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Eliminating definitions and Skolem functions
in first-order logic

JEREMY AVIGAD
Carnegie Mellon University

From proofs in any classical first-order theory that proves the existence of at least two elements,
one can eliminate definitions in polynomial time. From proofs in any classical first-order theory
strong enough to code finite functions, including sequential theories, one can also eliminate Skolem
functions in polynomial time.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Proof Theory

General Terms: Algorithms, Theory
Additional Key Words and Phrases: definitions, Skolem functions, proof complexity, lengths of
proofs

1. INTRODUCTION

When working with a first-order theory, it is often convenient to use definitions.
That is, if ¢(Z) is a first-order formula with the free variables shown, one can
introduce a new relation symbol R to abbreviate ¢, with defining axiom V& (R(Z) <
©(Z)). Of course, this definition can later be eliminated from a proof, simply
by replacing every instance of R by ¢. But suppose the proof involves nested
definitions, with a sequence of relation symbols Ry, ..., R; abbreviating formulae
Yo, - - -, Pk, where each ¢; may have multiple occurrences of Ry, ..., R;_1. In that
case, the naive elimination procedure described above can yield an exponential
increase in the length of the proof.

In Section 2, I show that if the underlying theory proves that there are at least
two elements in the universe, a more careful translation allows one to eliminate the
new definitions with at most a polynomial increase in length. In fact, I will describe
an explicit algorithm that can be implemented in polynomial time. The proof is
not difficult, but it relies on the assumption that equality is included in the logic. A
similar trick has been used by Solovay in simulating iterated definitions efficiently,
as discussed in Section 3.2 of [Pudldk 1998]. Consequently, the result proved here
may be folklore, but to my knowledge it has not appeared in the literature, and it
is needed in Section 3.

It is also sometimes convenient, in a first-order setting, to introduce Skolem func-
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2 : Jeremy Avigad

tions. If (&, y) is any formula with the free variables shown and f is a new function
symbol, one can add an axiom, VZ,y (¢(Z,y) — ©(Z, f(Z))), asserting, in words,
“if any y satisfies p(Z,y), f(Z) does.” There is an easy model-theoretic proof of the
fact that this does not alter the set of consequences in the original language: any
first-order model of the original theory can be expanded to a model where f denotes
such a choice function. Explicit syntactic proofs of this fact are, however, somewhat
more difficult. The first such proof appears in Hilbert and Bernays’ Grundlagen
der Mathematik [1939], using the epsilon substitution method; a proof by Mae-
hara using cut-elimination is discussed in [Takeuti 1987]; and another proof due to
Shoenfield is found in [Shoenfield 2001] (see also the discussion in [Schwichtenberg
1979]). All these procedures are, unfortunately, worse than exponential.

In Section 3, I show that if the underlying theory allows for a modicum of coding,
one can also eliminate Skolem functions in polynomial time. The idea is to use an
internal, iterated forcing argument to add the new functions. The forcing conditions
involved are finite approximations to the Skolem functions being added, so the
constraint on the underlying theory is that it provides an adequate representation
of finite functions. The specific requirements are spelled out below; any sequential
theory of arithmetic meets these criteria. While forcing methods have been used to
establish lower bounds in proof complexity (see [Ajtai 1988; Krajicek 1995; Paris
and Wilkie 1985]), here they are used to establish upper bounds; similar forcing
arguments can be found in [Avigad 1996; 2000; 2001a; 2001c].

The question as to whether or not definitions can be eliminated efficiently from
propositional proof systems is a major open question in the field of proof complexity.
The results here show that the answer is “yes” for most first-order proof systems,
though the most general statement of the problem is equivalent to the propositional
version. Issues related to Skolem functions are similarly important to computer
science, since most automated search procedures use Skolemization in one form or
another.

The question as to the increase in proof length when eliminating a single Skolem
function from a proof in pure first-order logic is listed as open problem 22 in [Clote
and Krajicek 1993]. Once again, though these results here do not settle the most
general statement of the problem, they show that for many natural theories such
an efficient elimination is possible. So, at least in principle, it does not hurt to use
Skolem functions when searching for proofs, even if the ultimate goal is to have
a proof in ordinary first-order logic. In Section 4, I discuss some questions that
remain.

2. ELIMINATING DEFINITIONS

If d is a proof of a sentence ¥ from a set of axioms I' in first-order logic, then
|d| denotes the length of d, according to the number of symbols. Good general
references on the lengths of proofs are [Krajicek 1995] and [Pudlédk 1998].

In this section and the next I will show that in certain circumstances one can
eliminate definitions and/or Skolem functions from a proof d in such a way that
the length of the resulting proof is bounded by a polynomial in |d|. In doing so, I
will not make an effort to compute the exact polynomial; rather, I will repeatedly
appeal to the fact that the set of polynomials in |d] is closed under addition, multi-
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Eliminating definitions and Skolem functions . 3

plication, and composition. Indeed, it will be clear from the proofs that in fact all
the translations considered can be carried out in polynomial time.

By “first-order logic,” I mean first-order logic with equality, in any of the standard
natural deduction calculi, Hilbert-style calculi, or sequent calculi with cut described
in [Troelstra and Schwichtenberg 2000]. By a theorem due to Krajicek, up to
polynomial-time equivalence it does not matter whether we take proofs to be given
by trees or sequences of lines (see Section 4 of [Pudldk 1998], or Section 4.5 of
[Krajicek 1995] for the propositional case). In fact, the proof of Theorem 2.2 only
assumes that there is a representation of ¢ — 1 which uses ¢ only once. If < is
assumed to be one of the basic connectives, one can simplify the central argument
somewhat; but the proof below works in either case.

I will use the following conventions: Z and ¢ denote sequences of variables and
terms, respectively, and typically their lengths can be inferred from the context.
Introducing a formula as ¢(Z) only serves to distinguish the sequence of variables Z,
after which () denotes the result of simultaneously substituting ¢ for #, renaming
bound variables in ¢ if necessary.

Definition 2.1. Let I' be a set of first-order sentences in a language L. Say that
I" has an efficient elimination of definitions if there is a polynomial-time algorithm
that behaves as follows: whenever Ro(Zy), ..., Ri(Zk) are new relation symbols of
various arities, ©o(Zg), - - ., ¢r(Zx) are formulae such that each ¢; is in the language
LU{Ry,...,R;_1}, and d is a proof of a formula ¢ in L from

L' U{VZo (Ro(Zo) < ¢0(Z0)), - - -, V&% (Ri(Tk) < ¢r(Tk))},

then, on input d, the algorithm returns a proof d’ of ) from I' using only formulae
in L.

Note that, in particular, the definition implies that there is a polynomial p such
that each proof d involving definitions is mapped to a proof d’ without them, with
|d’| < p(|d]). This definition is monotone in I': if T has an efficient elimination of
definitions and I D T" then, by the deduction theorem, I has an efficient elimina-
tion of definitions as well. The main theorem in this section is the following:

THEOREM 2.2. {3z,y (z # y)} has an efficient elimination of definitions.

PrOOF. The proof will occupy most of this section. Let Ry, ..., Rk, ©o, - - -, @k, ¥,
and d be as in the definition. We can assume that each of the defining axioms oc-
curs at least once in the proof, since if the axiom for R; does not occur in the proof
we can replace each occurrence of R; by an arbitrary sentence, say Vr (z = z).
As a result, we can assume that k and |pg, ..., |¢k| are all less than |d|, and so it
suffices to bound the length of the final proof by a polynomial in these values.

Let a and b be new constant symbols. It suffices to find an efficient proof of ¥
from {a # b}, since, given a proof of @ # b — 1, we can replace a and b by variables
to obtain a proof of ¢ from Jz,y (x # y).

Put simply, the idea is to use a and b as truth values, and to use first-order
quantifiers to avoid repeating definitions. It will help to consider a simple example
first.

Ezample. Suppose ;11 is the formula R;(5) A —R; (f) We can express @; 1 as an
equivalent formula in which R; occurs only once, in the following way. Let 6(v,v")
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4 : Jeremy Avigad

be the formula
Vi,y (Ri(%) »y=a) = (F=F—y=0)A@T=t—y=1)).
Then ;11 is equivalent to

Vo, v" (0(v,v") — (v =aAv #a)).

This example contains the essence of the entire proof; in particular, 6 plays the
role of the formula FEwval below. In the general case, we have a few additional
concerns:

(1) there may be quantifiers in the various ¢;;
(2) all of the symbols Ry, ..., R;—1 may occur in ¢;; and

(3) < may not be a symbol in the language (using implication twice in the example
above would require another instance of R;).

With respect to item 1, it will help to assume that all the definitions are given by
prenex formulae, and we can do so without loss of generality. If the propositional
connectives are among {A, V, —, —}, this is so because any formula involving these
connectives can be proved equivalent to one that is prenex, with a proof whose
length is bounded by a polynomial in the length of the original formula. On the
other hand, if, say, <> is a propositional connective, one can introduce additional
definitions to abbreviate subformulae and ensure that all the definitions are prenex.
Alternatively, one can first use definitions to eliminate < as in the proof of Corol-
lary 2.5, and then proceed as before.

Henceforth, if 6 is a formula with a relation symbol R(%) and n(¥) is a formula
with the free variables shown, it will be convenient to write 6[n/R] for the re-
sult of replacing each atomic formula R(f) by (). At other times, I will write
O[R(t1,...,tm)] to indicate that an atomic formula R(t,...,t,) occurs in the
quantifier-free formula 6; thereafter 6[n] denotes the result of replacing R(t1, ..., tm)
by 1. While this notation is potentially problematic, the intention should always
be clear from the context.

For notational convenience, we may assume that all of the relations R; have
the same arity. To address item 2 above, we will need a way of representing the
numbers 0, ..., k. To that end, let zg,...,2; be a sequence of variables, write 0 for
the sequence a, b, b, b, ..., 1 for the sequence b,a,b,b, ..., and, more generally, j for
the sequence of length k£ + 1 that has an a in position j and b’s elsewhere.

Finally, to address item 3, we will represent both positive and negative instances
of each definition.

Our strategy will be to define a sequence of formulae ¢o(Z,u,Z),...¢r(Z,u, ),
with length bounded by a polynomial in |d|, such that for each ¢ < k the following
equivalences are all provable from a # b:

—$i(4,a,%) < pi_1(j,a,T), for each j < i

—$i(4,b,7) < =p;_1(j, a, T), for each j < i

—VT (@i, a,7) < 9i(Z)[pi-1(0,a,7)/Ro, ..., pi—1(i — 1,a,7)/Ri—1])
—VZ (¢i(1, b, ) = ~pi(D)[Pi-1(0,a,7)/Ro, ..., pi—1(i — 1,a,T) /Ri_1]).

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.



Eliminating definitions and Skolem functions . 5

In other words, for each i and j <4, ¢;(j,a, ) is an efficient representation of R;,
and ¢;(4,b, ) is an efficient representation of —=R;. As noted above, we will use
quantifiers and equality so that only a single instance of ; is used in the definition
of ¢;+1. Note that the clauses above imply that for each ¢ and j < 4, we have
@i(jv a, f) e _'Szi(.j7 b7 f)

The construction. The sequence ¢y, ..., Py is defined recursively. Start by taking
?o(Z, u, T) to be the formula

(u=1a— po(Z)) A (u="b— —po(Z)).

For i > 0, assuming ¢g,...,»;—1 have been defined, the following shows how to
determine ;. Since we are assuming that all the definitions are prenex, ¢;(%) is of
the form

QY1 - - - Qumym E[Ro(to0)s-- -, Ro(tose)s-- -, Rii(fim1,0),-- -, Rica(ficig, )],
where ¢ is quantifier-free and the sequence in square brackets shows all instances
of atomic formulae in ¢ involving Ry, ..., R;—1. In general, the sequences of terms
t;p depend on the quantified variables y,. ..,y as well as the free variables & of

©;, but I will not display these variables explicitly. Our task is to write down a
formula ¢;(Z, u, &) such that

(1) for each j < i, $;(j,a,T) is equivalent to ¢;_1(j, a, T);

(2) for each j < i, ¢;(j,b,T) is equivalent to —~@;_1(j, a, Z);

(3) ili,a,T) is equivalent to the displayed formula above, with each R; (tjp) Te-
placed by ¢;—1(j,a,t;,);

(4) ¢;(i,b,T) is equivalent to the negation of the formula just described; and

(5) in the definition of ¢;, $;—1 is used only once.

Ttems 1-4 are just a restatement of the desiderata indicated above; 5 will ensure
that the ¢; can be constructed in polynomial time.

In order to do 3 and 4 simultaneously, we need duplicate copies of some of the
variables and terms. Let Qf,...,Q), denote the quantifiers dual to Q1,...,Qm.
Pick a new sequence of variables y1,...,y,,, and let
t

) ] nj
L0005 t0,00 -+ s tic1,00 - bic1 1,y

denote the sequences of terms obtained by replacing the yi,...,ym by ¥i,..., ¥},
in each t;,. Finally, let

V0,05« +-5V0,lgs -+ > Vi—1,05--+5Vi—1,0;_1
/ / / /

UO,O’ e ’U07l07 N ’Ui—1707 N 7Ui—l,lr571
" "

Vgy--r Vi1

be sequences of new variables. We will use the variables v;, to represent the
truth values of @i_l(j,a,zg;7p), the variables v} , to represent the truth values of
cﬁi_l(g,a,t_;}p), and the variables v to represent the truth values of Gi—1(4,a,7),
where the “truth value” is a if the corresponding formula is true, and b if it is false.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.



6 : Jeremy Avigad
The formula ¢;(Z, u, Z) is defined to be

Qlyl s mem Qllyll ce Q'/m,y':n V’J, 17/3 7" (Eval({)', 17/7 1—)»//) -

/\(Z:j/\uza—wé’za)/\/\(i':j/\u:bﬁvg’#a)/\

j<i j<i

(F=tAu=a— @voo=0a,...,00,1y =0, ...,0-10=0,...,Vi—1,_, =a]) A
pod =~ ~ / / / /
(Z=ihNu=b— 2@y =a...,0 1) = Q.. Vi 10=0...,Vi_1,, :a]))

= = 3

where Eval(U,v’,7") is the formula

VFVs € {a, b} Vi@ (@i,l(r—’,s,zﬁ) S NF=FAG=F >0 =) A

j<i
/\ /\ (FZ}A@E:{J@_’UMJ—S)/\
Jj<ip<l;
/\ /\(f’:}/\ﬁ:lp U;szs))
Jj<ip<l;

Here Vs € {a,b} 6 abbreviates Vs (s = aV s = b — §). Note that Eval(¥,7,7")
also depends on the free variables &, ¢, 7" (because the terms t;, and t , do), but
I will continue to leave these variables implicit.

First, let us check that each ¢;(&;, u) satisfies the right equivalences, and then
let us worry about the length. Inductively we know, for each j <17 — 1, that

vz (@ifl(jv a, f) A _'327271(37 ba ‘f))
is provable from a # b. We can use this to show

vz, 30,7, 7" Budl(,v, ")

as well as
Vi, 7,7, 7,7, 7" (Eval(ﬁ,ﬁ’,ﬁ”) — A\ =a o ¢ima(Ga,@) A
71<4
A N @Wip=a = @i 1(j,a,Tj,) A
j<ip<i;
A A, =aediaGad,)).
§<i p<l;

But then, going back to the definition of ¢;, we see that for j < i, ¢;(j,a,T)
is equivalent to @;_1(j,a,¥), and ¢;(j,b,T) is equivalent to —~@; _1(J,a,Z). Also,
$i(i,a, T) is equivalent to

Qlyl .. mem¢[¢z—l(67 a, t_'0,0)7 DI @i—1(67 a, t_z),lo)y CE)

Sbifl(i - 17a/7t_'ifl,0)7 ceey @i*l(i - 1a aat_;fl,lifl)]
and so we have

@Z(z’ avf) A (pi(f)[@ifl(ﬁ’avf)/ROa BERE) 952'71(2' - ]-vaa f)/Rifl};

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.



Eliminating definitions and Skolem functions . 7

and @;(i,b, T) is equivalent to
Qllyll "’Q;ny;nj@[@ifl(aa t_y ) e Pi 1(6 tOl )
¢i,1(i—1,a,f;,1,0),...,g0 1(2_1 a7 i—1,0;— )]

and so we have

@i, 0, %) < ~i()[@i-1(0,a,7) /Ro, . .., i1 (i — 1,0, 7) / Ri1],

as required.

As far as length is concerned, it is not hard to check that the number of symbols
occurring in ¢; apart from the instance of ¢;_; can be bounded by a polynomial
in |d| (in fact, even a linear one). In other words, there is a polynomial p such that
for each i we have |@;] < p(|d]) + |$i—1|, and hence |¢;| < (i + 1)p(|d|) < |d|p(|d])-
It is not hard to see, moreover, that the ¢; can be constructed in time polynomial
in |d|. Similarly, one can efficiently construct proofs of the necessary equivalences,
and there are only polynomially many of them. Translating the original proof is
now straightforward, using @ (i, a, ) in place of R;(Z¥) for each i.

This completes the proof of Theorem 2.2. d

We have handled the case where there are at least two elements in the universe.
On the other hand, on the assumption that there is only one element of the universe,
we are reduced to propositional logic.

PROPOSITION 2.3. {Vx,y (x = y)} has efficient elimination of definitions if and
only if the corresponding assertion holds for propositional logic.

PROOF. Assuming Vz,y (x = y), every atomic formula R(t1, ..., %) is equivalent
to R(c,...,c), where cis the only element of the universe; t; = t is always true; and
quantifiers have no effect. To be more precise, let “the propositional simplification
of ¢” denote the result of deleting all the quantifiers in v, replacing all atomic
formulae R(t1,...,t;) by a propositional variable R, and replacing t; = t2 by a
fixed tautology. Then any first-order proof of Va,y (z = y) — 1 can be translated
efficiently to a propositional proof of the propositional simplification of v, and vice-
versa. (]

This implies that the general problem of eliminating definitions from proofs in
pure first-order logic is as hard (and as easy) as the propositional case.

THEOREM 2.4. () has an efficient elimination of definitions if and only if the
corresponding assertion holds for propositional logic.

PRrROOF. It is a straightforward exercise to check that {¢ V ¢} has an efficient
elimination of definitions if and only if {¢} and {¢'} both do. In particular, () has an
efficient elimination of definitions if and only if {Vz,y (x = y)} and {3z, y (z £ y)}
do. O

The question as to whether one can eliminate definitions from propositional logic
efficiently (or even with a polynomial bound on the length of proof) is a major open
problem in proof complexity; see [Krajicek 1995; Pudlak 1998].

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.



8 : Jeremy Avigad

As a corollary of Theorem 2.2, we have that one can eliminate < from standard
proof systems in polynomial time. For propositional proof systems the proof (due
to Reckhow, using a method by Spira; see [Krajicek 1995]) is considerably more
difficult.

COROLLARY 2.5. With any of the standard proof systems for first-order logic
with equality given in [Troelstra and Schwichtenberg 2000], one can eliminate the
propositional connective < in polynomial time.

PRrROOF. By Theorem 2.2, it suffices to show that one can eliminate < efficiently
in the corresponding proof systems with definitions. Use definitions to translate
formulae in the language with « to the language without: translate (@) < (%)
to (Ry(W) — Ry(2)) A (Ry(2) — Ry(w)), where R, and Ry are defined to be
equivalent to the translations of ¢ and v, respectively. It is not hard to justify the
translated inferences efficiently. O

3. ELIMINATING SKOLEM FUNCTIONS

The following is the analogue of Definition 2.1 for Skolem functions.

Definition 3.1. Let I' be a set of first-order sentences in a language L. Say that
T" has an efficient elimination of Skolem functions if there is a polynomial-time
algorithm that behaves as follows: whenever fo(Zy), ..., fx(Zk) are new function
symbols of various arities, ¢o(Zo,y),. .., pr(Zk,y) are formulae such that each ¢;
is in the language LU {fo,..., fi—1}, and d is a proof of a formula ¢ in L from

LU Vo, y (vo(Z0,y) — @o(To, fo(Z0))),-- -,
V&g, y (or(Tr, y) — 0k(@r, fo(ZT1))) )

then on input d the algorithm returns a proof d’ of ¢ from I' using only formulae
in L.

Once again, the definition implies that |d’| is bounded by a polynomial in |d|.
Right off the bat, we have the following.

PROPOSITION 3.2. {Va,y (x = y)} has an efficient elimination of Skolem func-
tions.

PrOOF. Roughly speaking, if ¢ is the only element of the universe, every term
can be replaced by c. O

By way of motivation, note that is not hard to show that, say, Zermelo-Fraenkel
set theory has an efficient elimination of Skolem functions. Argue as follows. Sup-
pose d is a proof of a formula v from the axioms of ZF and some Skolem functions.
Let k& be a bound on the complexity of the formulae occurring in this proof. In
ZF, one can prove that the set of true sentences of complexity at most k + 1 is
consistent, and hence has a countable model. This countable model has Skolem
functions, which can then be used to interpret the proof d.

This example suggests that one way to proceed is to try to determine how little
one can get away with in carrying out an internal semantic argument of this kind.
The answer turns out to be: very little.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.



Eliminating definitions and Skolem functions . 9

Definition 3.3. Say a set of sentences I' codes finite functions (efficiently) if for
each n there are

“ho.

—a definable element, “0,,”;

—a definable relation, “xq,...,Zn_1 € dom,(p)”;
—a definable function, “eval,,(p, xo,...,xn-1)"; and
—a definable function, “p @&, (xo,...,Tn-1—y)”

such that, for each n, I" proves

—Z & domp(0y,)

—G € domy(p @y (T y)) < (W € dom,(p) V6 = T)
—evaln(p&n (¥ —y), %) =y

— £ T — eval,(p @y, (T — y), W) = eval, (p, W),

and such that all the definitions and proofs can be constructed in time polynomial
in n.

Of course, the intuition is that elements of the universe are assumed to code finite
partial functions p, @, is the function that is nowhere defined, eval, (p, Z) returns
the value of p at &, p®,, (¥ — y) is the modification of p which maps Z to y, and so
on. One could, more generally, assume that the codes are elements of a definable
set; but then nothing is lost by taking the other elements of the universe to code
the empty function.

These requirements are not strong ones. For example, any sequential theory of
arithmetic (in the terminology of [Hdjek and Pudldk 1993; Krajicek 1995; Pudldk
1998]) codes finite functions, since one can take such functions to be sequences of
tuples (Z,y). Below I will drop the subscripts n in 0,,, dom,, etc. and I will write
p(Z) instead of eval(p,Z). By passing to a definitional extension, we can assume
that these are actually given by symbols in the language.

THEOREM 3.4. Suppose I' codes finite functions. Then T' has an efficient elimi-
nation of Skolem functions.

PrOOF. The proof will occupy most of the remainder of this section. By Propo-
sition 3.2 we can assume that there are at least two elements in the universe, and
so, by Theorem 2.2, we can use definitions freely. By way of exposition, I will first
focus on the case where k = 0, i.e. there is only one Skolem function to eliminate.
(This part does not require definitions.) Then I will discuss the steps necessary to
eliminate multiple, possibly nested instances Skolem functions. (This is the part
that requires definitions.)

Suppose we want to eliminate the use of a single Skolem function, with defining
axiom VZ,y (o(&,y) — ¢(&, f(x))). Let Ly denote the language L U {f}. I will
define a forcing relation in L, for formulae in L. I will then show that I" proves that
the Skolem axiom is forced; and that anything in the original language is forced if
and only if it is true. Given a proof d of ¢ from I" together with the Skolem axiom,
then, I' proves that 1 is forced, and hence true.

Now for the details. Let the formula Cond(p) in the language L assert that p is
a finite approximation to a Skolem function for ¢, that is,

vz € dom(p) Vy (¢(Z,y) — ¢(Z,p(2))).
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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Let ¢ be a term in Ly, and let p be a variable not occurring in ¢. Inductively we will
define a term tP in the language of L, whose free variables are those of ¢ together
with p. Intuitively, ¢ is the value of ¢, when f is interpreted by p. At the same
time, we will define a relation “tP is defined,” asserting that the value of t? makes
sense. Let

—aP = z, for each variable x (other than p),

—(g(to, .- tm))? = g(th,...,t2,), for each function symbol g of L, and
—(f(to, -, tn))? = p(t, - -, 1h).

Define “tP is defined” inductively as follows:

—“xP is defined” is always true.

—“(g(toy...,tm))? is defined,” where g is a function symbol of L, is true if and
only if t},...,t?, are all defined.

—“(f(to,--. tn))P is defined” is true if and only if ¢5,... & are all defined and
th,...,t0 € dom(p).

If p and ¢ are conditions, say p < ¢, “p is stronger than or equal to ¢”, if p extends
q as a function:

VZ (£ € dom(q) — T € dom(p) A p(Z) = q(Z)).

Now we can define the relation p I 6 inductively. We can assume that the language
has connectives A, —, V, and =, with 3 and V defined from these in the usual way.

(1) pIF R(to,...,tm) if and only if Vg < p Ir < ¢ (t,...,t!, are all defined and
R(th, ... t0))-

(2) plF@ Anif and only if pl- 6 and p I 7.

(3) plFO — nif and only if Vg < p (¢ IF 0 — ¢ IF 7).

(4) plF =6 if and only if Vg < p ¢ Iff 6.

(5) plkVz 0 if and ouly if Vz p I 6.

The quantifiers involving ¢ and r above are intended to range over conditions, so,
for example, Vg < p ... abbreviates Vg (Cond(q) Aq = p — ...). For each 6, the
relation p IF 6 is a formula in the language of L whose free variables are those of 6
together with p. Note that the length of p I 6 can be bounded by a polynomial in
|0] (as well as in |¢|, which is being held fixed for the moment).

The phrase “f is forced” and the notation I 6 abbreviate Vp (Cond(p) — p IF 0).
In the lemmata that follow, p,q,r ... are assumed to range over conditions. Most of
the proofs are routine and standard, modulo the additional notes provided below.
It is important to recognize that the all the proofs alluded to in the statement of
the lemmata can be constructed in time that is polynomial in the length of the
assertion being proved, but having stated this up front, I will not bother to repeat
it each time.

LEMMA 3.5 MONOTONICITY. For each formula 6 of L¢, I' proves
plFEOANg=p—ql-0.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.



Eliminating definitions and Skolem functions : 11

LEMMA 3.6. For each formula 0 of Ly, I' proves
plFd —Vg=<pIr=qrli-6.
COROLLARY 3.7. For each formula 0 of Ly, I' proves
Ik (0 « ——0).
LEMMA 3.8. For any term t of L¢, I' proves
Vg 3r < q (t" is defined).

PrOOF. Use induction on the term ¢. The only interesting case is where ¢ is
of the form f(sg,...,sx). By the induction hypothesis, we can find an ' < ¢

such that s{) ,...,52/ are all defined. If 56/, ceey 52/ € dom(r'), take r = /. Other-
wise, if Jy @(36/, .. .752/,1/)7 let r =71 @ (36/, .. .,sg — y), for any such y; and if
Yy —mp(sgl, .. .,s?,y), let r =7 @ (56/, .. .,szl — y), for any y at all. O

The next two lemmata are proved by induction on s and 6, respectively.
LEMMA 3.9. Ift and s(x) are any terms of Ly, T' proves
P =z — (s(t)? = s(2)P)
LEMMA 3.10. If0(x) is any formula of Ly and t is any term of Ly then I proves
(t? is defined NtP = z) — (p - 0(t) < p Ik 0(2)).

LeMMA 3.11. For each formula 6 of Ly, if 6 is provable in classical first-order
logic, then T' proves |- 6.

PROOF. The proof is for the most part standard and routine, though one has to
be a little bit careful with the quantifier axioms and rules since terms might not
always be “defined.” To show Vz 6(x) — 6(t) is forced, let us argue in first-order
logic from assumptions in I'. Suppose p Ik Vz 6(z). By Lemma 3.6 it suffices to
show Vg < p Ir < ¢ 6(t). So suppose ¢ =< p, and by Lemma 3.8 let r < g be such
that ¢" is defined. Let z = ¢". By monotonicity, r IF Va 0(x), so r IF 6(z). By
Lemma 3.10, r I 6(¢). O

A formula in the original language is forced if and only if it is true.

LEMMA 3.12. For each formula 6 of L, T proves (p - 0) < 6.

ProOF. Induction on 6. O

The next lemma is the important one: it asserts that the Skolem axiom is forced.
LEMMA 3.13. T proves - VZ,y (o(Z,y) — o(Z, f(Z))).

PROOF. Once again, argue in first-order logic, from I'. Suppose for some Z,y
we have p IF o(Z,y). By Lemma 3.12, ¢(Z,y). By Lemma 3.6, it suffices to show
Vg = p Ir < qr Ik (@ f(Z)), so suppose ¢ = p. If Z € dom(q), the fact that
q is a condition guarantees ¢(Z, f(Z)), and we can take r = ¢; otherwise, take
r=q® (¥ y). Either way, as above, we have r IF (&, f(Z)), as required. O
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Proof of Theorem 3.4, for a single Skolem function. Suppose there is a proof d of a
formula ¢ in the language L from finitely many sentences in I' U {VZ, y (¢(Z,y) —
o(Z, f(x)))}. By Lemma 3.11, T’ proves that this implication is forced. By Lem-
mata 3.12 and 3.13, I" proves that all the hypotheses are forced, so I' proves that
1 is forced as well. By Lemma 3.12, T" proves .

Since each component of the derivation just described can be constructed in time
polynomial in |d|, so can the entire proof. O

To extend the proof to arbitrary nested definitions of Skolem functions, we need
to iterate the forcing definition. A similar iteration was used in [Avigad 1996]; the
situation here is easier, since we only have to deal with finite iterations.

Let d, fo,---, fx, @0, - -, @k be as in Definition 3.1. For each i < k, we will define
the notion of an ¢-condition, an ordering <; on i-conditions, and a forcing relation I-;
between i-conditions and formulae 6 in the language LU{ fo, ..., fi}. An i-condition
consists of a sequence pg,...,p; of finite functions, with arities corresponding to
those of fo,..., fi. As expected, po,...,p; =i qo,...,q means that each p; extends
qj, as above.

The two notions Cond; and IF; are defined simultaneously, by recursion on
i. Condy(p) and p I 6 are defined as above, in the case where there is only
one Skolem function. Assuming Cond; and IF; have been defined, the relation
Condi+1(po, - - ., pit1) is defined by

Condi(p()a cee 7p1) /\p07 Y 2 H_z
VZiy1,y (Tip1 € dom(pit1) A @(Fiv1,y) — @(Tiv1,p(7)))-
In the atomic case, assuming that tg,...,%,, are terms in the language of L U
{fo,---, fix1}, the relation py,...,pir1 Fix1 A(to, ..., tm) is defined by
V@<= pIF=q{t5,... 17 are defined and A(t),...,t" ).

The forcing relation is then extended to arbitrary formulae in the language as above.
Notice that the relation IF; is used in the definition of Cond; 41, which is in turn used
to define IF;41. By introducing new relation symbols to represent the definitions
of Condy, ..., Condy, we can bound the lengths of all the formulae involved by a
polynomial.

LEMMA 3.14. For each i < k, Lemmata 3.5-3.11 hold for i-conditions, <;, and
IF;.

LEMMA 3.15. For each i < k, if 0 is in the language L U {fo,..., fi}, then T
proves the following:

DPos -5 Pk |Fk 0<—>p05"'7p1' ‘Fv 0.
LEMMA 3.16. For each i < k, I proves that the ith Skolem axiom is k-forced.

Once again, the relevant proofs can be constructed in time polynomial in |d|. The
proof of Theorem 3.4 now follows exactly as in the case of a single Skolem function.
O

If @ and b are distinct and f is a Skolem function for (p(Z) Ay = a) V (—¢(Z) Ay =
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b), then f(Z) = a serves as a definition for ¢(Z). As a corollary to Theorem 3.4 we
have the following;:

COROLLARY 3.17. Suppose T' codes finite functions and proves Jx,y (x # y).
Then one can eliminate arbitrary nested instances of definitions and Skolem func-
tions from proofs in I', with a polynomial bound on the increase in the lengths of
proofs.

4. QUESTIONS

In standard terminology (e.g. [Krajicek 1995; Pudldk 1998]), Section 2 shows that
one can eliminate definitions from proofs in first-order logic in polynomial time
if and only if extended Frege systems for propositional logic can be p-simulated
by Frege systems. As noted above, whether or not this is the case is still open.
Section 2 shows that Theorem 2.2 and Corollary 2.5 hold for first-order logic with
equality. What can one say in the absence of equality?

It is also still open as to whether one can efficiently eliminate even a single Skolem
function from proofs in pure logic, or from theories that do not code finite functions.

The elimination of definitions in Section 2 used the law of the excluded middle.
As a result, it is open as to whether one has an efficient elimination of definitions
in intuitionistic first-order logic. (See also [Schwichtenberg 1979] for a discussion of
choice functions in the intuitionistic setting.)
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