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Abstract  

Software upgrades are one of the leading causes 
of downtime in IT infrastructures. Long running data-
migration processes require intensive up-front 
preparation, extended maintenance windows and close 
monitoring, and they impose a significant burden on the 
system administrators. Even worse, major upgrades 
sometimes fail due to complex, hidden dependencies 
within the system, causing unplanned downtime and 
loss of critical data. In this paper, we propose a 
technique for converting an offline data-migration 
process into a dependency-agnostic online upgrade that 
requires minimal administrative intervention and that 
eliminates the need for planned downtime. We illustrate 
our technique by walking the reader through a 
hypothetical, but realistic online upgrade scenario in a 
medium-sized IT infrastructure – namely, hot-swapping 
the wiki software that underlies Wikipedia with an 
entirely different wiki engine.  

Prologue 
In November 2003, the upgrade of a customer 
relationship management (CRM) system at AT&T 
Wireless backfired, causing chronic downtime in 
several key systems, which affected thousands of 
customers. The CRM system depended on 15 different 
legacy systems, and the federally-mandated Nov 24th 
deadline for implementing wireless-number portability 
required the system to be integrated with the IT systems 
of other companies. The complex dependencies of the 
CRM system on various legacy back-ends became 
unmanageable, and the integration proved too difficult 
to test in a realistic offline environment. As the deadline 
approached, IT managers considered rolling back to the 
old CRM software; however, they had not preserved 
enough of that previous system, and were forced to go 
forward with the upgrade. When the first number-
porting requests arrived, the system broke down, 
creating a ripple effect that disabled other AT&T 
systems. Number-portability requests were not handled 
automatically, error messages were not recorded 
(making post-upgrade manual resolution difficult), the 
CRM system was down and customer-service 

representatives were unable to help the estimated 
50,000 new customers per week who were trying to 
activate their service. The negative side-effects of the 
upgrade persisted for 3 months. All said and done, the 
failed upgrade cost AT&T Wireless $100 million and 
damaged the company’s reputation, with dire 
consequences for the future of the company [1].  

 The misadventure of AT&T Wireless teaches us two 
important lessons about software upgrades. The first 
lesson is that major upgrades are hard and risky. 
Industry analysts indicate that "an average of 80 percent 
of mission-critical application service downtime is 
directly caused by people or process failures," which are 
usually related to change management [2]. A study 
conducted in 1998 at 426 sites found that planned 
outages for performing change management operations 
accounted for 75% of 5921 outages and that this 
fraction increases over time [3]. The ability to perform 
such changes online, with no downtime and minimal 
human intervention, ranks high on the wish list of IT 
administrators and service providers. An online upgrade 
is a change in the behavior, configuration, code, data or 
topology of a running system [4]. Online upgrades form 
an essential building block for achieving the holy grail 
of self-regulating, autonomic management of large 
enterprise systems. 

The second lesson is that dependencies are hard to 
manage in complex IT infrastructures. Every user of 
modern operating systems is painfully familiar with a 
phenomenon colloquially known as “DLL Hell” [5]. 
This involves the user having to disentangle and 
decipher the dependencies between shared libraries, 
upon the installation or upgrade of any application. 
These dependencies are not always well documented, 
and they are very hard to track. In distributed systems, 
there emerge additional sources of dependencies due to 
the applications’ reliance on specific networking 
protocols, middleware, routing paths or performance 
levels. In general, complete dependency information 
cannot be detected automatically [6, 7]. We have 
previously introduced a protocol, not based on 
dependency tracking, for performing online upgrades 
with no data loss and minimal downtime [8]. 



In this paper, we present MetaMorphMagi (M3), a 
technique for converting a standard offline-upgrading 
process into a dependency-agnostic online upgrade. We 
target major upgrades of large-scale enterprise systems, 
where we replace an entire IT infrastructure with a new 
system (or with a new version that is substantially 
different from the old one) that might exhibit 
differences in topology, dependency tree, data layout 
and performance profile. M3 can convert an offline 
data-migration process into a long-running, but fully 
automated, online upgrade. This technique can be 
applied if four conditions are satisfied:  

• We must be able to stop the data-migration process 
and resume from where we left off. This is also the 
minimal requirement for recovering from failures 
that interrupt the data migration. 

• We must be able to monitor the flow of requests 
and analyze their effect on the system’s persistent 
data. This helps us to avoid data staleness by re-
transferring any updated items on the fly. 

• We must be able to read the data from the old 
version without disrupting the functionality of any 
running applications using the old version. This 
requirement means that we cannot lock down any 
database tables or overload running servers. 

• We must be able to “lock” the system for writing 
(read queries may still go through) and flush all the 
in-progress updates. This allows us to enforce a 
brief period of quiescence before switching over to 
the new version. 

We avoid the problem of tracking dependencies by 
isolating the new version from the old one. We install 
the new version in a “parallel universe” – a separate 
physical or virtual infrastructure that cannot 
communicate directly with the old version. Since this is 
a fresh installation, the links between the new system’s 
components are created through the usual installation 
process rather than by attempting to reproduce and 
maintain the dependencies from the old system. The old 
system is functional during the upgrade and remains 
intact afterwards, allowing the administrators to roll 
back the upgrade if necessary. We trickle the persistent 
data into the new system’s data store while the old 
system is running and servicing requests.  

The primary contribution of this paper is a novel 
technique for converting an offline data-migration 
process into an online upgrade counter-part. The 
resulting upgrading process does not rely on a complete 
knowledge of the dependencies from the IT 
infrastructure and it uses the protocol introduced in [8]. 
Our goal in developing and presenting this approach is 
to leverage and complement existing best practices for 
major upgrades of IT infrastructures, instead of 

substituting them with an incompatible process that re-
invents the wheel.  

For the sake of clarity, we illustrate each step of our 
conversion technique with an example taken from a 
case study that considers a credible, albeit hypothetical, 
upgrade of a well-known IT infrastructure. Wikipedia is 
a medium-sized (around 250 machines), three-tiered IT 
infrastructure that supports multiple services and relies 
on a couple of data-stores in the backend [9]. We 
address the problem of upgrading the software 
underlying Wikipedia [10] to a radically different wiki 
engine [11]. We explain the fundamental differences 
between these two systems (for instance, the new wiki 
engine stores its persistent data in a flat filesystem 
rather than in a database), and we show how to perform 
the data migration through an online upgrade.  

This is a story that unfolds in five acts: in Act 1 we 
present the upgrade problem by describing the 
Wikipedia infrastructure and data, as well as the major 
differences between the old and new wiki engines. In 
Act 2 we analyze the data migration process required 
for an offline upgrade. In Act 3 we show the additional 
steps needed for performing the upgrade online, while 
the old infrastructure is still servicing requests. In Act 4 
we discuss the requirements for running the old and 
new infrastructures in parallel, in order to cross-validate 
the upgrade, and in Act 5 we survey related approaches. 
We conclude by summarizing our main contributions.  

1 From M to T: the Wikipedia Adventure 
Wikipedia (www.wikipedia.org) is a popular Web 
site providing a multi-language, free encyclopedia. 
Wikipedia has 5 million articles, which generate peak 
request rates of 30,000 HTTP requests per second (500 
Mb/s incoming and 3 Gb/s outgoing traffic). Each 
article is edited 22 times on average over its lifetime. 
This generates about 3 database updates each second. 
This workload is supported by a multi-tiered 
infrastructure with file servers and databases in the 
backend, running on 253 servers located in 4 data 
centers worldwide. The current size of the database is 
15 GB, not including images and other media files that 
are stored on a distributed filesystem.1  

Figure 1 shows the Wikipedia infrastructure [9]. The 
front-end has 67 caching proxies (running Squid [12]), 
which are accessed using round-robin DNS. The 
proxies serve approximately 75% of the Wikipedia 

                                                           
1 These numbers are accurate as of May 2007, but 
Wikipedia grows at an exponential rate. For instance, in 
the English-language Wikipedia, the number of articles 
(currently 1.8 million) has doubled every 346 days. 
Wikipedia used 39 servers in 2005 and 1 server in 2004. 



content, handling most of the page requests made by 
visitors who are not logged in. The proxy cache-misses 
are forwarded to a cluster of 150 Apache web servers 
[13], load-balanced using LVS [14].  

The web servers generate the content of the pages 
using a wiki engine called MediaWiki [10], which is 
implemented as a set of PHP scripts. MediaWiki 
retrieves the text of an article from a MySQL database, 
running on 18 servers in a master-slave configuration, 
and the images and media files from a remote NFS 
filesystem. The web servers also use PHP accelerators 
that cache compiled PHP scripts. While most requests 
come from external search engines such as Google, 
Wikipedia also has 18 load-balanced search servers that 
run the Lucene indexing and search software [15].  

For upgrading to a new version of itself, MediaWiki 
provides a script that inspects the database schema and 
converts it to the new format; this is a relatively simple 

upgrade because it only involves the configuration files 
of the MediaWiki software and the database layout. 
Instead, we investigate a major upgrade scenario, 
namely, switching to completely different wiki engine, 
TWiki [11]. TWiki is implemented in Perl, it uses a 
different data layout and it does not rely on a database.  
Instead, TWiki stores all of its persistent data on a 
filesystem with RCS versioning [16]. While upgrading 
this infrastructure, we also re-design the entire multi-
tiered architecture to optimize it for the new wiki 
engine. While this scenario is not entirely realistic for 
our example (the MediaWiki software is developed 
specifically for Wikipedia), it is common in the IT 
industry to upgrade when business reasons dictate a 
switch to a different vendor. 
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Figure 1. The Wikipedia infrastructure in May 2006 (from http://en.wikipedia.org/wiki/Wikipedia). In May 2007 the 
infrastructure has a similar architecture, but the number of servers has increased by 64% to sustain a 100% 
increase in the incoming load. 



1.1 A Tale of Two Wikis: M(edia) & T Wiki 
Both MediaWiki (MW) and TWiki (TW) provide 
similar wiki functionality. Both systems allow visitors 
to view and edit the content of articles, called “pages” 
in MW and “topics” in TW, which are organized in 
“namespaces” in MW and “webs” in TW. There are, 
however, considerable differences between the two 
wikis stemming from the fact that they target different 
user groups. MW is designed to support the world’s 
largest encyclopedia, with the goal of allowing a large 
number of users to access and modify content 
concurrently (according to the statistics from alexa.com, 
Wikipedia is one of the 10 most popular sites on the 
Web). TW aims to support enterprise collaboration 
platforms by providing structured content in a corporate 
setting and by allowing administrators to create 
customized applications based on the wiki engine.  

We have classified the differences between MW and 
TW into six categories: semantic, behavioral, 
transmutability, interface, implementation and quality-
of-service (QoS). These categories are relevant for 
different steps of the upgrade: the offline migration 
process handles the semantic differences, QoS and 
implementation differences are important during an 
online upgrade, interface and transmutability 
differences have to be handled when switching over to 
the new system, while behavioral differences become 
relevant when trying to run the new and the old system 
in parallel for validating the upgrade.  

1.1.1 Semantic differences refer to persistent data (or 
meta-data) that has different meanings in the two wikis. 
Typically, this would be a data item from one wiki that 
has no semantic equivalent in the other one. Examples 
of semantic differences between MW and TW are: 
• Access-control. TWiki provides a fine-grained 

access-control system, with access-control lists 
(ACLs) at the system, web and topic levels, while 
MediaWiki has more detailed permissions (e.g. 
createtalk or undelete) that apply system-
wide and that require modifications to the 
configuration files and the database.  

• Talk pages. In MediaWiki, each regular page has a 
talk page associated, where users can discuss the 
subject of the article. There is no semantic 
equivalent in TWiki. In practice, TWiki users 
create a "Discussion" section at the bottom of a 
page that serves the same purpose, but there is no 
way to specify that the content of this section has a 
special meaning. 

• Logging the reason for edits. The users of MW can 
record the reason for creating a new revision, while 
TW doesn’t maintain such metadata.  

• Hierarchical structure. Each topic in TW has a 
TOPICPARENT, creating a hierarchical structure. 
MW pages are organized in flat namespaces.  

1.1.2 Behavioral differences refer to similar actions 
that lead to different outcomes in the two wikis. These 
differences are visible to the users of the wikis. 
Semantic differences may induce behavioral 
differences: for instance, due to the dissimilar access 
control schemes, a request to edit a page can have 
different outcomes in MW and TW. Moreover, many 
configuration settings affect the behavior of the wikis, 
creating behavioral differences. Examples of behavioral 
differences between MW and TW are: 
• Searching for a page. If a page with the requested 

title is not found, MW displays the Web form to 
start editing that page (although this behavior is 
configurable). TW presents a message informing 
the user that the page does not exist. 

• Undeleting pages. In TW, deleted pages are stored 
in the Trash web and can be restored together with 
all their revisions. In MW, a deleted page can be 
restored by moving it out of the archive table, 
but it is impossible to cleanly restore the entire 
page history because the old page id connecting all 
the revisions is not recorded. 

• Anonymous edits. By default, MW allows 
anonymous users to edit pages (recording the IP 
address of the user as the source of the edit). TW 
requires users to be loged in before editing 
anything.  

1.1.3 Transmutability differences refer to equivalent 
data items in the two wikis, but that cannot be converted 
form one format to the other. For example, passwords 
encoded through a one-way hash function cannot be re-
encoded or converted to a different format.   

1.1.4 Interface differences refer to actions or data that 
have equivalent or similar semantics in the two wikis, 
but that are accessed through different names or APIs. 
Examples of interface differences between MW and 
TW are: 
• URLs. The paths and URLs used to retrieve articles 

are different in MW and TW. 
• WikiWords. In MW, users and articles may have 

arbitrary names; in TW, all these names must be 
WikiWords (words that contain at least two capital 
letters and no spaces, e.g. WikiWord).   

1.1.5 Implementation differences refer to similar 
functionality implemented in different ways in the two 
wikis. MW and TW are implemented in different 
programming languages (PHP and Perl, respectively), 
and the implementations have very little in common 
(one exception from this is that both wikis ultimately 



rely on the GNU diffutils for comparing page 
revisions). Some of these differences are relevant for 
the upgrade process, for example: 
• Datastore. MW uses a database and a filesystem in 

the backend, while TW uses a filesystem with RCS 
versioning. 

• Page Histories. MW stores the entire text of all the 
past revisions (compressed in some cases), while 
TWiki stores them as reverse diffs (provided by 
RCS). 

1.1.6 QoS differences refer to throughput and 
response-time disparities between the two wikis. These 
are heavily dependent on the software and hardware 
configuration: configuration settings for the wikis, web 
servers, databases, the use of PHP accelerators and Perl 
in-memory interpreters, caching, memory available and 
CPU speed, etc. While the differences from the first five 
categories are due to the design of the two wiki engines, 
QoS differences also derive from the properties of the 
corresponding IT infrastructures. 

2 Offline Upgrade: On the Care and 
Feeding of a Baby Encyclopædia 

The key part of any upgrade is transferring and 
converting the persistent state of the application to a 
format that the new version can understand. We start by 
installing TWiki on a new infrastructure, isolated from 
the original Wikipedia, and by configuring and tuning 
this installation to achieve the desired performance 
characteristics. Techniques for improving the 
performance of IT infrastructures are covered elsewhere 
in the system administration literature [17]; for keeping 
this presentation focused on upgrades, we concentrate 
on the details of migrating the existing Wikipedia 
system to a TWiki-centered infrastructure. We have 
developed a system called MetaMorphMagi to 
demonstrate how such an intricate upgrade can be 
accomplished, and how it can be performed online. 

At this point, we have a well oiled, spanking new 
version of the infrastructure without any content; the 
next step is to feed all the Wikipedia data into this 
young encyclopedia. This data migration step must 
reconcile all the semantic differences between the two 
systems. The two wiki engines are comparable in size: 
MW has about 70 KLOC of PHP code (not including 
the maintenance scripts), and TW has 60 KLOC of Perl 
code. By reading the online documentation, examining 
the source code and experimenting with the software, 
we have created a mapping between the data items of 
MW and TW. The effort to produce this mapping has 
required 72 man-hours of work. The mapping is 
summarized in Figure 2 and is presented in detail in the 
Appendix. 

We have realized early on that the tables from the 
MW database do not have exact equivalents in the data 
layout of TW. The MW data items have many-to-many 
relationships to TW data. For instance, the field 
user_id from the MW user table determines the user 
name belonging a user group, responsible for an entry 
recorded in the logging table or having authored an 
article revision stored in the revision table; these user 
names correspond to the names stored in the user 
groups, the statistics files and the RCS revisions on the 
TW side. Conversely, to create a TW revision we need 
information from several MW database tables (i.e. the 
page, revision, text and user tables). 

Because of these complex relationships between 
MW and TW, we have to define a set of logical items to 
drive the data migration. The migration of one logical 
item should be atomic (i.e. the item must be transferred 
entirely or not at all). These basic logical items cannot 
be the rows of the MW database tables because the 
tables usually contain foreign keys and the migration 
will involve multiple tables. We cannot transfer page-
by-page either because one page corresponds to a lot of 
data (multiple revisions, images and image revisions, 
logs, user who edited the page, etc.), and rolling back a 
transfer at this coarse level of granularity would mean 
throwing away and redoing a great amount of work. 

After examining the data items with similar 
semantics in MW and TW, we have identified eight 
categories of logical items to migrate: users, user-
groups, namespaces, pages, revisions, archives, 
notifications and statistics. Transferring a page-item 
means creating a TW file with the appropriate name 
(the title of the article) and the corresponding 
permissions. The actual article content is transferred 
with the revision-items. The archives contain all the 
revisions of the deleted items and they correspond to the 
Trash web from TW. This division of logical items 
also imposes a logical order of migration: a revision 
cannot be transferred before the page to which it 
belongs. Formally, this is a partial order because some 
items are equivalent and can be transferred in any order.  

We have designed the data-migration component of 
M3 with the goal of distributing the conversions on 
several machines, in order to speed up the process. The 
migration component has a migration driver, which 
schedules the conversion of each data item from 
Wikipedia, and a stateless conversion library. The 
library contains routines for converting each type of 
logical items from MW to a TW format. Each 
conversion is atomic: the results are not permanent until 
the driver decides to commit them to the destination 
(TW) data store.  



 
Figure 2. Mapping between primary keys in MediaWiki (left), other data items in MediaWiki (center) and data items in TWiki (right). 
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After a successful conversion, the library routine 
saves the results in a temporary file. The driver uses 
these files to gradually build the TW persistent data 
store. When the conversion fails, the library routine 
throws an informative exception, and the driver 
determines the appropriate way to handle this failure 
(e.g. reschedule the conversion at a later time or pester a 
system administrator). As the migration of each data 
item is atomic and the conversion library does not 
maintain any state, running multiple conversions in 
parallel is very straightforward. These parallel 
conversions may execute on the same machine or on a 
remote cluster. The driver is a centralized process that 
schedules all the conversions taking into account the 
logical order among items and that manages the farm of 
“migration workers”.  

We use a “parse once, convert to anything” pattern 
to separate the parsing of the original data from the 
actual data conversion (see Figure 3). The interface for 
converting each logical item is defined in a base class, 
while a concrete subclass contains the implementation. 
The concrete subclass may define additional methods, 
including helper functions that may be useful to the 
other concrete conversion routines (e.g. converting a 
string to a WikiWord). The driver is programmed to use 
the interface provided by the base classes; however, the 
objects that the driver uses are created as instances of 

the concrete subclasses. The base classes are not 
abstract; instead, they contain empty implementations of 
all the conversion methods. The concrete subclasses 
override these empty implementations. This design 
separates the parsing of the MW data from the 
conversion implementation and allows us to reuse the 
driver, with minimal porting effort, for converting from 
MW to another wiki engine different than TW. If a 
particular data item does not have an equivalent in the 
new wiki, the corresponding base class will not be 
overridden. In this case, the driver will invoke the 
empty implementation from the base class and the 
conversion schedule will continue with the other logical 
items.  

To clarify our implementation, we present in detail a 
few conversion examples. The main content of the 
encyclopedia (the text of all the articles) is migrated 
with the page and revision items. A MW page is 
uniquely identified in the page table by a primary key 
called page_id.  MW uses this key to find all the 
revisions of the page in the revision table. Each 
revision has a rev_text_id that points to the actual 
wiki text of the revision from the text table (see Figure 
2). We use a similar approach in the data migration 
process. We identify the current name of the page 
corresponding to a page_id and we invoke the 
conversion of this data item. The data conversion 

 
Figure 3. Data-migration component of MetaMorphMagi. The migration driver parses the MediaWiki database and 
schedules the conversion of each logical data item (e.g. users, pages, revisions).The conversion interface is 
defined in base classes such as MWUserConversion and MWRevisionConversion, which contain empty 
implementations of all the conversion methods. These empty methods are overridden in subclasses such as 
MWtoTWUserConversion and MWtoTWRevisionConversion, which implement the concrete conversions to the 
TWiki data format. 



library transforms this title into a WikiWord (by 
capitalizing the first letter of each word and removing 
all the spaces) and returns it to the driver. This will be 
the name of the file containing the most recent revision 
of the article in TW. The driver then invokes the 
conversion of all the revisions of this article, in the 
order in which they were created. TW uses RCS 
versioning to store the revisions; this means that the 
most recent version of the article is stored 
uncompressed, while the older versions are stored in a 
separate file as incremental reverse diffs from the 
current revision. We leverage RCS for adding revisions 
in the same way as TW does during normal operation. 
The conversion library receives the new revision to 
check in and the two RCS files corresponding to the 
previous revisions. The library converts the MW-
specific wiki syntax into TW syntax, then invokes RCS 
to add the new revision and returns the resulting 
temporary files. Upon successful completion of this 
conversion the driver copies the new RCS files to their 
permanent destination.  

In general, this approach for incremental migration 
works well for logical items where data can be 
appended in the TW file formats. Migrating users 
presents an exception from this assumption because the 
TW user list is sorted in alphabetical order. This means 
that we cannot add an arbitrary user without recreating 
the entire file. For this reason, we define a method 
convertUserTable() that migrates all the users in 
one shot. The conversion library is still stateless; the 
user migration is a long-running operation that may fail 
and may need to be restarted, but the classes that 
perform the user migration do not keep any state in-
between invocations. This conversion routine 
transforms the user names into WikiWords using the 
same helper function involved in the page conversion. 

While we can define exact conversions for pages, 
revisions and user lists, migrating archived (deleted) 
pages is a best-effort conversion. When deleting a page, 
MW moves the text and titles of all the revisions in the 
archive table, but it does not save the old page_id. 
This means that there is no clean way of recovering the 
entire history of a deleted page for placing it in TW’s 
Trash web. We apply a heuristic that compares the 
titles of all the revisions and converts them in the order 
of their timestamps; however, multiple title changes in 
MW may prevent this algorithm from accurately 
identifying all the revisions that belong to the same 
page. 

3 Online Upgrade: Taming of the Slew 
Wikipedia receives up to 30,000 requests per second. 
When performing an online upgrade, the data migration 

process competes with this slew of requests for 
accessing the persistent data. The online upgrade must 
be carefully executed to avoid perturbing the 
performance of the online system, to circumvent the 
problem of hidden dependencies, to preserve the overall 
system correctness and the data integrity and to prevent 
data staleness. We have previously proposed a protocol 
for performing upgrades in a dependency-agnostic 
manner [8]. In this section, we show how we can adapt 
an offline data migration process to use this online 
protocol, and we apply this technique to our Wikipedia 
upgrade example.  

3.1 Prerequisites for Converting the Offline 
Migration to an Online Upgrade  

Offline data migration processes, such as the one 
presented in Section 2, implement the core functions of 
an online upgrade: (i) installing and configuring the 
new system, and (ii) transferring the persistent data 
from the old system. When implementing an online 
upgrading system we can reuse the code developed for 
offline data migration almost entirely. There are four 
prerequisites for successfully building an online 
upgrader on top of an offline data migration process: 
fault-recovery capabilities, the ability to intercept and 
monitor the request flow, avoiding interference with the 
online system while accessing the data, and the ability 
to disable write access to the online system for a brief 
window of time.  

3.1.1 Fault recovery. We must be able to restart the 
data migration after an interruption, such as the one 
caused by a hardware crash. Fault-recovery capabilities 
greatly simplify the upgrade because they allow us to 
save multiple checkpoints marking the progress of the 
data migration and to restart certain transfers if needed.  

The design we have chosen for the data-migration 
component of M3 allows us to add the fault-recovery 
functionality with very little effort. The data conversion 
library is stateless (see Figure 3) and all the conversion 
routines are atomic. The conversion routines create 
temporary files that the driver copies to the TWiki data 
directory. As a result, any conversion can be safely 
restarted if the conversion process fails before 
completing the migration. The migration driver 
maintains a persistent list of logical data items to 
convert; this list is saved after each successful 
completion of a logical item migration. We can stop the 
driver at any time and restart it later. The migration will 
continue from the point where it was interrupted. 
Moreover, we can add new items to the transfer list or 
mark some entries as dirty and schedule them for 
retransfer in order to account for the activity of the 
online system.  



3.1.2 Request interception. During an online upgrade, 
the live system may update its persistent datastore by 
adding new items or modifying existing ones. To avoid 
data staleness, we need to monitor the request flow and 
to update the transfer list accordingly. In multi-tier IT 
infrastructures, such as the one supporting Wikipedia 
(see Figure 1), data updates may take a long time to 
reach the backend datastore due to network and 
processing delays and to write-caching at multiple tiers 
in the infrastructure. We need to monitor these in-
progress updates by intercepting the requests at the 
ingress (where incoming requests enter the 
infrastructure, e.g. the URL of the main Wikipedia 
page) and egress (where the persistent data is stored, 
e.g., the backend database) points of the infrastructure.  

Interception must be transparent to the online 
application and it must not affect its performance. 
While we may stop and restart the data migration at any 
time, the interceptors must be always on. If we miss 
some in-progress updates due to interceptor 
unavailability, we will have incomplete information 
about data staleness and we will be forced to restart the 
migration from the beginning. 

Information from the ingress and egress points is 
sufficient for maintaining data consistency during the 
online upgrade. The egress-point interceptors allow us 
to monitor the database updates and to schedule all 
these updates for transfer in the migration driver. The 
difference between the updates seen at the ingress and 
egress interceptors represents the in-progress updates, 
which have entered the infrastructure but are not yet 
reflected in the database. In order to compute this 
difference, the behavior of the software must be well 
understood, and the mapping between HTTP requests 
and database queries must be known in advance. 

There are many techniques that can be used to 
intercept the request flow at the ingress and egress 
points. We review four interception techniques that we 
have considered for our Wikipedia-upgrade case study: 
network sniffing, log-file analysis, library interposition 
and round-robin request tunneling. The most 
appropriate combination of these techniques for 
implementing the ingress/egress interceptors depends 
on the application characteristics and the infrastructure 
configuration. We present each of these mechanisms, 
and we explain the contexts where they can be used 
successfully.  

Network sniffing is perhaps the simplest approach for 
monitoring the request flow. Many IT infrastructures 
monitor their network usage using packet sniffing. This 
functionality allows us to observe the incoming requests 
entering the infrastructure, as well as the requests for 
the database or file servers in the backend. However, 
there are situations where sniffing cannot capture the 

entire request flow. For instance, requests using secure 
connections (e.g. for https:// URLs) are encrypted 
and their content cannot be analyzed. In some cases, the 
server and the client sending the request reside on the 
same host (e.g. when using a slave database server); 
since these requests do not traverse the network, they 
are not visible to the network sniffer. 

We can overcome these disadvantages by using log-
file analysis instead. By parsing, sorting and correlating 
the entries from the log files of the web and database 
servers, we can retrieve encrypted requests and requests 
not visible to a network sniffer. Due to storage 
concerns, however, request logging is often turned off 
or the entire content of the requests is not recorded. 
Configuring the servers to log all the data we need 
usually requires restarting server daemons, which 
induces a brief downtime. More importantly, we need to 
analyze the logs from every single server in the 
infrastructure; if we miss one server, some requests will 
go by unintercepted. Therefore log-file analysis is 
probably unsuitable for websites with high incoming 
request rates, or where the configuration of the servers 
changes frequently.  

These passive interception techniques do not 
introduce any coupling between the request monitoring 
and the normal processing. They cannot block requests 
for the live system and have no impact on its 
performance. This is a desirable property, but it also has 
a hidden disadvantage: because the request flow is not 
controlled in any way by the interceptors, it is easy to 
overlook requests that manage to bypass the 
interception system. The other two interception 
mechanisms that we present here place the interceptors 
on the queuing paths of the requests, which allows them 
to throttle the request rates and even to block certain 
requests, if needed (e.g. when disabling write access to 
the online system).   

Library interposition [18] allows us to intercept the 
system calls of the server processes. The interceptor is a 
shared library that redefines the standard system calls, 
such as read() and write(). These redefined calls are 
interposed between the application and the system 
libraries, such that, at runtime, the application 
(unknowingly) calls the functions from the distributor, 
rather than the standard ones. Library interposition 
offers the great advantage that it is always on when the 
corresponding server is on, as the interceptor is part of 
the same process as the server. The interceptor stops 
working only when the server is down, ensuring that we 
do not miss any requests. Interceptors based on library 
interposition have similar disadvantages as log-file 
analysis: they require the server daemons to be restarted 
(library interceptors cannot usually be attached on the 



fly), and they need to be attached to all the servers in 
the infrastructure. 

Round-robin request tunneling is most appropriate 
for ingress-point interceptors in infrastructures using 
multiple front-end servers. For example, Wikipedia has 
52 caching web proxies in the front-end; a DNS load-
balancer assigns the domain name www.wikipedia.org 
to the IP addresses belonging to one of the front-ends, 
cycling through these proxies in a round-robin fashion. 
We intercept the DNS query using library interposition 
and we modify the response by pointing it to the IP 
address of a special-purpose web proxy that logs all the 
incoming requests and forwards them to the original 
front-ends. As all the requests pass through this new 
web proxy, we risk introducing a bottleneck for the 
entire infrastructure. We therefore spread the load over 
multiple interception proxies, and we use direct the 
requests to each of these proxies using round-robin 
DNS. The original front-end servers where the requests 
are tunneled are also selected following a round-robin 
scheme. We do not need to synchronize the logs of the 
interceptor proxies because the order of receiving the 
requests is not important; the task of the interceptors is 
to monitor the in-progress updates. Round-robin request 
tunneling does not rely on any knowledge of the 
infrastructure configuration. Instead, it inserts 
interceptors in the spot that all the requests use as the 
unique entry point of the system: the URL of the main 
Wikipedia page.  

3.1.3 Interference avoidance. The request 
interception and data migration must not alter the 
performance or the functionality of the online system. 
The interceptors and the additional load on the database 
servers due to the migration processes introduce an 
overhead that may be considered unacceptable by the 
users. Moreover, a careless online upgrade may modify 
the behavior of the system. For instance, under high 
load MediaWiki disables searching of the database and 
may even disable write access to the master database. 
At the egress point, concurrent access to the database by 
the online system and the data migration process may 
cause deadlocks. We must therefore avoid imposing an 
unnecessary overhead through request interception, and 
we must not lock database rows and tables that may be 
accessed concurrently by the online system. 

Fortunately, the interceptors only have to log 
incoming requests, and system call interposition has 
minimal overhead. When using round-robin request 
tunneling we carefully design the new front-end of 
interceptor proxies to support the incoming load of the 
online system. The data migration process uses 
consistent non-locking reads from the database, which 
rely on multi-versioning of database tables to query a 
snapshot of the database that does not reflect the 

ongoing concurrent transactions. Since we do not set 
any locks on the tables we access during data migration, 
we cannot deadlock the database.  

3.1.4 Disabling write access. Before switching over to 
the new, upgraded system, we must flush all in-progress 
updates to the persistent data store. In general, this can 
only be accomplished by disabling write access to the 
old system (read requests may still go through). This 
brief period of quiescence prevents any inconsistencies 
and race conditions during the switchover.   

The easiest way to accomplish this is by shutting 
down the entire old infrastructure. This action would 
provoke a brief outage of the system, but the outage 
would be much shorter than in the case when the data 
transfer is performed while the system is offline. 
However, such an outage is unnecessary because we do 
not need to prevent read access to the old system. We 
could disable write access by using an infrastructure-
specific mechanism, such as configuring the master 
database as read-only. Alternatively, we could instruct 
the ingress interceptors to reject all the incoming update 
requests. In this case, these interceptors must use either 
library interposition or round-robin request tunneling.  

3.2 Putting it All Together: a Dependency-
Agnostic Upgrade Protocol  

We can combine the data migration process described in 
Section 2 and the techniques presented in Section 3.1 
into an online upgrading system for Wikipedia. This 
online upgrade does not rely on knowledge of the 
dependencies from within the IT infrastructure, 
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Figure 4. Dependency-agnostic upgrades. The old 
and new versions are installed and execute in 
parallel universes W1 and W2. MetaMorphMagi
intercepts the request flow at the ingress (I1) and 
egress (I2) points of the old version. The rest of W1 is 
treated as a black box.  



guarantees data consistency and introduces minimal 
downtime. 

The secret to achieving dependency-agnostic online 
upgrades is isolating the new version of Wikipedia from 
the old one by installing the new version in a “parallel 
universe” – a separate set of machines that cannot 
communicate directly with the old infrastructure. Figure 
4 illustrates this technique. The original Wikipedia runs 
in an infrastructure called W1 using the MediaWiki 
software. The new, TWiki-based encyclopedia runs in a 
parallel universe W2.  W1 continues to service incoming 
requests during the upgrade. The only communication 
channel between the two universes is via 
MetaMorphMagi, who migrates the persistent data from 
W1 to W2, monitors the updates handled by W1 to 
prevent data-staleness and disables updates to W1 to 
enforce quiescence before the switchover.  

M3 uses round-robin request tunneling to intercept 
the request flow at the ingress points I1, where the 
HTTP requests enter the old Wikipedia infrastructure. 
At the egress points I2, where persistent data is stored 
(the master database), we use log-file analysis to 
monitor the requests. M3 uses a transfer table TT to keep 
track of the progress of the data migration. When I2 
detects that one of these items has been updated after it 
was transferred, we invalidate its corresponding entry in 
TT and we (re)schedule it for a fresh transfer W2. M 
uses a non-blocking queue NQ to monitor in-progress 
updates. Since M3 treats the old version of Wikipedia as 
a black box, with the exception of the ingress and egress 
points, all the complex dependencies from the 
infrastructure become irrelevant to our upgrading 
process. I1 also allows us to “lock down” the old 
version, using a blocking queue BQ, and to prevent W1 
from handling requests when the upgrade protocol 
requires a period of quiescence.  

The data migration can proceed as explained in 
Section 2. The migration driver is part of M3 and it 
takes into account the information from I1 and I2 when 
scheduling data items for transfer. The data migration 
will eventually terminate if the transfer rate exceeds the 
rate at which previously converted items are 
invalidated. In the Wikipedia workload, updates (e.g. 
article edits, image uploads) represent only a small 
fraction of the total number of requests. Moreover, due 
to the fine granularity of the logical items that we 
transfer and because the conversion process can be 
parallelized easily, we are able to satisfy this condition 
even when the incoming load approaches 30,000 
requests/s.  

Some requests require special attention. For instance, 
MediaWiki allows users to change their names. As a 
user is uniquely identified by the page_id field from 
the MediaWiki database, changing the username is as 

simple as updating a field in the user table. In TWiki 
there is no easy way to rename a user, as users are 
uniquely identified by their usernames and topics are 
signed with the usernames of the people who have 
created the corresponding revisions. When I2 
determines that a username has changed, we must 
invalidate all the pages that the user has edited; all the 
revisions of those pages will be migrated anew and they 
will be signed with the updated username. This 
invalidates a lot of data, but fortunately user renaming 
requests occur infrequently.  

We have a similar problem when an article is 
renamed. MediaWiki creates a redirect page with the 
old name and a link to the article with the new name. In 
TWiki, topics are uniquely identified by the topic 
names, which are also the names of the files where the 
content is stored. However, this case is easier because 
the TWiki does not record the topic names anywhere 
else, so we can create a symbolic link on the filesystem 
to mirror the behavior of the MediaWiki redirect page. 
When the data migration is complete, we can switch 
from W1 to W2. However, we can only perform the 
switchover when the two universes are in a consistent 
state. We therefore disable write access to W1 and we 
flush all the caches from the infrastructure. The 
persistent state of W1 is frozen and the update requests 
arriving at I1 are queued inside the middleware (read 
requests can still go through). When all the outstanding 
updates have been committed to the database and 
transferred to W2, the persistent states of the two 
universes are synchronized. Note that, while this brief 
period of quiescence introduces downtime, this does not 
necessarily mean loss of data: we log the update 
requests in BQ and we apply them later. After the 
switchover, all the queued requests as well as all the 
new requests for URLs from W1 are converted and 
redirected to W2.   

Even though the upgrade is performed online, the 
switchover is not completely transparent to the users. 
We discard all the volatile state, such as user sessions, 
and users will be required to log in again. As we cannot 
migrate hashed data between universes, the users need 
to reset their passwords before using the new TWiki-
based Wikipedia. The switchover is less intrusive for 
the anonymous users reading Wikipedia articles because 
they do not have sessions or passwords to reset.  

4 Online Is Not Enough: How to Validate 
an Upgrade and Other Stories 

In practice, a major upgrade such as the one described 
in this paper must be thoroughly tested and validated 
before the switchover. If the results are deemed 
unsatisfactory, the administrators must be able to roll 



back the upgrade and revert to the old system without 
any data loss. Our approach for performing online 
upgrades avoids the problem of dependencies between 
distributed components by isolating the new version of 
the infrastructure in a “parallel universe” that does not 
communicate with the old version. This isolation also 
allows us to test the new version by injecting faults and 
running pre-defined traces on the new version without 
disrupting the functionality of the original system. 
While performing these tests, we stop the data 
migration; we can restart it later to capture the effects of 
the updates processed by the old version while we were 
running tests on the new one.  

It is also possible to execute the new version in 
parallel with the old one, send the requests intercepted 
at I1 to both versions and cross-check the two outputs to 
validate the upgrade. However, once we start executing 
in parallel, the states of the two parallel will not be 
perfectly synchronized anymore because of behavioral 
differences between the two systems. For example, due 
to the different access control frameworks of 
MediaWiki and TWiki, the request to delete a page may 
succeed in one version and may fail in the other one! 
Subsequent requests for that page will lead to further 
state divergence between the versions. This state 
divergence is acceptable and even desirable because the 
modified behavior could have been the very reason for 
initiating the upgrade. When validating the upgrade by 
running the two versions in parallel, we cannot simply 
compare the outputs of the two versions. Instead, we 
must build a model of desirable behavior for the new 
version of the infrastructure and compare the observed 
behavior with the properties of this model.  

In this paper, we have assumed that the parallel 
universe where the new version will be installed is a 
separate physical infrastructure, completely different 
from the original system and built using new hardware. 
This scenario is relevant for the situations where the 
administrators take advantage of the major software 
upgrade to renew the hardware as well. When the cost 
of duplicating the hardware is not acceptable, we may 
consolidate the servers using virtual machines. In this 
case, we will have a virtual parallel universe, which can 
provide a similar functional isolation from the old 
version (i.e. we can prevent the old and new versions 
from communicating with each other by creating two 
virtual networks). However, this solution may not offer 
good performance isolation between the two versions if 
the combined incoming load exceeds the capacity of the 
infrastructure.  When using a virtual parallel universe, 
we must be careful not to introduce performance 
dependencies that may affect the behavior of the 
upgraded system and the data consistency. 

5 Related Work 
In large-scale enterprise systems, fine-grained changes 
are performed through rolling upgrades, replacing one 
component at a time (which means the old and new 
versions must be able to coexist and interact) [4, 19, 
20]. Major upgrades, however,  are usually 
implemented by taking the system off-line during off-
peak hours and performing the upgrade and data 
migration tasks on the inert system (which guarantees 
downtime) [2, 19, 21]. Process migration across 
different hosts has been studied extensively for 
improving availability and providing load-balancing 
[22]; however, process migration does not support 
version changes. 

Kramer and Magee [23] note that faults, as well as 
online upgrades, might have a disruptive effect on the 
functionality of a distributed system, and that the 
techniques to mitigate these problems could be 
combined in a unified framework. For instance, a 
change-management system that totally separates the 
functional application concerns from the configuration 
management concerns (such as Kramer and Magee's 
Conic system), can provide a good basis for 
implementing fault recovery [23]. Conversely, an 
infrastructure built for fault-tolerance can provide a 
good basis for online upgrades because of the inherent 
redundancy [24, 25]. For example, if the new version of 
a component or subsystem that is upgraded is fully 
backwards-compatible with the old version (i.e. the 
semantic, behavioral and interface differences refer only 
to new functionality, inexistent in the old version), 
upgrades are a special case of fault recovery: the 
component is upgraded during a special maintenance 
window that the system treats as a partial outage [26]. 
In general, however, it is impossible to guarantee 100% 
backwards compatibility; experimental studies show 
that the vast majority of breaking changes are due to 
refactorings (modifications of the program structure, not 
intended to change its behavior) [6] or to unintended 
side-effects that applications rely upon [5]. 

Dependency-management is a difficult problem even 
in single-host operating systems. Installing or upgrading 
an application often disables other applications and 
services due to shared-library dependencies [5, 27]. 
Dependencies on configuration settings are even more 
intimidating because of the fine granularity, the lack of 
effective dependency-bookkeeping and the sheer 
quantity of configuration data (comparable to the 
information stored in the human genome) [28]. For 
these reasons, best practices in IT system administration 
recommend the use of a Configuration Management 
Database (CMDB) that centralizes all the dependency 
information in the system [29]. Dependencies can be 



formally captured using aspects, closures and promises 
[30]. Unfortunately, complete dependency information 
cannot be detected automatically through either static 
analysis [31] or run-time monitoring (which is a best-
effort approach) [32]. If this information is specified 
manually, it might drift from the real state of 
dependencies, e.g. repositories are known to contain 
metadata inconsistencies that lead to version skew [7].  

Existing approaches for online upgrades simplify the 
problem by requiring semantic dependencies to be 
specified by the programmer [4], by constraining the 
communication to typed message-passing channels [33] 
or by relying on complete dependency reification [34]. 
Such constraints render these approaches impractical 
and, which explains why they have not gained a 
widespread acceptance in the IT industry [35]. The most 
promising solution, advanced by several researchers 
[36] and software vendors [37-39], is to run each 
application in a separate virtual container that prevents 
communication or cross-couplings between unrelated 
processes. This is achieved by introducing an 
indirection layer that provides a unique view of the 
system resources in each container. These techniques 
are closest to our protocol for dependency-agnostic 
upgrades in distributed systems, which was introduced 
in [8]. 

Epilogue 
Online software upgrades are essential for managing 
complex IT infrastructures and reducing the 
administrative costs.  In this paper, we examine a 
hypothetical major upgrade in a realistic IT 
infrastructure, and we emphasize the significant 
differences between the two systems that the upgrading 
process must compensate for. We also present the major 
building blocks of an online upgrading system called 
MetaMorphMagi, and we explain how we implement 
this system by extending an industry-standard, offline 
data migration process. The resulting online upgrade 
can tolerate any number of hidden dependencies 
between components of the infrastructure because the 
new version is isolated in a “parallel universe”. We 
show that this approach allows us to perform the 
upgrade with no data loss and minimal downtime. Such 
an upgrade is not a surgical procedure and is probably 
unsuitable for regular maintenance activities such as 
applying security patches. MetaMorphMagi is most 
useful for large-scale, distributed upgrades because it 
eliminates the downtime and it reduces the 
administrative burden by eliminating the need for 
dependency tracking.   
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Item in MediaWiki Backlink Mapped Item in Twiki Mapping Match 
(Good, Moderate, Poor) Comments 

page_id     
page_namespace  <Web> Moderate  
page_title  <Web>.<TopicName> Good  
page_restrictions  <Web>.<TopicName>.Permissions Poor  
page_counter  <WebStatistics>.entries Good  
page_is_redirect  NO EQUIVALENT   
page_is_new  NO EQUIVALENT   
page_random  NO EQUIVALENT   
page_touched  NO EQUIVALENT   
page_latest  INTERNAL STATE   
page_len  INTERNAL STATE   
page_no_title_convert  INTERNAL STATE   
     
rev_id  INTERNAL STATE   
rev_page page_id <Web>.<TopicName>.Revisions Good  
rev_text_id old_id <Web>.<TopicName>.Revisions Good  
rev_comment  NO EQUIVALENT   
rev_user user_id <Web>.<TopicName>.TOPICINFO Good  
rev_user_text  <Web>.<TopicName>.TOPICINFO Moderate  
rev_timestamp  <Web>.<TopicName>.TOPICINFO Good  
rev_minor_edit  <Web>.<TopicName>.TOPICINFO Moderate RepRev 
rev_deleted  NO EQUIVALENT  Not sure 
     
old_id  INTERNAL STATE   
old_text  <Web>.<TopicName>.Revisions Good  
old_flags  <Web>.<TopicName>.Revisions Moderate Not sure of specifics 
     
ar_namespace  <Web> Moderate Special - in <TrashWebName> 
ar_title  <Web>.<TopicName> Good  
ar_text old_id <Web>.<TopicName>.Revisions Good  
ar_comment  NO EQUIVALENT   
ar_user user_id <Web>.<TopicName>.TOPICINFO Good  
ar_user_text  <Web>.<TopicName>.TOPICINFO Moderate  
ar_timestamp  <Web>.<TopicName>.TOPICINFO Good  
ar_minor_edit  <Web>.<TopicName>.TOPICINFO Moderate RepRev 
ar_flags  <Web>.<TopicName>.Revisions Moderate Not sure of specifics 
ar_rev_id  UNDOCUMENTED   
ar_text_id  UNDOCUMENTED   
     
rc_id  INTERNAL STATE   
rc_timestamp  <Web>.<TopicName>.TOPICINFO Good  
rc_cur_time  DEPRECATED   
rc_user user_id <Web>.<TopicName>.TOPICINFO Good  
rc_user_text  <Web>.<TopicName>.TOPICINFO Moderate  
rc_namespace  <Web> Moderate  
rc_title  <Web>.<TopicName> Good  
rc_comment  NO EQUIVALENT   
rc_minor  <Web>.<TopicName>.TOPICINFO Moderate RepRev 
rc_bot  NO EQUIVALENT   
rc_new  NO EQUIVALENT   
rc_cur_id page_id <Web>.<TopicName> Good  
rc_this_oldid old_id <Web>.<TopicName>.Revisions Good Current text 
rc_last_oldid old_id <Web>.<TopicName>.Revisions Good Previous text 
rc_type  <Web>.<Statistics>.entries Moderate  
rc_moved_to_ns  DEPRECATED   
rc_moved_to_title  DEPRECATED   

Appendix: Data Mapping from MediaWiki to TWiki 



rc_patrolled  NO EQUIVALENT   
rc_ip  NO EQUIVALENT   
rc_old_len  INTERNAL STATE   
rc_new_len  INTERNAL STATE   
     
user_id  INTERNAL STATE   

user_name  
SystemWeb.<UserName>, 
SystemWeb.UserTopic Good  

user_real_name  
SystemWeb.<UserName>, 
SystemWeb.UserTopic Good  

user_password  HASHED   
user_newpassword  HASHED   
user_email  SystemWeb.UserTopic Good  
user_options  UNDOCUMENTED   
user_touched  TRANSIENT   
user_token  TRANSIENT   
user_email_authenticated  TRANSIENT   
user_email_token  TRANSIENT   
user_email_token_expires  TRANSIENT   
user_registration  SystemWeb.UserTopic Good Date registered 
user_newpass_time  TRANSIENT   
user_editcount  NO EQUIVALENT   
     
ug_user page_id SystemWeb.<NameOfGroup> Moderate  
ug_group  SystemWeb.<NameOfGroup> Moderate  
     
ss_row_id    
ss_total_views    
ss_total_edits    
ss_good_articles    
ss_total_pages    
ss_users    
ss_admins    
ss_images  

NO EQUIVALENT 

  
     
hc_id  <Web>.<Statistics>.entries Good  
     
log_type  <Web>.<Statistics>.entries Poor  
log_action  <Web>.<Statistics>.entries Poor  
log_timestamp  <Web>.<Statistics>.entries Good  
log_user user_id <Web>.<Statistics>.entries Good  
log_namespace page_namespace <Web>.<Statistics>.entries Moderate  
log_title page_title <Web>.<Statistics>.entries Good  
log_comment  NO EQUIVALENT   
log_params  UNDOCUMENTED   
log_id  INTERNAL STATE   
     
wl_user  <Web>.<Notification> Good  
wl_namespace  <Web>.<Notification> Good  
wl_title  <Web>.<Notification> Good  
wl_notificationtimestamp  <Web>.<Notification> Poor  

 


