thickness.

MESOSCOPIC MEMBRANE SIMULATION

To illustrate our method, we have performed mesoscopic
simulations of a coarse-grained lipid bilayer model recently
developed in our group.22 Roughly, lipids are represented by
three consecutive beads of diameter o (our unit length), with
one end bead being hydrophilic and the two tail beads hy-
drophobic. The latter feature, in addition to an excluded vol-
ume interaction, an attraction with a tunable depth € (our unit
of energy) and range w.. The unit of time is T=0’\"fn’l_/€,
where m is the unit of mass. By properly choosing w. and e,
a wide range of self-assembling fluid bilayer phases of dif-
ferent bending rigidities is obtained. More details can be
found in Refs. 22 and 23.

Coarse-grained molecular dynamics simulations of a
lipid systems with w.=1.60 and kzT=1.1€ were performed
using the ESPRESSO package.29 The geometries studied are
summarized in Table I. All simulations were performed
under canonical (NVT) conditions, using a Langevin
thermostat®” with friction constant T'=1.07" to keep the tem-
perature constant. Within a rectangular box with dimensions
L,=L, and L_, using periodic boundary conditions in all di-
rections, a cylindrical membrane spanning the z direction
was initially set up with a radius R, chosen in such a way
that the area per lipid in both leaflets corresponded to the one
for a flat tensionless bilayer.23 Upon starting the simulation
Ryep relaxed (typically within about 10007) to its equilib-
rium value (R), which is smaller than Ry, by about 3%-5%
due to the area required for fluctuations. For this to happen it
was quite advantageous that the flip-flop rate of lipids be-
tween the two leaflets is big enough to permit efficient relax-
ation of area-difference strains going along with changes of
the mean radius. For the integration, a time step of Af
=0.0057 was used for most of the systems, while in some
cases we needed a smaller time step of Ar=0.0017 in order to
obtain accurate results.

RESULTS AND DISCUSSION

Figure 2 shows two typical snapshots of equilibrated cy-
lindrical vesicles from different simulations. Notice that
while fluctuations are clearly visible, they are fairly weak,
i.e., the vesicle is to a very good approximation cylindrical.
We use the midplane between the two monolayers to denote
the average radius (R). It is determined by first identifying
the axis and next finding the average distance of the second
tail bead of the outer leaflet to this axis, R, and the equiva-
lent for the inner leaflet, R;,. We then take (R):%(RouﬁRm),
where the average is taken during long production runs typi-
cally extending over 10 000—20 0007. Errors are determined
via a blocking analysis. During these runs we also measure
the stress tensor o;; using the virial theorem.”’ Figure 3
shows a typical example of the running average of the three
normal stress components. As we observe, the axial stress o,
has a finite value. In contrast, o, and oy, (as well as all
off-diagonal components not shown here) approach zero.
This is expected, since no stress is being transported across
the x and y directions. The error in o, is also determined via
a blocking analysis.

One more point concerning the calculation of the stress
tensor should be mentioned. In general, deriving accurately
the stress (or the pressure) from molecular dynamics simula-
tions is not a trivial aspect. Stress is a collective property
with high statistical uncertainty owing to the fluctuations of

Oz Oyy, 0z [1073 kpT/03]

102 108 104

t ]

10!

FIG. 3. Running average of the diagonal components o,,, ,,, and o of the
stress tensor for a cylindrical vesicle with (R)=700.
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FIG. 4. Tensile force (F,) as a function of cylinder radius (R) for the sys-
tems with N=5000 lipids (with the exception of the open symbol, which has
N=10000 lipids). The solid line is a fit to Eq. (7), leading to x=11.7ksT.
The inset shows the combination F,R/21r as a function of rescaled curvature
w/(R), and the solid line again indicates x=11.7k,T.

the instantaneous configurations. In common simulations
these fluctuations are very high due to the relatively small
size (number of particles) of the systems studied. Therefore
large systems and/or long simulation runs are needed. This
point is particularly severe in the present case since, as vis-
ible in Fig. 3, we need to determine very small values of the
stress. We have found that, in order to obtain reliable values,
the common time step used in coarse-grained simulations,
At=0.017, is too long. With this choice o, and o,, ap-
proached values which were significantly different from
zero, a clear sign of a systematic integration error. We thus
used the smaller time step Ar=0.0057, and for the cases
of very small forces, i.e., large (R), even a time step of
Ar=0.0017.

The tensile force in the z direction is obtained from the
stress via F,=0,L.L,. Figure 4 shows the force for the sys-
tems with N=5000 lipids as a function of the average cylin-
der radius (R). As the radius increases, the tensile force F,
decreases in accord with Eq. (7). This is seen even better by
looking at the combination F,R/2r, which is shown in the
inset of Fig. 4 as a function of rescaled curvature w/(R).
Notice that within the error bars of our simulation this ex-
pression is perfectly compatible with a constant; a fit gives
klkgT=11.7£0.2, in very good agreement with the value
k/kgT=12.5+1 obtained from an analysis of thermal undu-
lation modes (see Fig. 1). A possible quadratic deviation, as
suggested by Eq. (8), cannot be identified with any statistical
significance. This is all the more amazing when we see that
the most strongly curved cylinder has w/R=0.9, i.e., a ra-
dius of curvature which is only 10% larger than the bilayer
thickness w. Stated differently, the length €, from Eq. (8)
must be a fair bit smaller than w. This remarkable robustness
of the simple quadratic Helfrich theory down to such small
radii of curvature might of course be a special feature of the
particular model we have studied, and it would be worth-
while to subject other coarse-grained lipid models to a simi-
lar test. But the fact that extremely high curvatures can be
imposed without noticing deviations from quadratic con-

J. Chem. Phys. 125, 204905 (2006)
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FIG. 5. Tensile force F, as a function of system size for systems of different
ratio L./N: (@) 0.01, () 0.008, (M) 0.006, and (1) 0.004. The correspond-
ing average radius (R) is also indicated. A slight horizontal offset is included
to improve visibility of the error bars.

tinuum theory is in accord with common practice in tether
pulling experiments, where the radii of curvature of these
membrane tubes are typically in the 10—40 nm range, appar-
ently without ever having triggered the need to include
higher order corrections to the elastic behavior."?

Another practical aspect of our proposed method is re-
lated to numerical efficiency. The traditional method of ana-
lyzing the thermal fluctuation spectrum requires very long
simulation runs, since (i) large systems need to be studied in
order to have a series of wave vectors in the regime where
continuum methods are applicable and (ii) these long wave-
length modes take a particularly long time to equilibrate (the
relaxation time of bending modes scales with the fourth
power of wavelength). Strictly speaking our method also re-
quires large systems to be studied in order to extrapolate to
the zero curvature limit (i.e., R— ). However, as we have
seen in Fig. 4, the asymptotic limit in our case is already
reached for fairly small systems which still have a significant
curvature. If the same holds for other lipid models—a fact
that needs to be checked—their value of « can also be deter-
mined via the tether method using fairly small systems and
corresponding small simulation times. For example, the point
in Fig. 4 having w/(R)=0.5 is taken from a run of only
2-3 days on a single AMD Opteron 2.2 GHz processor. For
the same system the analysis of the thermal fluctuations
needs at least 1 month on the same machine.

As a final point we would like to address the issue of
finite size effects. While the tether force obviously depends
on its radius, Eq. (7) suggests that tether length L,
(or equivalently, the number N of lipids) is irrelevant. This is
indeed rigorously true in the ground state, but fluctuations
might change the picture. We have thus repeated our simu-
lations for systems with a different number of lipids and
checked whether systems with a fixed ratio L /N (i.e., essen-
tially identical radius) but varying N show any noticeable
systematic change in the tensile force F,. Figure 5 shows the
results of such simulations. As can be seen, the measured
forces are, at least within our error bars, compatible with a
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constant value for a fixed ratio L_/N. No finite size effect is
detectable. Notice that this also provides another indepen-
dent check that fluctuations in our system, even though
present, are a subdominant effect compared to the main
“signal” which is well described by ground state theory.

CONCLUSIONS

We have presented a new method for calculating the
bending rigidity of lipid membranes in simulations. It in-
volves the simulation of cylindrical membrane tethers,
spanned across the periodic boundary conditions of the simu-
lation box, and measuring their equilibrium radius as well as
the tensile force they exercise on the box. In contrast to
fluctuation based schemes, which monitor thermally excited
shape deformations, our approach actively imposes a defor-
mation on the system and measures the restoring force and is
thus not limited to the regime of deformations accessible by
thermal energy. In fact, thermal undulations only contribute a
small correction to the main observable, in stark contrast to
fluctuation schemes in which they provide the dominant sig-
nal. For this reason our method is very efficient, also appli-
cable to stiff membranes which show very small undulations
to begin with, and does not crucially depend on the relax-
ation of very slow long wavelength modes. The straightfor-
ward access to strong bending permits a check of quadratic
continuum theory, without running into difficulties of Monge
gauge and its linearization. For the coarse-grained lipid
model we explicitly studied, we showed continuum theory to
be applicable up to curvatures comparable to bilayer thick-
ness. Finite size effects would originate from fluctuations
and are thus also weak; in our runs they were not detectable.

We believe that this method provides a powerful alterna-
tive to the existing schemes that is worth to be applied to
other existing coarse-grained models. Not only is an inde-
pendent measurement of the elastic modulus very valuable,
determining the range of validity of continuum theory for
each model would be an important bit of knowledge, given
that the curvatures that are regularly imposed in simulations
exceed thermally excited ones by at least one or two orders
of magnitude.
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