
Carnegie Mellon University
Research Showcase @ CMU

Department of Philosophy Dietrich College of Humanities and Social Sciences

2003

Eliminating Definitions and Skolem Functions in
First-Order Logic
Jeremy Avigad
Carnegie Mellon University, avigad@cmu.edu

Follow this and additional works at: http://repository.cmu.edu/philosophy

Part of the Philosophy Commons

This Article is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research Showcase @ CMU. It has
been accepted for inclusion in Department of Philosophy by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fphilosophy%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/philosophy?utm_source=repository.cmu.edu%2Fphilosophy%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hss?utm_source=repository.cmu.edu%2Fphilosophy%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/philosophy?utm_source=repository.cmu.edu%2Fphilosophy%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/525?utm_source=repository.cmu.edu%2Fphilosophy%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Eliminating definitions and Skolem functions
in first-order logic

JEREMY AVIGAD

Carnegie Mellon University

From proofs in any classical first-order theory that proves the existence of at least two elements,
one can eliminate definitions in polynomial time. From proofs in any classical first-order theory
strong enough to code finite functions, including sequential theories, one can also eliminate Skolem
functions in polynomial time.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Proof Theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: definitions, Skolem functions, proof complexity, lengths of
proofs

1. INTRODUCTION

When working with a first-order theory, it is often convenient to use definitions.
That is, if ϕ(~x) is a first-order formula with the free variables shown, one can
introduce a new relation symbol R to abbreviate ϕ, with defining axiom ∀~x (R(~x) ↔
ϕ(~x)). Of course, this definition can later be eliminated from a proof, simply
by replacing every instance of R by ϕ. But suppose the proof involves nested
definitions, with a sequence of relation symbols R0, . . . , Rk abbreviating formulae
ϕ0, . . . , ϕk, where each ϕi may have multiple occurrences of R0, . . . , Ri−1. In that
case, the naive elimination procedure described above can yield an exponential
increase in the length of the proof.

In Section 2, I show that if the underlying theory proves that there are at least
two elements in the universe, a more careful translation allows one to eliminate the
new definitions with at most a polynomial increase in length. In fact, I will describe
an explicit algorithm that can be implemented in polynomial time. The proof is
not difficult, but it relies on the assumption that equality is included in the logic. A
similar trick has been used by Solovay in simulating iterated definitions efficiently,
as discussed in Section 3.2 of [Pudlák 1998]. Consequently, the result proved here
may be folklore, but to my knowledge it has not appeared in the literature, and it
is needed in Section 3.

It is also sometimes convenient, in a first-order setting, to introduce Skolem func-

This work has been partially supported by NSF grant DMS-070600. This is a revised, corrected,
and slightly expanded version of [Avigad 2001b].
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2002 ACM 1529-3785/2002/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002, Pages 1–14.

2 · Jeremy Avigad

tions. If ϕ(~x, y) is any formula with the free variables shown and f is a new function
symbol, one can add an axiom, ∀~x, y (ϕ(~x, y) → ϕ(~x, f(~x))), asserting, in words,
“if any y satisfies ϕ(~x, y), f(~x) does.” There is an easy model-theoretic proof of the
fact that this does not alter the set of consequences in the original language: any
first-order model of the original theory can be expanded to a model where f denotes
such a choice function. Explicit syntactic proofs of this fact are, however, somewhat
more difficult. The first such proof appears in Hilbert and Bernays’ Grundlagen
der Mathematik [1939], using the epsilon substitution method; a proof by Mae-
hara using cut-elimination is discussed in [Takeuti 1987]; and another proof due to
Shoenfield is found in [Shoenfield 2001] (see also the discussion in [Schwichtenberg
1979]). All these procedures are, unfortunately, worse than exponential.

In Section 3, I show that if the underlying theory allows for a modicum of coding,
one can also eliminate Skolem functions in polynomial time. The idea is to use an
internal, iterated forcing argument to add the new functions. The forcing conditions
involved are finite approximations to the Skolem functions being added, so the
constraint on the underlying theory is that it provides an adequate representation
of finite functions. The specific requirements are spelled out below; any sequential
theory of arithmetic meets these criteria. While forcing methods have been used to
establish lower bounds in proof complexity (see [Ajtai 1988; Kraj́ıček 1995; Paris
and Wilkie 1985]), here they are used to establish upper bounds; similar forcing
arguments can be found in [Avigad 1996; 2000; 2001a; 2001c].

The question as to whether or not definitions can be eliminated efficiently from
propositional proof systems is a major open question in the field of proof complexity.
The results here show that the answer is “yes” for most first-order proof systems,
though the most general statement of the problem is equivalent to the propositional
version. Issues related to Skolem functions are similarly important to computer
science, since most automated search procedures use Skolemization in one form or
another.

The question as to the increase in proof length when eliminating a single Skolem
function from a proof in pure first-order logic is listed as open problem 22 in [Clote
and Kraj́ıček 1993]. Once again, though these results here do not settle the most
general statement of the problem, they show that for many natural theories such
an efficient elimination is possible. So, at least in principle, it does not hurt to use
Skolem functions when searching for proofs, even if the ultimate goal is to have
a proof in ordinary first-order logic. In Section 4, I discuss some questions that
remain.

2. ELIMINATING DEFINITIONS

If d is a proof of a sentence ψ from a set of axioms Γ in first-order logic, then
|d| denotes the length of d, according to the number of symbols. Good general
references on the lengths of proofs are [Kraj́ıček 1995] and [Pudlák 1998].

In this section and the next I will show that in certain circumstances one can
eliminate definitions and/or Skolem functions from a proof d in such a way that
the length of the resulting proof is bounded by a polynomial in |d|. In doing so, I
will not make an effort to compute the exact polynomial; rather, I will repeatedly
appeal to the fact that the set of polynomials in |d| is closed under addition, multi-
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

Eliminating definitions and Skolem functions · 3

plication, and composition. Indeed, it will be clear from the proofs that in fact all
the translations considered can be carried out in polynomial time.

By “first-order logic,” I mean first-order logic with equality, in any of the standard
natural deduction calculi, Hilbert-style calculi, or sequent calculi with cut described
in [Troelstra and Schwichtenberg 2000]. By a theorem due to Kraj́ıček, up to
polynomial-time equivalence it does not matter whether we take proofs to be given
by trees or sequences of lines (see Section 4 of [Pudlák 1998], or Section 4.5 of
[Kraj́ıček 1995] for the propositional case). In fact, the proof of Theorem 2.2 only
assumes that there is a representation of ϕ → ψ which uses ϕ only once. If ↔ is
assumed to be one of the basic connectives, one can simplify the central argument
somewhat; but the proof below works in either case.

I will use the following conventions: ~x and ~t denote sequences of variables and
terms, respectively, and typically their lengths can be inferred from the context.
Introducing a formula as ϕ(~x) only serves to distinguish the sequence of variables ~x,
after which ϕ(~t) denotes the result of simultaneously substituting ~t for ~x, renaming
bound variables in ϕ if necessary.

Definition 2.1. Let Γ be a set of first-order sentences in a language L. Say that
Γ has an efficient elimination of definitions if there is a polynomial-time algorithm
that behaves as follows: whenever R0(~x0), . . . , Rk(~xk) are new relation symbols of
various arities, ϕ0(~x0), . . . , ϕk(~xk) are formulae such that each ϕi is in the language
L ∪ {R0, . . . , Ri−1}, and d is a proof of a formula ψ in L from

Γ ∪ {∀~x0 (R0(~x0) ↔ ϕ0(~x0)), . . . , ∀~xk (Rk(~xk) ↔ ϕk(~xk))},
then, on input d, the algorithm returns a proof d′ of ψ from Γ using only formulae
in L.

Note that, in particular, the definition implies that there is a polynomial p such
that each proof d involving definitions is mapped to a proof d′ without them, with
|d′| ≤ p(|d|). This definition is monotone in Γ: if Γ has an efficient elimination of
definitions and Γ′ ⊇ Γ then, by the deduction theorem, Γ′ has an efficient elimina-
tion of definitions as well. The main theorem in this section is the following:

Theorem 2.2. {∃x, y (x 6= y)} has an efficient elimination of definitions.

Proof. The proof will occupy most of this section. Let R0, . . . , Rk, ϕ0, . . . , ϕk, ψ,
and d be as in the definition. We can assume that each of the defining axioms oc-
curs at least once in the proof, since if the axiom for Ri does not occur in the proof
we can replace each occurrence of Ri by an arbitrary sentence, say ∀x (x = x).
As a result, we can assume that k and |ϕ0|, . . . , |ϕk| are all less than |d|, and so it
suffices to bound the length of the final proof by a polynomial in these values.

Let a and b be new constant symbols. It suffices to find an efficient proof of ψ
from {a 6= b}, since, given a proof of a 6= b → ψ, we can replace a and b by variables
to obtain a proof of ψ from ∃x, y (x 6= y).

Put simply, the idea is to use a and b as truth values, and to use first-order
quantifiers to avoid repeating definitions. It will help to consider a simple example
first.

Example. Suppose ϕi+1 is the formula Ri(~s) ∧ ¬Ri(~t). We can express ϕi+1 as an
equivalent formula in which Ri occurs only once, in the following way. Let θ(v, v′)

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

4 · Jeremy Avigad

be the formula

∀~x, y ((Ri(~x) ↔ y = a) → (~x = ~s → y = v) ∧ (~x = ~t → y = v′)).

Then ϕi+1 is equivalent to

∀v, v′ (θ(v, v′) → (v = a ∧ v′ 6= a)).

This example contains the essence of the entire proof; in particular, θ plays the
role of the formula Eval below. In the general case, we have a few additional
concerns:

(1) there may be quantifiers in the various ϕi;
(2) all of the symbols R0, . . . , Ri−1 may occur in ϕi; and
(3) ↔ may not be a symbol in the language (using implication twice in the example

above would require another instance of Ri).

With respect to item 1, it will help to assume that all the definitions are given by
prenex formulae, and we can do so without loss of generality. If the propositional
connectives are among {∧,∨,→,¬}, this is so because any formula involving these
connectives can be proved equivalent to one that is prenex, with a proof whose
length is bounded by a polynomial in the length of the original formula. On the
other hand, if, say, ↔ is a propositional connective, one can introduce additional
definitions to abbreviate subformulae and ensure that all the definitions are prenex.
Alternatively, one can first use definitions to eliminate ↔ as in the proof of Corol-
lary 2.5, and then proceed as before.

Henceforth, if θ is a formula with a relation symbol R(~y) and η(~y) is a formula
with the free variables shown, it will be convenient to write θ[η/R] for the re-
sult of replacing each atomic formula R(~t) by η(~t). At other times, I will write
θ[R(t1, . . . , tm)] to indicate that an atomic formula R(t1, . . . , tm) occurs in the
quantifier-free formula θ; thereafter θ[η] denotes the result of replacing R(t1, . . . , tm)
by η. While this notation is potentially problematic, the intention should always
be clear from the context.

For notational convenience, we may assume that all of the relations Ri have
the same arity. To address item 2 above, we will need a way of representing the
numbers 0, . . . , k. To that end, let z0, . . . , zk be a sequence of variables, write 0 for
the sequence a, b, b, b, . . ., 1 for the sequence b, a, b, b, . . . , and, more generally, j for
the sequence of length k + 1 that has an a in position j and b’s elsewhere.

Finally, to address item 3, we will represent both positive and negative instances
of each definition.

Our strategy will be to define a sequence of formulae ϕ̂0(~z, u, ~x), . . . ϕ̂k(~z, u, ~x),
with length bounded by a polynomial in |d|, such that for each i ≤ k the following
equivalences are all provable from a 6= b:

—ϕ̂i(j, a, ~x) ↔ ϕ̂i−1(j, a, ~x), for each j < i

—ϕ̂i(j, b, ~x) ↔ ¬ϕ̂i−1(j, a, ~x), for each j < i

—∀~x (ϕ̂i(i, a, ~x) ↔ ϕi(~x)[ϕ̂i−1(0, a, ~x)/R0, . . . , ϕ̂i−1(i− 1, a, ~x)/Ri−1])
—∀~x (ϕ̂i(i, b, ~x) ↔ ¬ϕi(~x)[ϕ̂i−1(0, a, ~x)/R0, . . . , ϕ̂i−1(i− 1, a, ~x)/Ri−1]).
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

Eliminating definitions and Skolem functions · 5

In other words, for each i and j ≤ i, ϕ̂i(j, a, ~x) is an efficient representation of Rj ,
and ϕ̂i(j, b, ~x) is an efficient representation of ¬Rj . As noted above, we will use
quantifiers and equality so that only a single instance of ϕ̂i is used in the definition
of ϕ̂i+1. Note that the clauses above imply that for each i and j ≤ i, we have
ϕ̂i(j, a, ~x) ↔ ¬ϕ̂i(j, b, ~x).

The construction. The sequence ϕ̂0, . . . , ϕ̂k is defined recursively. Start by taking
ϕ̂0(~z, u, ~x) to be the formula

(u = a → ϕ0(~x)) ∧ (u = b → ¬ϕ0(~x)).

For i > 0, assuming ϕ̂0, . . . , ϕ̂i−1 have been defined, the following shows how to
determine ϕ̂i. Since we are assuming that all the definitions are prenex, ϕi(~x) is of
the form

Q1y1 . . . Qmym ϕ̃[R0(~t0,0), . . . , R0(~t0,l0), . . . , Ri−1(~ti−1,0), . . . , Ri−1(~ti−1,li−1)],

where ϕ̃ is quantifier-free and the sequence in square brackets shows all instances
of atomic formulae in ϕ̃ involving R0, . . . , Ri−1. In general, the sequences of terms
~tj,p depend on the quantified variables y1, . . . , ym as well as the free variables ~x of
ϕi, but I will not display these variables explicitly. Our task is to write down a
formula ϕ̂i(~z, u, ~x) such that

(1) for each j < i, ϕ̂i(j, a, ~x) is equivalent to ϕ̂i−1(j, a, ~x);

(2) for each j < i, ϕ̂i(j, b, ~x) is equivalent to ¬ϕ̂i−1(j, a, ~x);

(3) ϕ̂i(i, a, ~x) is equivalent to the displayed formula above, with each Rj(~tj,p) re-
placed by ϕ̂i−1(j, a,~tj,p);

(4) ϕ̂i(i, b, ~x) is equivalent to the negation of the formula just described; and

(5) in the definition of ϕ̂i, ϕ̂i−1 is used only once.

Items 1–4 are just a restatement of the desiderata indicated above; 5 will ensure
that the ϕ̂i can be constructed in polynomial time.

In order to do 3 and 4 simultaneously, we need duplicate copies of some of the
variables and terms. Let Q′1, . . . , Q

′
m denote the quantifiers dual to Q1, . . . , Qm.

Pick a new sequence of variables y′1, . . . , y
′
m, and let

~t′0,0, . . . ,~t
′
0,l0 , . . . ,

~t′i−1,0, . . . ,~t
′
i−1,li−1

denote the sequences of terms obtained by replacing the y1, . . . , ym by y′1, . . . , y
′
m

in each ~tj,p. Finally, let

v0,0, . . . , v0,l0 , . . . , vi−1,0, . . . , vi−1,li−1

v′0,0, . . . , v
′
0,l0 , . . . , v

′
i−1,0, . . . , v

′
i−1,li−1

v′′0 , . . . , v′′i−1

be sequences of new variables. We will use the variables vj,p to represent the
truth values of ϕ̂i−1(j, a,~tj,p), the variables v′j,p to represent the truth values of
ϕ̂i−1(j, a,~t′j,p), and the variables v′′j to represent the truth values of ϕ̂i−1(j, a, ~x),
where the “truth value” is a if the corresponding formula is true, and b if it is false.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

6 · Jeremy Avigad

The formula ϕ̂i(~z, u, ~x) is defined to be

Q1y1 . . . Qmym Q′
1y
′
1 . . . Q′

my′m ∀~v,~v′, ~v′′
(
Eval(~v,~v′, ~v′′) →

∧

j<i

(~z = j ∧ u = a → v′′j = a) ∧
∧

j<i

(~z = j ∧ u = b → v′′j 6= a) ∧

(~z = i ∧ u = a → ϕ̃[v0,0 = a, . . . , v0,l0 = a, . . . , vi−1,0 = a, . . . , vi−1,li−1 = a]) ∧
(~z = i ∧ u = b → ¬ϕ̃[v′0,0 = a, . . . , v′0,l0 = a, . . . , v′i−1,0 = a, . . . , v′i−1,li−1

= a])
)

where Eval(~v,~v′, ~v′′) is the formula

∀~r ∀s ∈ {a, b} ∀~w
(
ϕ̂i−1(~r, s, ~w) →

∧

j<i

(~r = j ∧ ~w = ~x → v′′j = s) ∧
∧

j<i

∧

p≤lj

(~r = j ∧ ~w = ~tj,p → vj,p = s) ∧
∧

j<i

∧

p≤lj

(~r = j ∧ ~w = ~t′j,p → v′j,p = s)
)
.

Here ∀s ∈ {a, b} θ abbreviates ∀s (s = a ∨ s = b → θ). Note that Eval(~v,~v′, ~v′′)
also depends on the free variables ~x, ~y, ~y′ (because the terms tj,p and t′j,p do), but
I will continue to leave these variables implicit.

First, let us check that each ϕ̂i(~xi, u) satisfies the right equivalences, and then
let us worry about the length. Inductively we know, for each j ≤ i− 1, that

∀~x (ϕ̂i−1(j, a, ~x) ↔ ¬ϕ̂i−1(j, b, ~x))

is provable from a 6= b. We can use this to show

∀~x, ~y, ~y′ ∃~v,~v′, ~v′′ Eval(~v,~v′, ~v′′)

as well as

∀~x, ~y, ~y′, ~v,~v′, ~v′′
(
Eval(~v,~v′, ~v′′) →

∧

j<i

(v′′j = a ↔ ϕ̂i−1(j, a, ~x)) ∧
∧

j<i

∧

p<lj

(vj,p = a ↔ ϕ̂i−1(j, a,~tj,p)) ∧
∧

j<i

∧

p<lj

(v′j,p = a ↔ ϕ̂i−1(j, a,~t′j,p))
)
.

But then, going back to the definition of ϕ̂i, we see that for j < i, ϕ̂i(j, a, ~x)
is equivalent to ϕ̂i−1(j, a, ~x), and ϕ̂i(j, b, ~x) is equivalent to ¬ϕ̂i−1(j, a, ~x). Also,
ϕ̂i(i, a, ~x) is equivalent to

Q1y1 . . . Qmymϕ̃[ϕ̂i−1(0, a,~t0,0), . . . , ϕ̂i−1(0, a,~t0,l0), . . . ,
ϕ̂i−1(i− 1, a,~ti−1,0), . . . , ϕ̂i−1(i− 1, a,~ti−1,li−1)]

and so we have

ϕ̂i(i, a, ~x) ↔ ϕi(~x)[ϕ̂i−1(0, a, ~x)/R0, . . . , ϕ̂i−1(i− 1, a, ~x)/Ri−1];
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

Eliminating definitions and Skolem functions · 7

and ϕ̂i(i, b, ~x) is equivalent to

Q′1y
′
1 . . . Q′

my′m¬ϕ̃[ϕ̂i−1(0, a,~t′0,0), . . . , ϕ̂i−1(0, a,~t′0,l0), . . . ,

ϕ̂i−1(i− 1, a,~t′i−1,0), . . . , ϕ̂i−1(i− 1, a,~t′i−1,li−1
)]

and so we have

ϕ̂i(i, b, ~x) ↔ ¬ϕi(~x)[ϕ̂i−1(0, a, ~x)/R0, . . . , ϕ̂i−1(i− 1, a, ~x)/Ri−1],

as required.
As far as length is concerned, it is not hard to check that the number of symbols

occurring in ϕ̂i apart from the instance of ϕ̂i−1 can be bounded by a polynomial
in |d| (in fact, even a linear one). In other words, there is a polynomial p such that
for each i we have |ϕ̂i| ≤ p(|d|) + |ϕ̂i−1|, and hence |ϕ̂i| ≤ (i + 1)p(|d|) ≤ |d|p(|d|).
It is not hard to see, moreover, that the ϕ̂i can be constructed in time polynomial
in |d|. Similarly, one can efficiently construct proofs of the necessary equivalences,
and there are only polynomially many of them. Translating the original proof is
now straightforward, using ϕ̂k (̄i, a, ~x) in place of Ri(~x) for each i.

This completes the proof of Theorem 2.2. ¤

We have handled the case where there are at least two elements in the universe.
On the other hand, on the assumption that there is only one element of the universe,
we are reduced to propositional logic.

Proposition 2.3. {∀x, y (x = y)} has efficient elimination of definitions if and
only if the corresponding assertion holds for propositional logic.

Proof. Assuming ∀x, y (x = y), every atomic formula R(t1, . . . , tk) is equivalent
to R(c, . . . , c), where c is the only element of the universe; t1 = t2 is always true; and
quantifiers have no effect. To be more precise, let “the propositional simplification
of ψ” denote the result of deleting all the quantifiers in ψ, replacing all atomic
formulae R(t1, . . . , tk) by a propositional variable R, and replacing t1 = t2 by a
fixed tautology. Then any first-order proof of ∀x, y (x = y) → ψ can be translated
efficiently to a propositional proof of the propositional simplification of ψ, and vice-
versa. ¤

This implies that the general problem of eliminating definitions from proofs in
pure first-order logic is as hard (and as easy) as the propositional case.

Theorem 2.4. ∅ has an efficient elimination of definitions if and only if the
corresponding assertion holds for propositional logic.

Proof. It is a straightforward exercise to check that {ϕ ∨ ψ} has an efficient
elimination of definitions if and only if {ϕ} and {ψ} both do. In particular, ∅ has an
efficient elimination of definitions if and only if {∀x, y (x = y)} and {∃x, y (x 6= y)}
do. ¤

The question as to whether one can eliminate definitions from propositional logic
efficiently (or even with a polynomial bound on the length of proof) is a major open
problem in proof complexity; see [Kraj́ıček 1995; Pudlák 1998].

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

8 · Jeremy Avigad

As a corollary of Theorem 2.2, we have that one can eliminate ↔ from standard
proof systems in polynomial time. For propositional proof systems the proof (due
to Reckhow, using a method by Spira; see [Kraj́ıček 1995]) is considerably more
difficult.

Corollary 2.5. With any of the standard proof systems for first-order logic
with equality given in [Troelstra and Schwichtenberg 2000], one can eliminate the
propositional connective ↔ in polynomial time.

Proof. By Theorem 2.2, it suffices to show that one can eliminate ↔ efficiently
in the corresponding proof systems with definitions. Use definitions to translate
formulae in the language with ↔ to the language without: translate ϕ(~w) ↔ ψ(~z)
to (Rϕ(~w) → Rψ(~z)) ∧ (Rψ(~z) → Rϕ(~w)), where Rϕ and Rψ are defined to be
equivalent to the translations of ϕ and ψ, respectively. It is not hard to justify the
translated inferences efficiently. ¤

3. ELIMINATING SKOLEM FUNCTIONS

The following is the analogue of Definition 2.1 for Skolem functions.

Definition 3.1. Let Γ be a set of first-order sentences in a language L. Say that
Γ has an efficient elimination of Skolem functions if there is a polynomial-time
algorithm that behaves as follows: whenever f0(~x0), . . . , fk(~xk) are new function
symbols of various arities, ϕ0(~x0, y), . . . , ϕk(~xk, y) are formulae such that each ϕi

is in the language L ∪ {f0, . . . , fi−1}, and d is a proof of a formula ψ in L from

Γ ∪ {∀~x0, y (ϕ0(~x0, y) → ϕ0(~x0, f0(~x0))), . . . ,
∀~xk, y (ϕk(~xk, y) → ϕk(~xk, fk(~xk)))},

then on input d the algorithm returns a proof d′ of ψ from Γ using only formulae
in L.

Once again, the definition implies that |d′| is bounded by a polynomial in |d|.
Right off the bat, we have the following.

Proposition 3.2. {∀x, y (x = y)} has an efficient elimination of Skolem func-
tions.

Proof. Roughly speaking, if c is the only element of the universe, every term
can be replaced by c. ¤

By way of motivation, note that is not hard to show that, say, Zermelo-Fraenkel
set theory has an efficient elimination of Skolem functions. Argue as follows. Sup-
pose d is a proof of a formula ψ from the axioms of ZF and some Skolem functions.
Let k be a bound on the complexity of the formulae occurring in this proof. In
ZF , one can prove that the set of true sentences of complexity at most k + 1 is
consistent, and hence has a countable model. This countable model has Skolem
functions, which can then be used to interpret the proof d.

This example suggests that one way to proceed is to try to determine how little
one can get away with in carrying out an internal semantic argument of this kind.
The answer turns out to be: very little.
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

Eliminating definitions and Skolem functions · 9

Definition 3.3. Say a set of sentences Γ codes finite functions (efficiently) if for
each n there are

—a definable element, “∅n”;
—a definable relation, “x0, . . . , xn−1 ∈ domn(p)”;
—a definable function, “evaln(p, x0, . . . , xn−1)”; and
—a definable function, “p⊕n (x0, . . . , xn−1 7→ y)”

such that, for each n, Γ proves

—~x 6∈ domn(∅n)
—~w ∈ domn(p⊕n (~x 7→ y)) ↔ (~w ∈ domn(p) ∨ ~w = ~x)
—evaln(p⊕n (~x 7→ y), ~x) = y

—~w 6= ~x → evaln(p⊕n (~x 7→ y), ~w) = evaln(p, ~w),

and such that all the definitions and proofs can be constructed in time polynomial
in n.

Of course, the intuition is that elements of the universe are assumed to code finite
partial functions p, ∅n is the function that is nowhere defined, evaln(p, ~x) returns
the value of p at ~x, p⊕n (~x 7→ y) is the modification of p which maps ~x to y, and so
on. One could, more generally, assume that the codes are elements of a definable
set; but then nothing is lost by taking the other elements of the universe to code
the empty function.

These requirements are not strong ones. For example, any sequential theory of
arithmetic (in the terminology of [Hájek and Pudlák 1993; Kraj́ıček 1995; Pudlák
1998]) codes finite functions, since one can take such functions to be sequences of
tuples 〈~x, y〉. Below I will drop the subscripts n in ∅n, domn, etc. and I will write
p(~x) instead of eval(p, ~x). By passing to a definitional extension, we can assume
that these are actually given by symbols in the language.

Theorem 3.4. Suppose Γ codes finite functions. Then Γ has an efficient elimi-
nation of Skolem functions.

Proof. The proof will occupy most of the remainder of this section. By Propo-
sition 3.2 we can assume that there are at least two elements in the universe, and
so, by Theorem 2.2, we can use definitions freely. By way of exposition, I will first
focus on the case where k = 0, i.e. there is only one Skolem function to eliminate.
(This part does not require definitions.) Then I will discuss the steps necessary to
eliminate multiple, possibly nested instances Skolem functions. (This is the part
that requires definitions.)

Suppose we want to eliminate the use of a single Skolem function, with defining
axiom ∀~x, y (ϕ(~x, y) → ϕ(~x, f(x))). Let Lf denote the language L ∪ {f}. I will
define a forcing relation in L, for formulae in Lf . I will then show that Γ proves that
the Skolem axiom is forced; and that anything in the original language is forced if
and only if it is true. Given a proof d of ψ from Γ together with the Skolem axiom,
then, Γ proves that ψ is forced, and hence true.

Now for the details. Let the formula Cond(p) in the language L assert that p is
a finite approximation to a Skolem function for ϕ, that is,

∀~x ∈ dom(p) ∀y (ϕ(~x, y) → ϕ(~x, p(x))).
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

10 · Jeremy Avigad

Let t be a term in Lf , and let p be a variable not occurring in t. Inductively we will
define a term tp in the language of L, whose free variables are those of t together
with p. Intuitively, tp is the value of t, when f is interpreted by p. At the same
time, we will define a relation “tp is defined,” asserting that the value of tp makes
sense. Let

—xp ≡ x, for each variable x (other than p),
—(g(t0, . . . , tm))p ≡ g(tp0, . . . , t

p
m), for each function symbol g of L, and

—(f(t0, . . . , tn))p ≡ p(tp0, . . . , t
p
n).

Define “tp is defined” inductively as follows:

—“xp is defined” is always true.
—“(g(t0, . . . , tm))p is defined,” where g is a function symbol of L, is true if and

only if tp0, . . . , t
p
m are all defined.

—“(f(t0, . . . , tn))p is defined” is true if and only if tp0, . . . , t
p
n are all defined and

tp0, . . . , t
p
n ∈ dom(p).

If p and q are conditions, say p ¹ q, “p is stronger than or equal to q”, if p extends
q as a function:

∀~x (~x ∈ dom(q) → ~x ∈ dom(p) ∧ p(~x) = q(~x)).

Now we can define the relation p ° θ inductively. We can assume that the language
has connectives ∧, →, ∀, and ¬, with ∃ and ∨ defined from these in the usual way.

(1) p ° R(t0, . . . , tm) if and only if ∀q ¹ p ∃r ¹ q (tr0, . . . , t
r
m are all defined and

R(tr0, . . . , t
r
m)).

(2) p ° θ ∧ η if and only if p ° θ and p ° η.
(3) p ° θ → η if and only if ∀q ¹ p (q ° θ → q ° η).
(4) p ° ¬θ if and only if ∀q ¹ p q 6° θ.
(5) p ° ∀x θ if and only if ∀x p ° θ.

The quantifiers involving q and r above are intended to range over conditions, so,
for example, ∀q ¹ p . . . abbreviates ∀q (Cond(q) ∧ q ¹ p → . . .). For each θ, the
relation p ° θ is a formula in the language of L whose free variables are those of θ
together with p. Note that the length of p ° θ can be bounded by a polynomial in
|θ| (as well as in |ϕ|, which is being held fixed for the moment).

The phrase “θ is forced” and the notation ° θ abbreviate ∀p (Cond(p) → p ° θ).
In the lemmata that follow, p, q, r . . . are assumed to range over conditions. Most of
the proofs are routine and standard, modulo the additional notes provided below.
It is important to recognize that the all the proofs alluded to in the statement of
the lemmata can be constructed in time that is polynomial in the length of the
assertion being proved, but having stated this up front, I will not bother to repeat
it each time.

Lemma 3.5 monotonicity. For each formula θ of Lf , Γ proves

p ° θ ∧ q ¹ p → q ° θ.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

Eliminating definitions and Skolem functions · 11

Lemma 3.6. For each formula θ of Lf , Γ proves

p ° θ ↔ ∀q ¹ p ∃r ¹ q r ° θ.

Corollary 3.7. For each formula θ of Lf , Γ proves

° (θ ↔ ¬¬θ).

Lemma 3.8. For any term t of Lf , Γ proves

∀q ∃r ¹ q (tr is defined).

Proof. Use induction on the term t. The only interesting case is where t is
of the form f(s0, . . . , sk). By the induction hypothesis, we can find an r′ ¹ q
such that sr′

0 , . . . , sr′
k are all defined. If sr′

0 , . . . , sr′
k ∈ dom(r′), take r = r′. Other-

wise, if ∃y ϕ(sr′
0 , . . . , sr′

k , y), let r = r′ ⊕ (sr′
0 , . . . , sr′

k 7→ y), for any such y; and if
∀y ¬ϕ(sr′

0 , . . . , sr′
k , y), let r = r′ ⊕ (sr′

0 , . . . , sr′
k 7→ y), for any y at all. ¤

The next two lemmata are proved by induction on s and θ, respectively.

Lemma 3.9. If t and s(x) are any terms of Lf , Γ proves

tp = z → (s(t)p = s(z)p)

Lemma 3.10. If θ(x) is any formula of Lf and t is any term of Lf then Γ proves

(tp is defined ∧ tp = z) → (p ° θ(t) ↔ p ° θ(z)).

Lemma 3.11. For each formula θ of Lf , if θ is provable in classical first-order
logic, then Γ proves ° θ.

Proof. The proof is for the most part standard and routine, though one has to
be a little bit careful with the quantifier axioms and rules since terms might not
always be “defined.” To show ∀x θ(x) → θ(t) is forced, let us argue in first-order
logic from assumptions in Γ. Suppose p ° ∀x θ(x). By Lemma 3.6 it suffices to
show ∀q ¹ p ∃r ¹ q θ(t). So suppose q ¹ p, and by Lemma 3.8 let r ¹ q be such
that tr is defined. Let z = tr. By monotonicity, r ° ∀x θ(x), so r ° θ(z). By
Lemma 3.10, r ° θ(t). ¤

A formula in the original language is forced if and only if it is true.

Lemma 3.12. For each formula θ of L, Γ proves (p ° θ) ↔ θ.

Proof. Induction on θ. ¤

The next lemma is the important one: it asserts that the Skolem axiom is forced.

Lemma 3.13. Γ proves ° ∀~x, y (ϕ(~x, y) → ϕ(~x, f(~x))).

Proof. Once again, argue in first-order logic, from Γ. Suppose for some ~x, y
we have p ° ϕ(~x, y). By Lemma 3.12, ϕ(~x, y). By Lemma 3.6, it suffices to show
∀q ¹ p ∃r ¹ q r ° ϕ(~x, f(~x)), so suppose q ¹ p. If ~x ∈ dom(q), the fact that
q is a condition guarantees ϕ(~x, f(~x)), and we can take r = q; otherwise, take
r = q ⊕ (~x 7→ y). Either way, as above, we have r ° ϕ(~x, f(~x)), as required. ¤

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

12 · Jeremy Avigad

Proof of Theorem 3.4, for a single Skolem function. Suppose there is a proof d of a
formula ψ in the language L from finitely many sentences in Γ ∪ {∀~x, y (ϕ(~x, y) →
ϕ(~x, f(x)))}. By Lemma 3.11, Γ proves that this implication is forced. By Lem-
mata 3.12 and 3.13, Γ proves that all the hypotheses are forced, so Γ proves that
ψ is forced as well. By Lemma 3.12, Γ proves ψ.

Since each component of the derivation just described can be constructed in time
polynomial in |d|, so can the entire proof. ¤

To extend the proof to arbitrary nested definitions of Skolem functions, we need
to iterate the forcing definition. A similar iteration was used in [Avigad 1996]; the
situation here is easier, since we only have to deal with finite iterations.

Let d, f0, . . . , fk, ϕ0, . . . , ϕk be as in Definition 3.1. For each i ≤ k, we will define
the notion of an i-condition, an ordering¹i on i-conditions, and a forcing relation °i

between i-conditions and formulae θ in the language L∪{f0, . . . , fi}. An i-condition
consists of a sequence p0, . . . , pi of finite functions, with arities corresponding to
those of f0, . . . , fi. As expected, p0, . . . , pi ¹i q0, . . . , qi means that each pj extends
qj , as above.

The two notions Cond i and °i are defined simultaneously, by recursion on
i. Cond0(p) and p °0 θ are defined as above, in the case where there is only
one Skolem function. Assuming Cond i and °i have been defined, the relation
Cond i+1(p0, . . . , pi+1) is defined by

Cond i(p0, . . . , pi) ∧ p0, . . . , pi °i

∀~xi+1, y (~xi+1 ∈ dom(pi+1) ∧ ϕ(~xi+1, y) → ϕ(~xi+1, p(~x))).

In the atomic case, assuming that t0, . . . , tm are terms in the language of L ∪
{f0, . . . , fi+1}, the relation p0, . . . , pi+1 °i+1 A(t0, . . . , tm) is defined by

∀~q ¹ ~p ∃~r ¹ ~q (t~r0, . . . , t
~r
m are defined and A(t~r0, . . . , t

~r
m)).

The forcing relation is then extended to arbitrary formulae in the language as above.
Notice that the relation °i is used in the definition of Cond i+1, which is in turn used
to define °i+1. By introducing new relation symbols to represent the definitions
of Cond0, . . . ,Condk, we can bound the lengths of all the formulae involved by a
polynomial.

Lemma 3.14. For each i ≤ k, Lemmata 3.5–3.11 hold for i-conditions, ¹i, and
°i.

Lemma 3.15. For each i ≤ k, if θ is in the language L ∪ {f0, . . . , fi}, then Γ
proves the following:

p0, . . . , pk °k θ ↔ p0, . . . , pi °i θ.

Lemma 3.16. For each i ≤ k, Γ proves that the ith Skolem axiom is k-forced.

Once again, the relevant proofs can be constructed in time polynomial in |d|. The
proof of Theorem 3.4 now follows exactly as in the case of a single Skolem function.
¤

If a and b are distinct and f is a Skolem function for (ϕ(~x)∧y = a)∨(¬ϕ(~x)∧y =
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

Eliminating definitions and Skolem functions · 13

b), then f(~x) = a serves as a definition for ϕ(~x). As a corollary to Theorem 3.4 we
have the following:

Corollary 3.17. Suppose Γ codes finite functions and proves ∃x, y (x 6= y).
Then one can eliminate arbitrary nested instances of definitions and Skolem func-
tions from proofs in Γ, with a polynomial bound on the increase in the lengths of
proofs.

4. QUESTIONS

In standard terminology (e.g. [Kraj́ıček 1995; Pudlák 1998]), Section 2 shows that
one can eliminate definitions from proofs in first-order logic in polynomial time
if and only if extended Frege systems for propositional logic can be p-simulated
by Frege systems. As noted above, whether or not this is the case is still open.
Section 2 shows that Theorem 2.2 and Corollary 2.5 hold for first-order logic with
equality. What can one say in the absence of equality?

It is also still open as to whether one can efficiently eliminate even a single Skolem
function from proofs in pure logic, or from theories that do not code finite functions.

The elimination of definitions in Section 2 used the law of the excluded middle.
As a result, it is open as to whether one has an efficient elimination of definitions
in intuitionistic first-order logic. (See also [Schwichtenberg 1979] for a discussion of
choice functions in the intuitionistic setting.)

ACKNOWLEDGMENTS

I am grateful to Samuel Buss for advice, and to the referees for comments and
suggestions.

REFERENCES

Ajtai, M. 1988. The complexity of the pigeonhole principle. In Proceedings of the IEEE 29th
Annual Symposium on Foundations of Computer Science. 346–355.

Avigad, J. 1996. Formalizing forcing arguments in subsystems of second-order arithmetic. Ann.
Pure Appl. Logic 82, 2, 165–191.

Avigad, J. 2000. A realizability interpretation for classical arithmetic. In Logic Colloquium ’98
(Prague). Lect. Notes Log., vol. 13. Assoc. Symbol. Logic, Urbana, IL, 57–90.

Avigad, J. 2001a. Algebraic proofs of cut elimination. J. Log. Algebr. Program. 49, 1-2, 15–30.

Avigad, J. 2001b. Eliminating definitions and Skolem functions in first-order logic. In Proceedings
of the 16th annual IEEE symposium on logic in computer science. 139–146.

Avigad, J. 2001c. Weak theories of nonstandard arithmetic and analysis. To appear.

Clote, P. and Kraj́ıček, J. 1993. Arithmetic, Proof Theory, and Computational Complexity.
Oxford University Press.

Hájek, P. and Pudlák, P. 1993. Metamathematics of first-order arithmetic. Springer, Berlin.

Hilbert, D. and Bernays, P. 1939. Grundlagen der Mathematik. Vol. II. Springer, Berlin.

Kraj́ıček, J. 1995. Bounded arithmetic, propositional logic, and complexity theory. Encyclopedia
of Mathematics and its Applications, vol. 60. Cambridge University Press, Cambridge.

Paris, J. and Wilkie, A. 1985. Counting problems in bounded arithmetic. In Methods in
mathematical logic (Caracas, 1983). Lecture Notes in Math., vol. 1130. Springer, Berlin, 317–
340.

Pudlák, P. 1998. The lengths of proofs. In Handbook of proof theory. Stud. Logic Found. Math.,
vol. 137. North-Holland, Amsterdam, 547–637.

Schwichtenberg, H. 1979. Logic and the axiom of choice. In Logic Colloquium ’78, M. B. et al,
Ed. North-Holland, 351–356.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

14 · Jeremy Avigad

Shoenfield, J. R. 2001. Mathematical logic. Association for Symbolic Logic, Urbana, IL. Reprint
of the 1973 second printing.

Takeuti, G. 1987. Proof Theory, second ed. North-Holland, Amsterdam.

Troelstra, A. S. and Schwichtenberg, H. 2000. Basic Proof Theory, second ed. Cambridge
University Press, Cambridge.

Received October 2001; revised June 2002; accepted October 2002

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.

	Carnegie Mellon University
	Research Showcase @ CMU
	2003

	Eliminating Definitions and Skolem Functions in First-Order Logic
	Jeremy Avigad

	tmp.1273850469.pdf.jQDxE

