

MetaMorphMagi:
From Offline to Online Software Upgrades in Large-Scale IT Infrastructures

Tudor Dumitraş Jiaqi Tan Priya Narasimhan

June 20, 2007
CMU-CyLab-07-008

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

MetaMorphMagi:
From Offline to Online Software Upgrades in Large-Scale IT Infrastructures

Tudor Dumitraş Jiaqi Tan Priya Narasimhan
tudor@cmu.edu jiaqit@andrew.cmu.edu priya@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA 15217

Abstract

Software upgrades are one of the leading causes
of downtime in IT infrastructures. Long running data-
migration processes require intensive up-front
preparation, extended maintenance windows and close
monitoring, and they impose a significant burden on the
system administrators. Even worse, major upgrades
sometimes fail due to complex, hidden dependencies
within the system, causing unplanned downtime and
loss of critical data. In this paper, we propose a
technique for converting an offline data-migration
process into a dependency-agnostic online upgrade that
requires minimal administrative intervention and that
eliminates the need for planned downtime. We illustrate
our technique by walking the reader through a
hypothetical, but realistic online upgrade scenario in a
medium-sized IT infrastructure – namely, hot-swapping
the wiki software that underlies Wikipedia with an
entirely different wiki engine.

Prologue
In November 2003, the upgrade of a customer
relationship management (CRM) system at AT&T
Wireless backfired, causing chronic downtime in
several key systems, which affected thousands of
customers. The CRM system depended on 15 different
legacy systems, and the federally-mandated Nov 24th
deadline for implementing wireless-number portability
required the system to be integrated with the IT systems
of other companies. The complex dependencies of the
CRM system on various legacy back-ends became
unmanageable, and the integration proved too difficult
to test in a realistic offline environment. As the deadline
approached, IT managers considered rolling back to the
old CRM software; however, they had not preserved
enough of that previous system, and were forced to go
forward with the upgrade. When the first number-
porting requests arrived, the system broke down,
creating a ripple effect that disabled other AT&T
systems. Number-portability requests were not handled
automatically, error messages were not recorded
(making post-upgrade manual resolution difficult), the
CRM system was down and customer-service

representatives were unable to help the estimated
50,000 new customers per week who were trying to
activate their service. The negative side-effects of the
upgrade persisted for 3 months. All said and done, the
failed upgrade cost AT&T Wireless $100 million and
damaged the company’s reputation, with dire
consequences for the future of the company [1].

 The misadventure of AT&T Wireless teaches us two
important lessons about software upgrades. The first
lesson is that major upgrades are hard and risky.
Industry analysts indicate that "an average of 80 percent
of mission-critical application service downtime is
directly caused by people or process failures," which are
usually related to change management [2]. A study
conducted in 1998 at 426 sites found that planned
outages for performing change management operations
accounted for 75% of 5921 outages and that this
fraction increases over time [3]. The ability to perform
such changes online, with no downtime and minimal
human intervention, ranks high on the wish list of IT
administrators and service providers. An online upgrade
is a change in the behavior, configuration, code, data or
topology of a running system [4]. Online upgrades form
an essential building block for achieving the holy grail
of self-regulating, autonomic management of large
enterprise systems.

The second lesson is that dependencies are hard to
manage in complex IT infrastructures. Every user of
modern operating systems is painfully familiar with a
phenomenon colloquially known as “DLL Hell” [5].
This involves the user having to disentangle and
decipher the dependencies between shared libraries,
upon the installation or upgrade of any application.
These dependencies are not always well documented,
and they are very hard to track. In distributed systems,
there emerge additional sources of dependencies due to
the applications’ reliance on specific networking
protocols, middleware, routing paths or performance
levels. In general, complete dependency information
cannot be detected automatically [6, 7]. We have
previously introduced a protocol, not based on
dependency tracking, for performing online upgrades
with no data loss and minimal downtime [8].

In this paper, we present MetaMorphMagi (M3), a
technique for converting a standard offline-upgrading
process into a dependency-agnostic online upgrade. We
target major upgrades of large-scale enterprise systems,
where we replace an entire IT infrastructure with a new
system (or with a new version that is substantially
different from the old one) that might exhibit
differences in topology, dependency tree, data layout
and performance profile. M3 can convert an offline
data-migration process into a long-running, but fully
automated, online upgrade. This technique can be
applied if four conditions are satisfied:

• We must be able to stop the data-migration process
and resume from where we left off. This is also the
minimal requirement for recovering from failures
that interrupt the data migration.

• We must be able to monitor the flow of requests
and analyze their effect on the system’s persistent
data. This helps us to avoid data staleness by re-
transferring any updated items on the fly.

• We must be able to read the data from the old
version without disrupting the functionality of any
running applications using the old version. This
requirement means that we cannot lock down any
database tables or overload running servers.

• We must be able to “lock” the system for writing
(read queries may still go through) and flush all the
in-progress updates. This allows us to enforce a
brief period of quiescence before switching over to
the new version.

We avoid the problem of tracking dependencies by
isolating the new version from the old one. We install
the new version in a “parallel universe” – a separate
physical or virtual infrastructure that cannot
communicate directly with the old version. Since this is
a fresh installation, the links between the new system’s
components are created through the usual installation
process rather than by attempting to reproduce and
maintain the dependencies from the old system. The old
system is functional during the upgrade and remains
intact afterwards, allowing the administrators to roll
back the upgrade if necessary. We trickle the persistent
data into the new system’s data store while the old
system is running and servicing requests.

The primary contribution of this paper is a novel
technique for converting an offline data-migration
process into an online upgrade counter-part. The
resulting upgrading process does not rely on a complete
knowledge of the dependencies from the IT
infrastructure and it uses the protocol introduced in [8].
Our goal in developing and presenting this approach is
to leverage and complement existing best practices for
major upgrades of IT infrastructures, instead of

substituting them with an incompatible process that re-
invents the wheel.

For the sake of clarity, we illustrate each step of our
conversion technique with an example taken from a
case study that considers a credible, albeit hypothetical,
upgrade of a well-known IT infrastructure. Wikipedia is
a medium-sized (around 250 machines), three-tiered IT
infrastructure that supports multiple services and relies
on a couple of data-stores in the backend [9]. We
address the problem of upgrading the software
underlying Wikipedia [10] to a radically different wiki
engine [11]. We explain the fundamental differences
between these two systems (for instance, the new wiki
engine stores its persistent data in a flat filesystem
rather than in a database), and we show how to perform
the data migration through an online upgrade.

This is a story that unfolds in five acts: in Act 1 we
present the upgrade problem by describing the
Wikipedia infrastructure and data, as well as the major
differences between the old and new wiki engines. In
Act 2 we analyze the data migration process required
for an offline upgrade. In Act 3 we show the additional
steps needed for performing the upgrade online, while
the old infrastructure is still servicing requests. In Act 4
we discuss the requirements for running the old and
new infrastructures in parallel, in order to cross-validate
the upgrade, and in Act 5 we survey related approaches.
We conclude by summarizing our main contributions.

1 From M to T: the Wikipedia Adventure
Wikipedia (www.wikipedia.org) is a popular Web
site providing a multi-language, free encyclopedia.
Wikipedia has 5 million articles, which generate peak
request rates of 30,000 HTTP requests per second (500
Mb/s incoming and 3 Gb/s outgoing traffic). Each
article is edited 22 times on average over its lifetime.
This generates about 3 database updates each second.
This workload is supported by a multi-tiered
infrastructure with file servers and databases in the
backend, running on 253 servers located in 4 data
centers worldwide. The current size of the database is
15 GB, not including images and other media files that
are stored on a distributed filesystem.1

Figure 1 shows the Wikipedia infrastructure [9]. The
front-end has 67 caching proxies (running Squid [12]),
which are accessed using round-robin DNS. The
proxies serve approximately 75% of the Wikipedia

1 These numbers are accurate as of May 2007, but
Wikipedia grows at an exponential rate. For instance, in
the English-language Wikipedia, the number of articles
(currently 1.8 million) has doubled every 346 days.
Wikipedia used 39 servers in 2005 and 1 server in 2004.

content, handling most of the page requests made by
visitors who are not logged in. The proxy cache-misses
are forwarded to a cluster of 150 Apache web servers
[13], load-balanced using LVS [14].

The web servers generate the content of the pages
using a wiki engine called MediaWiki [10], which is
implemented as a set of PHP scripts. MediaWiki
retrieves the text of an article from a MySQL database,
running on 18 servers in a master-slave configuration,
and the images and media files from a remote NFS
filesystem. The web servers also use PHP accelerators
that cache compiled PHP scripts. While most requests
come from external search engines such as Google,
Wikipedia also has 18 load-balanced search servers that
run the Lucene indexing and search software [15].

For upgrading to a new version of itself, MediaWiki
provides a script that inspects the database schema and
converts it to the new format; this is a relatively simple

upgrade because it only involves the configuration files
of the MediaWiki software and the database layout.
Instead, we investigate a major upgrade scenario,
namely, switching to completely different wiki engine,
TWiki [11]. TWiki is implemented in Perl, it uses a
different data layout and it does not rely on a database.
Instead, TWiki stores all of its persistent data on a
filesystem with RCS versioning [16]. While upgrading
this infrastructure, we also re-design the entire multi-
tiered architecture to optimize it for the new wiki
engine. While this scenario is not entirely realistic for
our example (the MediaWiki software is developed
specifically for Wikipedia), it is common in the IT
industry to upgrade when business reasons dictate a
switch to a different vendor.

em ail

w iki text

database dum ps

w iki m edia
content

Internet

ragweed
squid

(Netherlands)

sage mint

mayflower

vandale

iris

clematis

lily

hawtorn

fuchsia

avicenna

load
balancers

apache
web servers

search

yf1017

search
servers

vincent

maurus coronelli

update
index

database
dum ps

holbach

ixia

lomaria

thistle

webster

db4

db3

db2

db1

adler

database
slaves

master
database

henbane
dryas

master
databases

database
slave

(Korea)

samuel

ariel

other
wikis

english
wikipedia

(Florida)

asian wikis

105
servers

alrazi

yf1018

N FS Storage
Servers

suda amane

amaryllis

m ulti m edia
files

sq7

korean squids

sq6

sq5

sq4

sq8

yf1002

yf1000

sq3

yf1001

yf1003

yf1004

will

sq1

sq2

srv8 srv7

srv6

srv5

sq10sq9

srv9

srv10

miscellaneous
tasks

zwinger
gangl ia,

m isc stuf f

zedler
tool server

m iscel laneous
content

pascal
m ail,

bugzi lla,
m isc

pascal

H TM L
m ulti m edia files

bart browne
IRC botsOTRS,

nagios

squids

2006−05−09

Figure 1. The Wikipedia infrastructure in May 2006 (from http://en.wikipedia.org/wiki/Wikipedia). In May 2007 the
infrastructure has a similar architecture, but the number of servers has increased by 64% to sustain a 100%
increase in the incoming load.

1.1 A Tale of Two Wikis: M(edia) & T Wiki
Both MediaWiki (MW) and TWiki (TW) provide
similar wiki functionality. Both systems allow visitors
to view and edit the content of articles, called “pages”
in MW and “topics” in TW, which are organized in
“namespaces” in MW and “webs” in TW. There are,
however, considerable differences between the two
wikis stemming from the fact that they target different
user groups. MW is designed to support the world’s
largest encyclopedia, with the goal of allowing a large
number of users to access and modify content
concurrently (according to the statistics from alexa.com,
Wikipedia is one of the 10 most popular sites on the
Web). TW aims to support enterprise collaboration
platforms by providing structured content in a corporate
setting and by allowing administrators to create
customized applications based on the wiki engine.

We have classified the differences between MW and
TW into six categories: semantic, behavioral,
transmutability, interface, implementation and quality-
of-service (QoS). These categories are relevant for
different steps of the upgrade: the offline migration
process handles the semantic differences, QoS and
implementation differences are important during an
online upgrade, interface and transmutability
differences have to be handled when switching over to
the new system, while behavioral differences become
relevant when trying to run the new and the old system
in parallel for validating the upgrade.

1.1.1 Semantic differences refer to persistent data (or
meta-data) that has different meanings in the two wikis.
Typically, this would be a data item from one wiki that
has no semantic equivalent in the other one. Examples
of semantic differences between MW and TW are:
• Access-control. TWiki provides a fine-grained

access-control system, with access-control lists
(ACLs) at the system, web and topic levels, while
MediaWiki has more detailed permissions (e.g.
createtalk or undelete) that apply system-
wide and that require modifications to the
configuration files and the database.

• Talk pages. In MediaWiki, each regular page has a
talk page associated, where users can discuss the
subject of the article. There is no semantic
equivalent in TWiki. In practice, TWiki users
create a "Discussion" section at the bottom of a
page that serves the same purpose, but there is no
way to specify that the content of this section has a
special meaning.

• Logging the reason for edits. The users of MW can
record the reason for creating a new revision, while
TW doesn’t maintain such metadata.

• Hierarchical structure. Each topic in TW has a
TOPICPARENT, creating a hierarchical structure.
MW pages are organized in flat namespaces.

1.1.2 Behavioral differences refer to similar actions
that lead to different outcomes in the two wikis. These
differences are visible to the users of the wikis.
Semantic differences may induce behavioral
differences: for instance, due to the dissimilar access
control schemes, a request to edit a page can have
different outcomes in MW and TW. Moreover, many
configuration settings affect the behavior of the wikis,
creating behavioral differences. Examples of behavioral
differences between MW and TW are:
• Searching for a page. If a page with the requested

title is not found, MW displays the Web form to
start editing that page (although this behavior is
configurable). TW presents a message informing
the user that the page does not exist.

• Undeleting pages. In TW, deleted pages are stored
in the Trash web and can be restored together with
all their revisions. In MW, a deleted page can be
restored by moving it out of the archive table,
but it is impossible to cleanly restore the entire
page history because the old page id connecting all
the revisions is not recorded.

• Anonymous edits. By default, MW allows
anonymous users to edit pages (recording the IP
address of the user as the source of the edit). TW
requires users to be loged in before editing
anything.

1.1.3 Transmutability differences refer to equivalent
data items in the two wikis, but that cannot be converted
form one format to the other. For example, passwords
encoded through a one-way hash function cannot be re-
encoded or converted to a different format.

1.1.4 Interface differences refer to actions or data that
have equivalent or similar semantics in the two wikis,
but that are accessed through different names or APIs.
Examples of interface differences between MW and
TW are:
• URLs. The paths and URLs used to retrieve articles

are different in MW and TW.
• WikiWords. In MW, users and articles may have

arbitrary names; in TW, all these names must be
WikiWords (words that contain at least two capital
letters and no spaces, e.g. WikiWord).

1.1.5 Implementation differences refer to similar
functionality implemented in different ways in the two
wikis. MW and TW are implemented in different
programming languages (PHP and Perl, respectively),
and the implementations have very little in common
(one exception from this is that both wikis ultimately

rely on the GNU diffutils for comparing page
revisions). Some of these differences are relevant for
the upgrade process, for example:
• Datastore. MW uses a database and a filesystem in

the backend, while TW uses a filesystem with RCS
versioning.

• Page Histories. MW stores the entire text of all the
past revisions (compressed in some cases), while
TWiki stores them as reverse diffs (provided by
RCS).

1.1.6 QoS differences refer to throughput and
response-time disparities between the two wikis. These
are heavily dependent on the software and hardware
configuration: configuration settings for the wikis, web
servers, databases, the use of PHP accelerators and Perl
in-memory interpreters, caching, memory available and
CPU speed, etc. While the differences from the first five
categories are due to the design of the two wiki engines,
QoS differences also derive from the properties of the
corresponding IT infrastructures.

2 Offline Upgrade: On the Care and
Feeding of a Baby Encyclopædia

The key part of any upgrade is transferring and
converting the persistent state of the application to a
format that the new version can understand. We start by
installing TWiki on a new infrastructure, isolated from
the original Wikipedia, and by configuring and tuning
this installation to achieve the desired performance
characteristics. Techniques for improving the
performance of IT infrastructures are covered elsewhere
in the system administration literature [17]; for keeping
this presentation focused on upgrades, we concentrate
on the details of migrating the existing Wikipedia
system to a TWiki-centered infrastructure. We have
developed a system called MetaMorphMagi to
demonstrate how such an intricate upgrade can be
accomplished, and how it can be performed online.

At this point, we have a well oiled, spanking new
version of the infrastructure without any content; the
next step is to feed all the Wikipedia data into this
young encyclopedia. This data migration step must
reconcile all the semantic differences between the two
systems. The two wiki engines are comparable in size:
MW has about 70 KLOC of PHP code (not including
the maintenance scripts), and TW has 60 KLOC of Perl
code. By reading the online documentation, examining
the source code and experimenting with the software,
we have created a mapping between the data items of
MW and TW. The effort to produce this mapping has
required 72 man-hours of work. The mapping is
summarized in Figure 2 and is presented in detail in the
Appendix.

We have realized early on that the tables from the
MW database do not have exact equivalents in the data
layout of TW. The MW data items have many-to-many
relationships to TW data. For instance, the field
user_id from the MW user table determines the user
name belonging a user group, responsible for an entry
recorded in the logging table or having authored an
article revision stored in the revision table; these user
names correspond to the names stored in the user
groups, the statistics files and the RCS revisions on the
TW side. Conversely, to create a TW revision we need
information from several MW database tables (i.e. the
page, revision, text and user tables).

Because of these complex relationships between
MW and TW, we have to define a set of logical items to
drive the data migration. The migration of one logical
item should be atomic (i.e. the item must be transferred
entirely or not at all). These basic logical items cannot
be the rows of the MW database tables because the
tables usually contain foreign keys and the migration
will involve multiple tables. We cannot transfer page-
by-page either because one page corresponds to a lot of
data (multiple revisions, images and image revisions,
logs, user who edited the page, etc.), and rolling back a
transfer at this coarse level of granularity would mean
throwing away and redoing a great amount of work.

After examining the data items with similar
semantics in MW and TW, we have identified eight
categories of logical items to migrate: users, user-
groups, namespaces, pages, revisions, archives,
notifications and statistics. Transferring a page-item
means creating a TW file with the appropriate name
(the title of the article) and the corresponding
permissions. The actual article content is transferred
with the revision-items. The archives contain all the
revisions of the deleted items and they correspond to the
Trash web from TW. This division of logical items
also imposes a logical order of migration: a revision
cannot be transferred before the page to which it
belongs. Formally, this is a partial order because some
items are equivalent and can be transferred in any order.

We have designed the data-migration component of
M3 with the goal of distributing the conversions on
several machines, in order to speed up the process. The
migration component has a migration driver, which
schedules the conversion of each data item from
Wikipedia, and a stateless conversion library. The
library contains routines for converting each type of
logical items from MW to a TW format. Each
conversion is atomic: the results are not permanent until
the driver decides to commit them to the destination
(TW) data store.

Figure 2. Mapping between primary keys in MediaWiki (left), other data items in MediaWiki (center) and data items in TWiki (right).

Poor mapping
Moderate mapping
Good mapping

Internal State

After a successful conversion, the library routine
saves the results in a temporary file. The driver uses
these files to gradually build the TW persistent data
store. When the conversion fails, the library routine
throws an informative exception, and the driver
determines the appropriate way to handle this failure
(e.g. reschedule the conversion at a later time or pester a
system administrator). As the migration of each data
item is atomic and the conversion library does not
maintain any state, running multiple conversions in
parallel is very straightforward. These parallel
conversions may execute on the same machine or on a
remote cluster. The driver is a centralized process that
schedules all the conversions taking into account the
logical order among items and that manages the farm of
“migration workers”.

We use a “parse once, convert to anything” pattern
to separate the parsing of the original data from the
actual data conversion (see Figure 3). The interface for
converting each logical item is defined in a base class,
while a concrete subclass contains the implementation.
The concrete subclass may define additional methods,
including helper functions that may be useful to the
other concrete conversion routines (e.g. converting a
string to a WikiWord). The driver is programmed to use
the interface provided by the base classes; however, the
objects that the driver uses are created as instances of

the concrete subclasses. The base classes are not
abstract; instead, they contain empty implementations of
all the conversion methods. The concrete subclasses
override these empty implementations. This design
separates the parsing of the MW data from the
conversion implementation and allows us to reuse the
driver, with minimal porting effort, for converting from
MW to another wiki engine different than TW. If a
particular data item does not have an equivalent in the
new wiki, the corresponding base class will not be
overridden. In this case, the driver will invoke the
empty implementation from the base class and the
conversion schedule will continue with the other logical
items.

To clarify our implementation, we present in detail a
few conversion examples. The main content of the
encyclopedia (the text of all the articles) is migrated
with the page and revision items. A MW page is
uniquely identified in the page table by a primary key
called page_id. MW uses this key to find all the
revisions of the page in the revision table. Each
revision has a rev_text_id that points to the actual
wiki text of the revision from the text table (see Figure
2). We use a similar approach in the data migration
process. We identify the current name of the page
corresponding to a page_id and we invoke the
conversion of this data item. The data conversion

Figure 3. Data-migration component of MetaMorphMagi. The migration driver parses the MediaWiki database and
schedules the conversion of each logical data item (e.g. users, pages, revisions).The conversion interface is
defined in base classes such as MWUserConversion and MWRevisionConversion, which contain empty
implementations of all the conversion methods. These empty methods are overridden in subclasses such as
MWtoTWUserConversion and MWtoTWRevisionConversion, which implement the concrete conversions to the
TWiki data format.

library transforms this title into a WikiWord (by
capitalizing the first letter of each word and removing
all the spaces) and returns it to the driver. This will be
the name of the file containing the most recent revision
of the article in TW. The driver then invokes the
conversion of all the revisions of this article, in the
order in which they were created. TW uses RCS
versioning to store the revisions; this means that the
most recent version of the article is stored
uncompressed, while the older versions are stored in a
separate file as incremental reverse diffs from the
current revision. We leverage RCS for adding revisions
in the same way as TW does during normal operation.
The conversion library receives the new revision to
check in and the two RCS files corresponding to the
previous revisions. The library converts the MW-
specific wiki syntax into TW syntax, then invokes RCS
to add the new revision and returns the resulting
temporary files. Upon successful completion of this
conversion the driver copies the new RCS files to their
permanent destination.

In general, this approach for incremental migration
works well for logical items where data can be
appended in the TW file formats. Migrating users
presents an exception from this assumption because the
TW user list is sorted in alphabetical order. This means
that we cannot add an arbitrary user without recreating
the entire file. For this reason, we define a method
convertUserTable() that migrates all the users in
one shot. The conversion library is still stateless; the
user migration is a long-running operation that may fail
and may need to be restarted, but the classes that
perform the user migration do not keep any state in-
between invocations. This conversion routine
transforms the user names into WikiWords using the
same helper function involved in the page conversion.

While we can define exact conversions for pages,
revisions and user lists, migrating archived (deleted)
pages is a best-effort conversion. When deleting a page,
MW moves the text and titles of all the revisions in the
archive table, but it does not save the old page_id.
This means that there is no clean way of recovering the
entire history of a deleted page for placing it in TW’s
Trash web. We apply a heuristic that compares the
titles of all the revisions and converts them in the order
of their timestamps; however, multiple title changes in
MW may prevent this algorithm from accurately
identifying all the revisions that belong to the same
page.

3 Online Upgrade: Taming of the Slew
Wikipedia receives up to 30,000 requests per second.
When performing an online upgrade, the data migration

process competes with this slew of requests for
accessing the persistent data. The online upgrade must
be carefully executed to avoid perturbing the
performance of the online system, to circumvent the
problem of hidden dependencies, to preserve the overall
system correctness and the data integrity and to prevent
data staleness. We have previously proposed a protocol
for performing upgrades in a dependency-agnostic
manner [8]. In this section, we show how we can adapt
an offline data migration process to use this online
protocol, and we apply this technique to our Wikipedia
upgrade example.

3.1 Prerequisites for Converting the Offline
Migration to an Online Upgrade

Offline data migration processes, such as the one
presented in Section 2, implement the core functions of
an online upgrade: (i) installing and configuring the
new system, and (ii) transferring the persistent data
from the old system. When implementing an online
upgrading system we can reuse the code developed for
offline data migration almost entirely. There are four
prerequisites for successfully building an online
upgrader on top of an offline data migration process:
fault-recovery capabilities, the ability to intercept and
monitor the request flow, avoiding interference with the
online system while accessing the data, and the ability
to disable write access to the online system for a brief
window of time.

3.1.1 Fault recovery. We must be able to restart the
data migration after an interruption, such as the one
caused by a hardware crash. Fault-recovery capabilities
greatly simplify the upgrade because they allow us to
save multiple checkpoints marking the progress of the
data migration and to restart certain transfers if needed.

The design we have chosen for the data-migration
component of M3 allows us to add the fault-recovery
functionality with very little effort. The data conversion
library is stateless (see Figure 3) and all the conversion
routines are atomic. The conversion routines create
temporary files that the driver copies to the TWiki data
directory. As a result, any conversion can be safely
restarted if the conversion process fails before
completing the migration. The migration driver
maintains a persistent list of logical data items to
convert; this list is saved after each successful
completion of a logical item migration. We can stop the
driver at any time and restart it later. The migration will
continue from the point where it was interrupted.
Moreover, we can add new items to the transfer list or
mark some entries as dirty and schedule them for
retransfer in order to account for the activity of the
online system.

3.1.2 Request interception. During an online upgrade,
the live system may update its persistent datastore by
adding new items or modifying existing ones. To avoid
data staleness, we need to monitor the request flow and
to update the transfer list accordingly. In multi-tier IT
infrastructures, such as the one supporting Wikipedia
(see Figure 1), data updates may take a long time to
reach the backend datastore due to network and
processing delays and to write-caching at multiple tiers
in the infrastructure. We need to monitor these in-
progress updates by intercepting the requests at the
ingress (where incoming requests enter the
infrastructure, e.g. the URL of the main Wikipedia
page) and egress (where the persistent data is stored,
e.g., the backend database) points of the infrastructure.

Interception must be transparent to the online
application and it must not affect its performance.
While we may stop and restart the data migration at any
time, the interceptors must be always on. If we miss
some in-progress updates due to interceptor
unavailability, we will have incomplete information
about data staleness and we will be forced to restart the
migration from the beginning.

Information from the ingress and egress points is
sufficient for maintaining data consistency during the
online upgrade. The egress-point interceptors allow us
to monitor the database updates and to schedule all
these updates for transfer in the migration driver. The
difference between the updates seen at the ingress and
egress interceptors represents the in-progress updates,
which have entered the infrastructure but are not yet
reflected in the database. In order to compute this
difference, the behavior of the software must be well
understood, and the mapping between HTTP requests
and database queries must be known in advance.

There are many techniques that can be used to
intercept the request flow at the ingress and egress
points. We review four interception techniques that we
have considered for our Wikipedia-upgrade case study:
network sniffing, log-file analysis, library interposition
and round-robin request tunneling. The most
appropriate combination of these techniques for
implementing the ingress/egress interceptors depends
on the application characteristics and the infrastructure
configuration. We present each of these mechanisms,
and we explain the contexts where they can be used
successfully.

Network sniffing is perhaps the simplest approach for
monitoring the request flow. Many IT infrastructures
monitor their network usage using packet sniffing. This
functionality allows us to observe the incoming requests
entering the infrastructure, as well as the requests for
the database or file servers in the backend. However,
there are situations where sniffing cannot capture the

entire request flow. For instance, requests using secure
connections (e.g. for https:// URLs) are encrypted
and their content cannot be analyzed. In some cases, the
server and the client sending the request reside on the
same host (e.g. when using a slave database server);
since these requests do not traverse the network, they
are not visible to the network sniffer.

We can overcome these disadvantages by using log-
file analysis instead. By parsing, sorting and correlating
the entries from the log files of the web and database
servers, we can retrieve encrypted requests and requests
not visible to a network sniffer. Due to storage
concerns, however, request logging is often turned off
or the entire content of the requests is not recorded.
Configuring the servers to log all the data we need
usually requires restarting server daemons, which
induces a brief downtime. More importantly, we need to
analyze the logs from every single server in the
infrastructure; if we miss one server, some requests will
go by unintercepted. Therefore log-file analysis is
probably unsuitable for websites with high incoming
request rates, or where the configuration of the servers
changes frequently.

These passive interception techniques do not
introduce any coupling between the request monitoring
and the normal processing. They cannot block requests
for the live system and have no impact on its
performance. This is a desirable property, but it also has
a hidden disadvantage: because the request flow is not
controlled in any way by the interceptors, it is easy to
overlook requests that manage to bypass the
interception system. The other two interception
mechanisms that we present here place the interceptors
on the queuing paths of the requests, which allows them
to throttle the request rates and even to block certain
requests, if needed (e.g. when disabling write access to
the online system).

Library interposition [18] allows us to intercept the
system calls of the server processes. The interceptor is a
shared library that redefines the standard system calls,
such as read() and write(). These redefined calls are
interposed between the application and the system
libraries, such that, at runtime, the application
(unknowingly) calls the functions from the distributor,
rather than the standard ones. Library interposition
offers the great advantage that it is always on when the
corresponding server is on, as the interceptor is part of
the same process as the server. The interceptor stops
working only when the server is down, ensuring that we
do not miss any requests. Interceptors based on library
interposition have similar disadvantages as log-file
analysis: they require the server daemons to be restarted
(library interceptors cannot usually be attached on the

fly), and they need to be attached to all the servers in
the infrastructure.

Round-robin request tunneling is most appropriate
for ingress-point interceptors in infrastructures using
multiple front-end servers. For example, Wikipedia has
52 caching web proxies in the front-end; a DNS load-
balancer assigns the domain name www.wikipedia.org
to the IP addresses belonging to one of the front-ends,
cycling through these proxies in a round-robin fashion.
We intercept the DNS query using library interposition
and we modify the response by pointing it to the IP
address of a special-purpose web proxy that logs all the
incoming requests and forwards them to the original
front-ends. As all the requests pass through this new
web proxy, we risk introducing a bottleneck for the
entire infrastructure. We therefore spread the load over
multiple interception proxies, and we use direct the
requests to each of these proxies using round-robin
DNS. The original front-end servers where the requests
are tunneled are also selected following a round-robin
scheme. We do not need to synchronize the logs of the
interceptor proxies because the order of receiving the
requests is not important; the task of the interceptors is
to monitor the in-progress updates. Round-robin request
tunneling does not rely on any knowledge of the
infrastructure configuration. Instead, it inserts
interceptors in the spot that all the requests use as the
unique entry point of the system: the URL of the main
Wikipedia page.

3.1.3 Interference avoidance. The request
interception and data migration must not alter the
performance or the functionality of the online system.
The interceptors and the additional load on the database
servers due to the migration processes introduce an
overhead that may be considered unacceptable by the
users. Moreover, a careless online upgrade may modify
the behavior of the system. For instance, under high
load MediaWiki disables searching of the database and
may even disable write access to the master database.
At the egress point, concurrent access to the database by
the online system and the data migration process may
cause deadlocks. We must therefore avoid imposing an
unnecessary overhead through request interception, and
we must not lock database rows and tables that may be
accessed concurrently by the online system.

Fortunately, the interceptors only have to log
incoming requests, and system call interposition has
minimal overhead. When using round-robin request
tunneling we carefully design the new front-end of
interceptor proxies to support the incoming load of the
online system. The data migration process uses
consistent non-locking reads from the database, which
rely on multi-versioning of database tables to query a
snapshot of the database that does not reflect the

ongoing concurrent transactions. Since we do not set
any locks on the tables we access during data migration,
we cannot deadlock the database.

3.1.4 Disabling write access. Before switching over to
the new, upgraded system, we must flush all in-progress
updates to the persistent data store. In general, this can
only be accomplished by disabling write access to the
old system (read requests may still go through). This
brief period of quiescence prevents any inconsistencies
and race conditions during the switchover.

The easiest way to accomplish this is by shutting
down the entire old infrastructure. This action would
provoke a brief outage of the system, but the outage
would be much shorter than in the case when the data
transfer is performed while the system is offline.
However, such an outage is unnecessary because we do
not need to prevent read access to the old system. We
could disable write access by using an infrastructure-
specific mechanism, such as configuring the master
database as read-only. Alternatively, we could instruct
the ingress interceptors to reject all the incoming update
requests. In this case, these interceptors must use either
library interposition or round-robin request tunneling.

3.2 Putting it All Together: a Dependency-
Agnostic Upgrade Protocol

We can combine the data migration process described in
Section 2 and the techniques presented in Section 3.1
into an online upgrading system for Wikipedia. This
online upgrade does not rely on knowledge of the
dependencies from within the IT infrastructure,

W2

M

W1

I1 I2HTTP

NQ

BQ TT

W2

M

W1

I1 I2HTTP

NQ

BQ TT

Figure 4. Dependency-agnostic upgrades. The old
and new versions are installed and execute in
parallel universes W1 and W2. MetaMorphMagi
intercepts the request flow at the ingress (I1) and
egress (I2) points of the old version. The rest of W1 is
treated as a black box.

guarantees data consistency and introduces minimal
downtime.

The secret to achieving dependency-agnostic online
upgrades is isolating the new version of Wikipedia from
the old one by installing the new version in a “parallel
universe” – a separate set of machines that cannot
communicate directly with the old infrastructure. Figure
4 illustrates this technique. The original Wikipedia runs
in an infrastructure called W1 using the MediaWiki
software. The new, TWiki-based encyclopedia runs in a
parallel universe W2. W1 continues to service incoming
requests during the upgrade. The only communication
channel between the two universes is via
MetaMorphMagi, who migrates the persistent data from
W1 to W2, monitors the updates handled by W1 to
prevent data-staleness and disables updates to W1 to
enforce quiescence before the switchover.

M3 uses round-robin request tunneling to intercept
the request flow at the ingress points I1, where the
HTTP requests enter the old Wikipedia infrastructure.
At the egress points I2, where persistent data is stored
(the master database), we use log-file analysis to
monitor the requests. M3 uses a transfer table TT to keep
track of the progress of the data migration. When I2
detects that one of these items has been updated after it
was transferred, we invalidate its corresponding entry in
TT and we (re)schedule it for a fresh transfer W2. M
uses a non-blocking queue NQ to monitor in-progress
updates. Since M3 treats the old version of Wikipedia as
a black box, with the exception of the ingress and egress
points, all the complex dependencies from the
infrastructure become irrelevant to our upgrading
process. I1 also allows us to “lock down” the old
version, using a blocking queue BQ, and to prevent W1
from handling requests when the upgrade protocol
requires a period of quiescence.

The data migration can proceed as explained in
Section 2. The migration driver is part of M3 and it
takes into account the information from I1 and I2 when
scheduling data items for transfer. The data migration
will eventually terminate if the transfer rate exceeds the
rate at which previously converted items are
invalidated. In the Wikipedia workload, updates (e.g.
article edits, image uploads) represent only a small
fraction of the total number of requests. Moreover, due
to the fine granularity of the logical items that we
transfer and because the conversion process can be
parallelized easily, we are able to satisfy this condition
even when the incoming load approaches 30,000
requests/s.

Some requests require special attention. For instance,
MediaWiki allows users to change their names. As a
user is uniquely identified by the page_id field from
the MediaWiki database, changing the username is as

simple as updating a field in the user table. In TWiki
there is no easy way to rename a user, as users are
uniquely identified by their usernames and topics are
signed with the usernames of the people who have
created the corresponding revisions. When I2
determines that a username has changed, we must
invalidate all the pages that the user has edited; all the
revisions of those pages will be migrated anew and they
will be signed with the updated username. This
invalidates a lot of data, but fortunately user renaming
requests occur infrequently.

We have a similar problem when an article is
renamed. MediaWiki creates a redirect page with the
old name and a link to the article with the new name. In
TWiki, topics are uniquely identified by the topic
names, which are also the names of the files where the
content is stored. However, this case is easier because
the TWiki does not record the topic names anywhere
else, so we can create a symbolic link on the filesystem
to mirror the behavior of the MediaWiki redirect page.
When the data migration is complete, we can switch
from W1 to W2. However, we can only perform the
switchover when the two universes are in a consistent
state. We therefore disable write access to W1 and we
flush all the caches from the infrastructure. The
persistent state of W1 is frozen and the update requests
arriving at I1 are queued inside the middleware (read
requests can still go through). When all the outstanding
updates have been committed to the database and
transferred to W2, the persistent states of the two
universes are synchronized. Note that, while this brief
period of quiescence introduces downtime, this does not
necessarily mean loss of data: we log the update
requests in BQ and we apply them later. After the
switchover, all the queued requests as well as all the
new requests for URLs from W1 are converted and
redirected to W2.

Even though the upgrade is performed online, the
switchover is not completely transparent to the users.
We discard all the volatile state, such as user sessions,
and users will be required to log in again. As we cannot
migrate hashed data between universes, the users need
to reset their passwords before using the new TWiki-
based Wikipedia. The switchover is less intrusive for
the anonymous users reading Wikipedia articles because
they do not have sessions or passwords to reset.

4 Online Is Not Enough: How to Validate
an Upgrade and Other Stories

In practice, a major upgrade such as the one described
in this paper must be thoroughly tested and validated
before the switchover. If the results are deemed
unsatisfactory, the administrators must be able to roll

back the upgrade and revert to the old system without
any data loss. Our approach for performing online
upgrades avoids the problem of dependencies between
distributed components by isolating the new version of
the infrastructure in a “parallel universe” that does not
communicate with the old version. This isolation also
allows us to test the new version by injecting faults and
running pre-defined traces on the new version without
disrupting the functionality of the original system.
While performing these tests, we stop the data
migration; we can restart it later to capture the effects of
the updates processed by the old version while we were
running tests on the new one.

It is also possible to execute the new version in
parallel with the old one, send the requests intercepted
at I1 to both versions and cross-check the two outputs to
validate the upgrade. However, once we start executing
in parallel, the states of the two parallel will not be
perfectly synchronized anymore because of behavioral
differences between the two systems. For example, due
to the different access control frameworks of
MediaWiki and TWiki, the request to delete a page may
succeed in one version and may fail in the other one!
Subsequent requests for that page will lead to further
state divergence between the versions. This state
divergence is acceptable and even desirable because the
modified behavior could have been the very reason for
initiating the upgrade. When validating the upgrade by
running the two versions in parallel, we cannot simply
compare the outputs of the two versions. Instead, we
must build a model of desirable behavior for the new
version of the infrastructure and compare the observed
behavior with the properties of this model.

In this paper, we have assumed that the parallel
universe where the new version will be installed is a
separate physical infrastructure, completely different
from the original system and built using new hardware.
This scenario is relevant for the situations where the
administrators take advantage of the major software
upgrade to renew the hardware as well. When the cost
of duplicating the hardware is not acceptable, we may
consolidate the servers using virtual machines. In this
case, we will have a virtual parallel universe, which can
provide a similar functional isolation from the old
version (i.e. we can prevent the old and new versions
from communicating with each other by creating two
virtual networks). However, this solution may not offer
good performance isolation between the two versions if
the combined incoming load exceeds the capacity of the
infrastructure. When using a virtual parallel universe,
we must be careful not to introduce performance
dependencies that may affect the behavior of the
upgraded system and the data consistency.

5 Related Work
In large-scale enterprise systems, fine-grained changes
are performed through rolling upgrades, replacing one
component at a time (which means the old and new
versions must be able to coexist and interact) [4, 19,
20]. Major upgrades, however, are usually
implemented by taking the system off-line during off-
peak hours and performing the upgrade and data
migration tasks on the inert system (which guarantees
downtime) [2, 19, 21]. Process migration across
different hosts has been studied extensively for
improving availability and providing load-balancing
[22]; however, process migration does not support
version changes.

Kramer and Magee [23] note that faults, as well as
online upgrades, might have a disruptive effect on the
functionality of a distributed system, and that the
techniques to mitigate these problems could be
combined in a unified framework. For instance, a
change-management system that totally separates the
functional application concerns from the configuration
management concerns (such as Kramer and Magee's
Conic system), can provide a good basis for
implementing fault recovery [23]. Conversely, an
infrastructure built for fault-tolerance can provide a
good basis for online upgrades because of the inherent
redundancy [24, 25]. For example, if the new version of
a component or subsystem that is upgraded is fully
backwards-compatible with the old version (i.e. the
semantic, behavioral and interface differences refer only
to new functionality, inexistent in the old version),
upgrades are a special case of fault recovery: the
component is upgraded during a special maintenance
window that the system treats as a partial outage [26].
In general, however, it is impossible to guarantee 100%
backwards compatibility; experimental studies show
that the vast majority of breaking changes are due to
refactorings (modifications of the program structure, not
intended to change its behavior) [6] or to unintended
side-effects that applications rely upon [5].

Dependency-management is a difficult problem even
in single-host operating systems. Installing or upgrading
an application often disables other applications and
services due to shared-library dependencies [5, 27].
Dependencies on configuration settings are even more
intimidating because of the fine granularity, the lack of
effective dependency-bookkeeping and the sheer
quantity of configuration data (comparable to the
information stored in the human genome) [28]. For
these reasons, best practices in IT system administration
recommend the use of a Configuration Management
Database (CMDB) that centralizes all the dependency
information in the system [29]. Dependencies can be

formally captured using aspects, closures and promises
[30]. Unfortunately, complete dependency information
cannot be detected automatically through either static
analysis [31] or run-time monitoring (which is a best-
effort approach) [32]. If this information is specified
manually, it might drift from the real state of
dependencies, e.g. repositories are known to contain
metadata inconsistencies that lead to version skew [7].

Existing approaches for online upgrades simplify the
problem by requiring semantic dependencies to be
specified by the programmer [4], by constraining the
communication to typed message-passing channels [33]
or by relying on complete dependency reification [34].
Such constraints render these approaches impractical
and, which explains why they have not gained a
widespread acceptance in the IT industry [35]. The most
promising solution, advanced by several researchers
[36] and software vendors [37-39], is to run each
application in a separate virtual container that prevents
communication or cross-couplings between unrelated
processes. This is achieved by introducing an
indirection layer that provides a unique view of the
system resources in each container. These techniques
are closest to our protocol for dependency-agnostic
upgrades in distributed systems, which was introduced
in [8].

Epilogue
Online software upgrades are essential for managing
complex IT infrastructures and reducing the
administrative costs. In this paper, we examine a
hypothetical major upgrade in a realistic IT
infrastructure, and we emphasize the significant
differences between the two systems that the upgrading
process must compensate for. We also present the major
building blocks of an online upgrading system called
MetaMorphMagi, and we explain how we implement
this system by extending an industry-standard, offline
data migration process. The resulting online upgrade
can tolerate any number of hidden dependencies
between components of the infrastructure because the
new version is isolated in a “parallel universe”. We
show that this approach allows us to perform the
upgrade with no data loss and minimal downtime. Such
an upgrade is not a surgical procedure and is probably
unsuitable for regular maintenance activities such as
applying security patches. MetaMorphMagi is most
useful for large-scale, distributed upgrades because it
eliminates the downtime and it reduces the
administrative burden by eliminating the need for
dependency tracking.

Acknowledgments. We thank Zhengheng Gho and
Sreevishnu Byrakur for their help with this project.

References
[1] C. Koch, "AT&T Wireless Self-Destructs," CIO

Magazine, Apr 2004,
http://www.cio.com/archive/041504/wireless.html.

[2] D. Scott, "NSM: Often the Weakest Link in Business
Availability," Gartner Group AV-13-9472, July 2001.

[3] D. E. Lowell, Y. Saito, and E. J. Samberg,
"Devirtualizable virtual machines enabling general,
single-node, online maintenance," Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 211-223, 2004.

[4] M. Segal and O. Frieder, "On-the-fly program
modification: Systems for dynamic updating," IEEE
Software, vol. 10, pp. 53-65, 1993.

[5] R. Anderson, "The End of DLL Hell," MSDN Magazine,
2000.

[6] D. Dig and R. Johnson, "How do APIs evolve? A story of
refactoring," Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, pp. 83 - 107,
2006.

[7] J. Hart and J. D'Amelia, "An analysis of RPM validation
drift," in LISA, Philadelphia, PA, 2002, pp. 155-166.

[8] T. Dumitraş, J. Tan, Z. Gho, and P. Narasimhan, "No
More HotDependencies! A Case for Dependency-
Agnostic Online Upgrades in Distributed Systems," in
Workshop on Hot Topics in System Dependability,
Edinburgh, Scotland, 2007.

[9] http://meta.wikimedia.org/wiki/Wikimedia_servers.
[10] MediaWiki, http://www.mediawiki.org/wiki/MediaWiki.
[11] TWiki, http://twiki.org/.
[12] Squid Web-Proxy Cache, http://www.squid-cache.org/.
[13] Apache HTTP Server, http://httpd.apache.org/.
[14] Linux Virtual Server, http://www.linuxvirtualserver.org/.
[15] Apache Lucene, http://lucene.apache.org/.
[16] W. F. Tichy, "RCS - A System for Version Control,"

Software - Practice and Experience, vol. 15, pp. 637-
654, 1985.

[17] M. Burgess, Principles of Network and System
Administration: Wiley, 2004.

[18] J. R. Levine, Linkers and Loaders. San Francisco, CA:
Morgan Kaufmann Publishers, 2000.

[19] E. A. Brewer, "Lessons from Giant-Scale Services,"
IEEE Internet Computing, vol. 5, pp. 46-55, 2001.

[20] S. Ajmani, B. Liskov, and L. Shrira, "Modular Software
Upgrades for Distributed Systems," in European
Conference on Object-Oriented Programming, Nantes,
France, 2006.

[21] S. Traugott and J. Huddleston, "Bootstrapping an
Infrastructure," in Large Installation System
Administration Conference, Boston, MA, 1998.

[22] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,
and S. Zhou, "Process Migration Survey," ACM
Computing Surveys, vol. 32, pp. 241–299, 2000.

[23] J. Kramer, J. Magee, and A. Young, "Towards Unifying
Fault and Change Management," in 2nd IEEE Workshop
on Future Trends of Distributed Computing Systems in
the 1990s, Cairo, Egypt, 1990, pp. 57-63.

[24] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. A.
Tewksbury, and V. Kalogeraki, "Eternal: fault tolerance

and live upgrades for distributed object systems," in
DARPA Information Survivability Conference and
Exposition (DISCEX 00), Hilton Head, SC, 2000, pp. 184
- 196.

[25] T. Bloom and M. Day, "Reconfiguration in Argus," in
Workshop on Configurable Distributed Systems. London,
England, 1992, pp. 176-187.

[26] T. Limoncelli, "Site Reliability at Google/My First Year
at Google," Invited Talk at Large Installation System
Administration Conference, 2006.

[27] Y. Sun and A. Couch, "Global Impact Analysis of
Dynamic Library Dependencies," in Large Installation
System Administration Conference, Berkeley, CA, 2001.

[28] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, Y.
Chun, H. J. Wang, and Z. Zhang, "STRIDER: A Black-
box, State-based Approach to Change and Configuration
Management and Support," in LISA, 2003, pp. 159-172.

[29] Office of Government Commerce, "Information
Technology Infrastructure Library (ITIL)," 2001.

[30] M. Burgess and A. Couch, "Modelling Next Generation
Configuration Management Tools," in Large Installation
System Administration Conference, Washington, DC,
2006, pp. 131-147.

[31] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson,
"Automated Detection of Refactorings in Evolving
Components," in ECOOP, Nantes, France, 2006, pp.
404-428.

[32] J. Dunagan, R. Roussev, B. Daniels, A. Johson, C.
Verbowski, and Y.-M. Wang, "Towards a Self-Managing
Software Patching Process Using Black-Box Persistent-
State Manifests," in ICAC, 2004, pp. 106-113.

[33] J. Kramer and J. Magee, "The Evolving Philosophers
Problem: Dynamic Change Management," IEEE
Transactions on Software Engineering, vol. 16, pp. 1293-
1306, 1990.

[34] F. Kon and R. H. Campbell, "Dependence Management
in Component-Based Distributed Systems," IEEE
Concurrency, vol. 8, pp. 26-36, 2000.

[35] M. E. Segal, "Online software upgrading: new research
directions and practical considerations," Computer
Software and Applications Conference, pp. 977-981,
2002.

[36] S. Potter and J. Nieh, "Reducing Downtime Due to
System Maintenance and Upgrades," in LISA, San Diego,
CA, 2005, pp. 47-62.

[37] N. Ruest, "Software Virtualization - Ending DLL Hell
Forever," in Microsoft Management Summit, San Diego,
CA, 2006.

[38] Microsoft SoftGrid, http://www.softricity.com/.
[39] Altiris Software Virtualization Solution,

http://www.altiris.com/Products/SoftwareVirtualizationS
olution.aspx.

Item in MediaWiki Backlink Mapped Item in Twiki Mapping Match
(Good, Moderate, Poor) Comments

page_id
page_namespace <Web> Moderate
page_title <Web>.<TopicName> Good
page_restrictions <Web>.<TopicName>.Permissions Poor
page_counter <WebStatistics>.entries Good
page_is_redirect NO EQUIVALENT
page_is_new NO EQUIVALENT
page_random NO EQUIVALENT
page_touched NO EQUIVALENT
page_latest INTERNAL STATE
page_len INTERNAL STATE
page_no_title_convert INTERNAL STATE

rev_id INTERNAL STATE
rev_page page_id <Web>.<TopicName>.Revisions Good
rev_text_id old_id <Web>.<TopicName>.Revisions Good
rev_comment NO EQUIVALENT
rev_user user_id <Web>.<TopicName>.TOPICINFO Good
rev_user_text <Web>.<TopicName>.TOPICINFO Moderate
rev_timestamp <Web>.<TopicName>.TOPICINFO Good
rev_minor_edit <Web>.<TopicName>.TOPICINFO Moderate RepRev
rev_deleted NO EQUIVALENT Not sure

old_id INTERNAL STATE
old_text <Web>.<TopicName>.Revisions Good
old_flags <Web>.<TopicName>.Revisions Moderate Not sure of specifics

ar_namespace <Web> Moderate Special - in <TrashWebName>
ar_title <Web>.<TopicName> Good
ar_text old_id <Web>.<TopicName>.Revisions Good
ar_comment NO EQUIVALENT
ar_user user_id <Web>.<TopicName>.TOPICINFO Good
ar_user_text <Web>.<TopicName>.TOPICINFO Moderate
ar_timestamp <Web>.<TopicName>.TOPICINFO Good
ar_minor_edit <Web>.<TopicName>.TOPICINFO Moderate RepRev
ar_flags <Web>.<TopicName>.Revisions Moderate Not sure of specifics
ar_rev_id UNDOCUMENTED
ar_text_id UNDOCUMENTED

rc_id INTERNAL STATE
rc_timestamp <Web>.<TopicName>.TOPICINFO Good
rc_cur_time DEPRECATED
rc_user user_id <Web>.<TopicName>.TOPICINFO Good
rc_user_text <Web>.<TopicName>.TOPICINFO Moderate
rc_namespace <Web> Moderate
rc_title <Web>.<TopicName> Good
rc_comment NO EQUIVALENT
rc_minor <Web>.<TopicName>.TOPICINFO Moderate RepRev
rc_bot NO EQUIVALENT
rc_new NO EQUIVALENT
rc_cur_id page_id <Web>.<TopicName> Good
rc_this_oldid old_id <Web>.<TopicName>.Revisions Good Current text
rc_last_oldid old_id <Web>.<TopicName>.Revisions Good Previous text
rc_type <Web>.<Statistics>.entries Moderate
rc_moved_to_ns DEPRECATED
rc_moved_to_title DEPRECATED

Appendix: Data Mapping from MediaWiki to TWiki

rc_patrolled NO EQUIVALENT
rc_ip NO EQUIVALENT
rc_old_len INTERNAL STATE
rc_new_len INTERNAL STATE

user_id INTERNAL STATE

user_name
SystemWeb.<UserName>,
SystemWeb.UserTopic Good

user_real_name
SystemWeb.<UserName>,
SystemWeb.UserTopic Good

user_password HASHED
user_newpassword HASHED
user_email SystemWeb.UserTopic Good
user_options UNDOCUMENTED
user_touched TRANSIENT
user_token TRANSIENT
user_email_authenticated TRANSIENT
user_email_token TRANSIENT
user_email_token_expires TRANSIENT
user_registration SystemWeb.UserTopic Good Date registered
user_newpass_time TRANSIENT
user_editcount NO EQUIVALENT

ug_user page_id SystemWeb.<NameOfGroup> Moderate
ug_group SystemWeb.<NameOfGroup> Moderate

ss_row_id
ss_total_views
ss_total_edits
ss_good_articles
ss_total_pages
ss_users
ss_admins
ss_images

NO EQUIVALENT

hc_id <Web>.<Statistics>.entries Good

log_type <Web>.<Statistics>.entries Poor
log_action <Web>.<Statistics>.entries Poor
log_timestamp <Web>.<Statistics>.entries Good
log_user user_id <Web>.<Statistics>.entries Good
log_namespace page_namespace <Web>.<Statistics>.entries Moderate
log_title page_title <Web>.<Statistics>.entries Good
log_comment NO EQUIVALENT
log_params UNDOCUMENTED
log_id INTERNAL STATE

wl_user <Web>.<Notification> Good
wl_namespace <Web>.<Notification> Good
wl_title <Web>.<Notification> Good
wl_notificationtimestamp <Web>.<Notification> Poor

