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Synopsis

Following development of a filament-stretching extensional rheometer at Monash University,
similar rheometers have been designed and built in other laboratories. To help validate the basic
technique, a collaborative program was undertaken to compare results from several instruments.
First, three test fluids prepared at the University of California at Berkeley were characterized in
steady and transient shear flows there and at the Massachusetts Institute of Technology~M.I.T.!, and
then tested in extensional rheometers at M.I.T., Monash and the University of Toronto. Each fluid
is a constant-viscosity solution of narrow-molecular-weight-distribution polystyrene dissolved in
oligomeric polystyrene. The solute molecular weights are 2.0, 6.5, and 20 million g/mol, and the
polymer concentration in each fluid is 0.05 wt. %. From linear viscoelastic measurements, the Zimm
relaxation times of the fluids are found to be 3.7, 31, and 150 s, respectively. The scaling of
relaxation times with molecular weight indicates better-than-theta solvent quality, a finding

a!This paper was presented by D. F. James at the Society of Rheology Annual Meeting in Madison, Wisconsin,
October 1999.

b!Author to whom correspondence should be addressed; electronic mail: gareth@mit.edu
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consistent with independent intrinsic viscometry measurements of equilibrium coil size. Each fluid
was tested in the three filament stretching rheometers at similar Deborah numbers. Despite
variations in instrument design and the general difficulty of the technique, transient Trouton ratios
measured in the three instruments are shown to agree quantitatively. ©2001 The Society of
Rheology. @DOI: 10.1122/1.1332388#

I. INTRODUCTION

The development of a filament stretching apparatus by Sridhar and coworkers has
enabled the transient extensional flow behavior of mobile fluids to be characterized,
particularly the behavior of dilute polymer solutions@Sridharet al. ~1991!#. Although the
importance of extensional rheology measurements has been recognized since the turn of
the century@see~Petrie ~1979! for a historical account#, generating purely extensional
flows of mobile fluids has proven to be extremely difficult. Various devices have been
developed to measure the ‘‘extensional viscosity,’’hE , of a mobile fluid, including
opposed jet devices, spin-line rheometers, and two- and four-roll mills. These techniques,
reviewed in detail elsewhere, all have serious drawbacks, among them an unknown
preshear history, ‘‘contamination’’ of the extensional flow field with regions of shearing,
and an inability to approach steady state conditions@Gupta and Sridhar~1988!; James and
Walters~1994!#. An international ‘‘round-robin’’ study in the Journal of Non-Newtonian
Fluid Mechanics in 1990 attempted to quantify the differences between many of these
devices by comparing measurements for the same fluid, denoted M1@Sridhar ~1990!#.
This study showed that different devices can yield widely different results at a given
extensional rate. In fact, James and Walters compiled the data from this study and the
plot shows over three decades of variation in measurements ofhE as a function of

imposed strain rate«̇ @James and Walters~1994!#. James and Walters note that the
‘‘values of hE . . . are transient values and the disparity makes it clear how strongly
these values depend upon variables other than strain rate.’’ The round-robin study of the
M1 fluid demonstrated that a new device was needed which could overcome some of the
drawbacks of earlier devices and allow systematic study of other dependent variables.

As a part of this 1990 study, a ‘‘falling plate’’ device was introduced by Matta and
Tytus @Matta and Tytus~1990!# which would subsequently evolve into the filament
stretching apparatus. By simply placing a small amount of fluid between two circular
plates and allowing the bottom one to fall under gravity, Matta and Tytus were able to
generate a nearly pure extensional flow and to calculate the tension in the fluid filament
during stretching. Motivated by this work, Tirtaatmadja and Sridhar designed a device to
control the separation of the two endplates such that the fluid is subjected to nearly ideal
uniaxial extension while the force on one plate is measured. In this device, theevolution
of fluid stress from equilibrium to steady state can be followed@Sridharet al. ~1991!;
Tirtaatmadja and Sridhar~1993!#. Several groups have subsequently built similar filament
stretching devices and reported results for various test fluids@Kröger et al. ~1992!; Ooi
and Sridhar~1993!; Berg et al. ~1994!; Ooi and Sridhar~1994!; Solomon and Muller
~1996b!; Spiegelberget al. ~1996!; Spiegelberg and McKinley~1996!; van Nieuwkoop
and Muller von Czernicki~1996!; Jain et al. ~1997!; Verhoef et al. ~1999!#. The flow
kinematics, including the effect of the nonideal flow conditions near the rigid endplates,
have been explored by researchers, and still others have used data from filament stretch-
ing devices to make quantitative comparisons with constitutive models@Shipmanet al.
~1991!; Tirtaatmadja and Sridhar~1995!; Gaudet et al. ~1996!; Kolte et al. ~1997!;
Sizaire and Legat~1997!; Szabo~1997!; Remmelgaset al. ~1998!; Yao and McKinley
~1998!; Olagunju ~1999!; Yao et al. ~2000!#. In addition, the device has been used to
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examine stress relaxation and birefringence in uniaxial extension@Orr and Sridhar
~1996!; Spiegelberg and McKinley~1996!; Doyle et al. ~1998!; Sridharet al. ~2000!#.

The goal of the current study is to investigate the reliability of filament stretching
rheometers and to determine their utility as a quantitative method for characterizing the
transient extensional rheology of viscoelastic liquids. In the following sections, we com-
pare the transient stress growth in well-characterized test fluids measured in three differ-
ent filament stretching devices that have been built independently in different laborato-
ries. We highlight important practical considerations and procedures needed to achieve
good agreement in results from these different devices.

In Sec. II, we describe the composition and properties of the three test fluids used in
this interlaboratory project. Measurements of intrinsic viscosity, steady and dynamic
shear rheology, and transient startup and cessation of shear flow are presented. Further-
more, it is found that the fluid response is consistent with a Zimm spectrum of relaxation
times, and we demonstrate remarkably good agreement between scaling exponents ob-
tained from intrinsic viscosity measurements and small-amplitude oscillatory shear data.
With this complete characterization in shear flows as a foundation, we proceed with
measurements of extensional viscosity and compare data from the three different instru-
ments for the three test fluids. In Sec. III, we describe the three filament stretching
devices, and compare the fluid response in different ways to show that nearly ideal
kinematics are achieved. Finally, in Sec. IV we present measurements of the transient
extensional rheology of the three test fluids for a range of imposed strain rates. We hope
that this study will provide a guide for experimenters who wish to use filament stretching
rheometry as a standard characterization technique.

II. CHARACTERIZATION OF COMMON TEST FLUIDS

A. Fluid composition

The three fluids used in this study, denoted SM-1, SM-2, and SM-3, are dilute polymer
solutions with nearly constant shear viscosities, which enable the effects of elasticity to
be isolated from those of shear thinning@Boger ~1977/78!; Boger and Nguyen~1978!#.
Each solution has the same concentration,c 5 0.05 wt. %, of high molecular weight
polystyrene~Pressure Chemical, P.D.I.,1.20) dissolved in oligomeric styrene~Picco-
lastic A5 Resin, Hercules!. The mass-average molecular weights of the polystyrene are
2.0, 6.5, and 203106 g/mol, respectively, and the density of each fluid is 1.02 g/cm3.
The manufacturer-reported values of the polydispersity indices for the three solutes are
1.03, 1.05, and 1.20, respectively. The three fluids were prepared at the University of
California at Berkeley. In each case, the high molecular weight polymer was dissolved
directly in the oligomeric resin, and the fluid was gently rolled once a day for 2 months
to ensure a homogeneous mixture.

The first step of the characterization was measurement of quiescent solution proper-
ties, including polymer molecular weight, coil size, and solvent quality, which were
determined through a combination of intrinsic viscometry, gel permeation chromatogra-
phy ~GPC!, and static light scattering at UC Berkeley. Manufacturer-reported molecular
weights of the starting polymers were confirmed by GPC in tetrahydrofuran and by static
light scattering in dioctyl phthalate at 22 °C, the theta point for polystyrene. Static light
scattering also yielded the radii of gyration of the coils under theta conditionsRg,u ;
details of these measurement techniques are reported elsewhere@Solomon and Muller
~1996a!; Leeet al. ~1997!#. The measured radii of gyration under theta conditions were in
excellent agreement with the values calculated from the molecular weight and the char-
acteristic ratioC` as
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Rg,u
2 5 C`nl2, ~1!

whereC` 5 9.85 @Brandrupet al. ~1999!#, n is the number of carbon–carbon bonds in
the backbone, andl 5 1.54 Å is the length of a carbon–carbon bond@Flory ~1953!#.

Direct measurements of coil sizes and solvent quality in these solutions via static light
scattering could not be made because of insufficient contrast in the scattering between the
oligomeric styrene solvent and the high molecular weight polystyrene solute. Instead,
these measurements were made through intrinsic viscometry as described below.

For each molecular weight, a series of dilutions were prepared from a 0.05 wt. %
master solution and viscosities were measured in a capillary viscometer or in a Rheomet-
rics RMS-800 mechanical spectrometer using cone-and-plate fixtures. The limiting vis-
cosity number~or intrinsic viscosity! @h# is defined through an expansion of the solution
viscosityh in concentrationc as

h 5 hs~11@h#c1kH@h#2c21 . . .!, ~2!

and was determined by a dual Huggins–Kramer extrapolation of the viscosity data to
infinite dilution. In the above equation,hs is the ~oligomeric styrene! solvent viscosity
andkH is the Huggins coefficient. The resulting values of@h# are given in Table I, along
with other properties of the three solutions. The radius of gyrationRg for each fluid was
then determined from the Flory–Fox equation:

@h# 5 F0Rg
3/Mw , ~3!

whereF0 is a universal constant, equal to 3.6731024 mole21.
The size of a polymer coil in solution may be related to the solvent quality through

either a coil expansion parametera defined as

a [
Rg

Rg,u
~4!

or through an excluded volume exponentn where

Rg } Mn. ~5!

For a theta solvent,a is unity by definition andn 5 1/2. For good solvents,a is greater
than unity and 0.5, n , 0.6.

Alternatively, sinceRg,u } M1/2, one may define a coil expansion exponentg from
Eq. ~4! above, i.e.,a } Mg whereg 5 n21/2 . The value of the exponentg typically
varies from zero for a theta solvent to 0.1 for a good solvent. As shown in Table I, the

TABLE I. Equilibrium properties and molecular weight scaling exponents for SM Boger fluids. The concen-
tration c of all three solutions is fixed atc 5 0.000 51 g/mL. The excluded volume exponent is determined to
be n 5 0.5260.015, and the coil expansion exponent,g 5 0.0260.015.

Mw
~g/mol!

@h#
~mL/g!

Rg
~nm! L

c1*
~g/mL!

c2*
~g/mL! c/c2*

SM-1 2.03106 120 41 88 0.0083 0.0011 0.44
SM-2 6.53106 250 78 164 0.0040 0.000 58 0.87
SM-3 2.03107 430 133 277 0.0023 0.000 34 1.50
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values ofn andg for our polystyrene–~oligomeric styrene! system were found to be 0.52
60.015 and 0.0260.015, respectively, indicating that the styrene oligomer is slightly
better than a theta solvent.

The above measurements also enable assessment of the diluteness of the three test
fluids. Since the polystyrene concentrations are the same in each case, the diluteness
decreases with increasing molecular weight. Several measures of diluteness have been
proposed in the literature, and a very thorough discussion of these is given by Graessley
and by Harrison and co-workers@Graessley~1980!; Harrisonet al. ~1998!#. The most
common method of assessing diluteness depends on the magnitude of the intrinsic vis-
cosity. A critical concentrationc1* can be defined as

c1* 5 1/@h#, ~6!

although Graessley notes that a proportionality factor of 0.77 is more rigorous. The
values ofc1* given in Table I are well above the concentration of 0.000 51 g/mL of our
solutions, showing that all three fluids lie well within the dilute regime according to this
definition. A second, more conservative measure of diluteness is based on the concentra-
tion at which the coils at equilibrium begin to physically overlap. This critical concen-
tration c2* is given by

c2* 5
Mw

4
3 pRg

3 NA

, ~7!

whereNA is Avogadro’s number@Graessley~1980!#. By this measure, the SM-3 fluid lies
in the semidilute regime, sincec ' 1.5c2* . A plot of the fluid viscosity versus concen-
tration also shows significant curvature at concentrations above 0.034 wt %, indicating
that SM-3 is above a nominal value ofc* , as defined in terms of the relative magnitude
of the quadratic term in Eq.~2!. However, in this study, SM-3 is considered to be a dilute
solution, because we found that the behavior of the fluid in viscometric experiments was
consistent with that of a dilute solution.

B. Steady and dynamic shear rheology

The rheology of the three fluids in both steady and dynamic shear flows was charac-
terized at the Massachusetts Institute of Technology~M.I.T.! using a TA Instruments
AR1000N cone-and-plate rheometer. First normal stress differences were also measured
using a Rheometric Scientific RMS-800 cone-and-plate rheometer to obtain values of the

first normal stress coefficientC1(ġ) . Controlled shear stress measurements were carried
out at three temperatures: 15, 25, and 35 °C, and time–temperature superposition was
used to obtain master curves for the steady and dynamic material functions over 6 de-
cades in shear rate. Throughout this text, the official Society of Rheology nomenclature is
used for the material functions studied@Dealy ~1995!#.

The temperature dependence of the viscometric properties was determined by continu-
ously increasing the temperature from 15 to 35 °C over the period of 1 h at aconstant rate
of (DT/Dt) 5 0.056 K/s while keeping the applied shear stress fixed at 10.0 Pa. No
hysteresis was observed in subsequent tests with a decreasing temperature ramp. This
confirms that evaporation of the viscous oligomeric styrene solvent is negligible over this
temperature range and the temperature ramp is slow enough that the process is quasi-
static. The measured viscosity curve was then normalized by the viscosity at the reference
temperatureT0 5 25 °C to obtain the shift factoraT as a function of temperatureT. The
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temperature behavior of the SM fluids is best described by the WLF model, in which the
shift factor depends on the temperature according to

aT [
h~T!

h~T0!

T0

T
5

l~T!

l~T0!
5 expF2a~T2T0!

b1~T2T0!
G, ~8!

wherea andb are constants determined by fitting the equation to experimental data@Bird
et al. ~1987a!#. In this expression we have dropped the additional factor ofr0 /r(T) that
appears in the first equality since it is negligibly small over the temperature range of the
experiments. Figure 1 shows excellent agreement between the experimentally measured
shift factor and the fitted WLF curve for SM-1. The corresponding Arrhenius fit is also
shown in order to demonstrate that the Arrhenius function is not strong enough to de-
scribe the observed temperature dependence. Both the measured shift factor and the WLF
fitted function agree well with values ofaT obtained by manually shifting the flow curves
measured at 15, 25, and 35 °C until a smooth master curve was obtained. The best-fit
values ofa andb for the WLF model are included in Table II. Time–temperature super-
position is used to shift both shear and extensional rheology data obtained at a laboratory
temperatureT to the reference temperatureT0. Separate tests of the thermal sensitivity of
the total shear viscosityh0 and the solvent viscosityhs indicate that each quantity
depends on temperature in the same way, and the relationship given in Eq. 8 is used to

FIG. 1. Temperature dependence of shear viscosity of SM-1 fluid. Experimental points measured in a cone-
and-plate rheometer~s! are compared with manually shifted values (m) and fitted curves from Arrhenius and
WLF models~dashed and solid lines, respectively!.

TABLE II. Measured viscometric properties and fit parameters for the Zimm bead-spring model for SM fluids.
The solvent viscosity,hs 5 34.0 Pa s, and the solvent relaxation timels 5 2.731024 s.

Mw
~g/mol!

h0
~Pa s!

lZ
~s!

C10
~Pa s2 h* aWLF

bWLF
~K!

SM-1 2.03106 39.2 3.7 20.3 0.20 16.9 75.4
SM-2 6.53106 46.1 31.1 428 0.15 22.4 99.6
SM-3 2.03107 55.5 155 3510 0.18 36.9 160
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shift each of these values. The validity of time–temperature superposition for transient
extensional flows of thermorheologically simple fluids has been confirmed by Mu¨nstedt
and Laun~1979!.

Figure 2 shows the steady and dynamic shear material functions for the SM-1 fluid.
The SM-2 and SM-3 shear rheology curves are qualitatively similar, with magnitudes of
the viscosityh0 and the first normal stress coefficientC10 at zero-shear rate increasing
with molecular weight. Each fluid is well described by a Zimm spectrum of relaxation
times, as shown by the model curves in Fig. 2. The Zimm model is a bead-spring model
in which the polymer chain is approximated as a coarse-grained chain ofN11 beads
connected by springs of lengthQ. In contrast to the Rouse bead-spring model, this model
incorporates hydrodynamic interaction between beads~in a preaveraged sense!, and in-
cludes both partially free-draining and dominant hydrodynamic interaction limits. In the
Zimm model, solvent flow around each bead is affected by the presence of the other
beads, and thus internal parts of the chain are hydrodynamically screened. Detailed de-
scriptions of this model and of the corresponding evolution equations for chain confor-
mation are given elsewhere@Bird et al. ~1987a!; Larson~1988!#. The Zimm spectrum of
relaxation times can be obtained from an approximate solution of the eigenvalue problem
that results from the coupling between springs. The relaxation time of each modei is
related to the longest relaxation timelZ by thehydrodynamic interaction parameter h*
according to the expression

li 5 lZ /i21s̃, ~9!

wheres̃ > 21.40(h* )0.78@Larson~1988!#. The hydrodynamic interaction parameterh*
has a maximum value of 0.25 when the solvent is a theta solvent, and decreases as
solvent quality improves and the coils expand.

The dynamic moduli for the Rouse–Zimm bead-spring model may be written com-
pactly in the form

FIG. 2. Steady and dynamic shear rheology of SM-1 fluid. Fitted curves from the Zimm bead-spring model
~solid lines! are compared with measurements of the dynamic storage and loss moduli@h8, D; 2h9(v)/v, s#
obtained in a cone-and-plate rheometer. Predictions from the FENE-P model~dashed lines! are compared with

steady shear data@h(ġ), m; C1(ġ), d].
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G8 [ h9v 5
cNAkBT

Mw
(

i 5 1

Nm H ~lZv!2

@i2(21s̃)1~lZv!2#
J ,

G9 [ h8v 5 hsv1
cNAkBT

Mw
(

i 5 1

Nm H ~lZv!i(21s̃)

@i2(21s̃)1~lZv!2#
J , ~10!

where kB is Boltzmann’s constant andNm is the number of modes. In addition, the
zero-shear-rate viscometric properties of the dilute polymer solution are described by

h0 5 hs1
cNAkBT

Mw
lZ (

i 5 1

Nm 1

i(21s̃) , ~11!

C10 5 2
cNAkBT

Mw
lZ

2 (
i 5 1

Nm 1

i 2(21s̃) . ~12!

In practice,lZ is obtained by fitting Eqs.~10!–~12! to the measured dynamic moduli and
matching the respective zero-shear-rate values. Varyingh* allows better agreement be-
tween the experimental and fitted curves at intermediate angular frequencies. For the best
fit, it was found that a small amount of solvent elasticity was needed in order to incor-
porate the high frequency behavior observed in both the storage and loss moduli. The
value chosen for the solvent relaxation timels was based on the frequency (v*
; 1/ls) at which the solvent elasticity became important. Table II presents the visco-

metric properties and the fitted Zimm parameters for the three SM fluids.
Like the equilibrium properties, the molecular weight dependence of the viscometric

properties can also be used to investigate polymer–solvent interaction. In the Zimm
bead-spring model, the parametern defined by Eq.~5! is connected to the hydrodynamic
interaction parameterh* . To understand how hydrodynamic interaction affects the mo-
lecular weight dependence of the longest relaxation timelZ and the polymer contribu-
tion to the viscosityhp 5 h02hs , we first recognize that the flow of solvent around a
single bead on the polymer chain affects the flow around all the other beads in such a way
that the overall flow can be described by Stokes flow around a single sphere of radius
A6Rg . In Stokes flow, the drag on a sphere is given byf 5 6phs(A6Rg)n. The relax-
ation time of the fluid is a function of the diffusivityD of the polymer chain
lZ ; Rg

2/D, and this diffusivity is inversely proportional to the drag in accordance with
the Stokes–Einstein relation. Combining these relationships and using Eq.~5!, the relax-
ation time is found to depend on the molecular weight in the following way:

lZ ;
6phs

kBT
Rg

3 ; Mw
3n . ~13!

Substituting this dependence into Eq.~11!, we find that the polymer contribution to the
viscosity has the following dependence on molecular weight:

hp ;
cNAkbTlZ

Mw
; Mw

3n21. ~14!

Further details of this analysis can be found elsewhere@Bird et al. ~1987b!; Larson
~1988!#.

We performed a linear regression technique to plots of the measured values of
lZ(Mw) and hp(Mw) 5 h0(Mw)2hs as functions of molecular weight in order to
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determine the value ofn. The values oflZ and hp at the reference temperature of
T0 5 25.0 °C, are shown in Fig. 3, together with error bars and the corresponding linear
regression lines. From these lines, the molecular weight dependence of each parameter is
found to be

lZ 5 ~2.361.7!310210Mw
(1.6260.05), R2 5 0.999,

hp 5 ~6.863.9!31024Mw
(0.6260.04), R2 5 0.997,

~15!

yielding n 5 0.5460.02 to be consistent with Eqs.~13! and ~14!. Finally, we note that
this value ofn agrees very well with the value of 0.5260.015 obtained from the intrinsic
viscosity measurements, further supporting the idea that the styrene resin acts as a
slightly better than theta solvent for the high-molecular-weight polystyrene.

Although the Zimm bead-spring model can describe the rheological behavior of dilute
polymer solutions in the linear viscoelastic regime, it cannot describe the behavior when
the fluid is subjected to larger deformations. In fact, the Zimm model predicts that the

shear viscosityh(ġ) and the first normal stress coefficientC1(ġ) are both constant,

independent of shear rate. Figure 2 shows thatC1(ġ) is in fact far from constant. For the
large deformations which the present fluids experience in both shear and extension, the
model needs to incorporate nonlinear elasticity. Hence we examine predictions of two
bead-spring models, the FENE-P dumbbell and the FENE-PM chain. The FENE-P
model, the simpler of the two, is described in detail in Birdet al. ~1987b!. This model
approximates the polymer chain as a single nonlinear spring connecting two beads, and
accounts for the finite length of the polymer by limiting the extension of the dumbbell.
An additional spring parameter, thefinite extensibility L, determines the maximum length
of the dumbbell. WhileL can be used as an adjustable parameter, a more physical
approach is to require thatL be defined by molecular arguments. Following this ap-
proach, the finite extensibility is related to the ratio of the maximum contour length of the
polymer chain to its equilibrium radius of gyration, as given by

FIG. 3. Molecular weight scaling of the longest relaxation timelZ (m), and of the polymeric contribution to
total viscosityhp(d) for the three SM fluids. Linear regression was used to obtain a value of 0.54 for the
scaling exponentn, a value appropriate for a solution of nonfree-draining bead spring chains.
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L2 5 3Srmax

Rg
D 2

. ~16!

Values ofL for the SM fluids are given in Table I.
The evolution equations for stresses in a FENE fluid can be derived by balancing the

molecular-level forces on each of the dumbbells and taking appropriate ensemble aver-
ages to obtain the macroscopic material response@Bird et al. ~1987b!#. As shown by Bird
et al. ~1987b!, a closed-form FENE-P model is obtained by making the well-known
Peterlin approximation, leading to the following evolution equations:

l1A(1) 5 I2 f ~ tr A!A
~17!

f~tr A! 5 F 1

12tr A/L2G ,

whereA 5 ^RRO& is the dimensionless configuration tensor describing the ensemble av-
erage of the dumbbell orientations. The stresses in the FENE-P fluid are then given by

tp 5
hp

l1
@ f ~ tr A!A2I #

~18!
t 5 tp1ts ,

wheretp is the polymeric contribution to the stress andts is the solvent contribution

given by ts 5 hsġ. The values of the longest relaxation timel1 and the polymeric
viscosityhp in this model are taken from the viscometric properties given in Table II. In
the present study, Eqs.~17! and~18! were used to calculate the shear and normal stresses
for the simple case of steady shear flow, from which the first normal stress coefficient

C1(ġ) was computed. The resulting prediction is the dashed curve in Fig. 2, which

describes the shear-thinning behavior ofC1(ġ) qualitatively, but not quantitatively.
The transient rheological response of a dilute polymer solution is more complex than

can be captured by a simple closed-form dumbbell model, as shown by recent Brownian
dynamics simulations of Kramers chains and bead-spring chains@Doyle and Shaqfeh
~1998!; Doyle et al. ~1998!; Hur et al. ~2000!; Li et al. ~2000!#. This complex response is
a result of coupling between the flow and the internal degrees of freedom of the chain.
Detailed comparisons between simulations and filament stretching experiments have been
presented elsewhere@Doyle et al. ~1998!; Li et al. ~2000!# and it is not the purpose of the
present work to consider all such comparisons. For simplicity, we instead select the
simplest multimode bead-spring chain, namely the FENE-PM model of Wedgewood
et al. ~1991!, which is capable of capturing a spectrum of internal degrees of freedom
together with an overall finite extensibility. In this model,Nm beads andNm21 nonlinear
springs are connected to form a linear bead-spring chain. In order to obtain a closed-form
constitutive equation, the connector force in each individual link is replaced with the
mean connector force in theNm links. The resulting constitutive equations are given by

Ak(1) 5
1

lk
~ I2ZAk!,

~19!

Z 5 F12H (
k 5 1

Nm

tr Ak /bNmJ G21

,
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whereI is the identity matrix andb is related to the finite extensibility bybNm 5 L2 .
The Zimm spectrum of relaxation times found from dynamic shear data are used as the
relaxation timeslk and the fluid stresses are computed from Eq.~19!:

tk 5 nkBT~ZAk2I !
~20!

t 5 ts1 (
k 5 1

Nm

tk .

The number of relaxation modesNm can be varied to obtain better fits to the linear
viscoelastic data and to the steady and transient shear measurements. We recognize in
advance, however, that the FENE-PM model is not capable of capturing all of the dy-
namics of a Kramers chain. In particular, it does not produce the stress-orientation hys-
teresis encountered in strong transient shear and extensional flows@Kwan and Shaqfeh
~1998!; Doyle et al. ~1998!; Sridhar et al. ~2000!#. However, it predicts stresses more
accurately than a single dumbbell model, and thus indicates the extent to which the shear
and extensional rheology of dilute elastic polymer solutions can be captured by closed-
form constitutive models. In the next section, we compare predictions from the
FENE-PM model to stress growth and relaxation curves measured in stepped shear flows
for the SM-2 fluid. In Sec. IV, we compare FENE-PM predictions of extensional viscos-
ity to measurements from the filament stretching rheometers at M.I.T., Monash Univer-
sity, and the University of Toronto.

C. Transient shear flows

Transient shear flow experiments were performed at UC Berkeley for all three fluids,
using a Rheometric Scientific RMS-800 cone-and-plate rheometer. In this work, a step
increase in shear rate was imposed for a prescribed amount of time, and then the rotation
of the cone was stopped abruptly. The growth of shear and normal stresses were moni-
tored, along with their relaxation after cessation of shearing. The temperature of all
experiments was held constant atT0 5 25 °C.

Transient curves for the SM-2 fluid, showing both growth and relaxation of the vis-
cosity and the first normal stress coefficient, are shown in Figs. 4~a! and 4~b!. Data for

three imposed shear rates,ġ0 5 1.0, 4.0, 8.0 s21, are shown. As the shear rate in-
creases, the steady state value of viscosity remains essentially constant, while

C1
1(ġ0 ,t → `) decreases, in agreement with the data in Fig. 2. Prior to reaching a

steady state value, the first normal stress coefficient experiences an overshoot, the mag-
nitude of which increases as the shear rate increases. Transient shear curves predicted
from the FENE-PM model are shown for each shear rate. Although the steady state

values ofC1(ġ) are overpredicted, both the transient stress overshoot and the shear-
thinning effect are qualitatively captured.

The relaxation of the shear stress and first normal stress difference following cessation
of steady shear flow is also shown in Fig. 4. The relaxation data show that, as the shear
rate increases, the rate of decay increases. Predictions from the FENE-PM model also
show this trend, although the stress decays much faster than the model indicates. In Fig.
4~a!, the FENE-PM model accurately predicts the immediate decade drop in viscosity and
is qualitatively correct afterward. In Fig. 4~b!, the agreement between experiment and
model is qualitative at best. The inability of the FENE-PM model to quantitatively predict
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either the shear-rate dependence of the viscometric properties or the stress relaxation
curves arises in part because of the coupling-mode averaging which simplifies computa-
tions with the model.

At the highest shear rateġ 5 8.0 s21 both the shear stress and the first normal stress
difference increase erratically with time. This behavior is characteristic of an elastic
instability, first observed by Jacksonet al. ~1984! and later studied in detail by numerous
authors@Magda and Larson~1988!; McKinley et al. ~1991!; Byars et al. ~1994!; Mac-
Donald and Muller~1997!#. This instability was observed in the two most elastic fluids
~SM-2 and SM-3! during steady rate sweeps.

III. INTERLABORATORY COMPARISON OF FILAMENT STRETCHING DATA

Having fully characterized the linear viscoelastic, steady, and transient shear responses
of the test fluids, we now proceed to measure the transient extensional stress growth in
three filament stretching devices.

FIG. 4. Startup and cessation of shear flow for SM-2 fluid for three imposed shear rates; (d)

ġ0 5 1.0 s21, (m) 4.0 s21, (l) 8.0 s21. Predicted curves from the FENE-PM model~solid lines! are
compared with measured transient curves~symbols! of ~a! viscosity and~b! first normal stress difference.
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A. Filament stretching devices

The basic elements of a filament stretching device are shown in Fig. 5. An initially
cylindrical fluid filament is elongated between two circular endplates, which are attached
to a motion control system consisting of either one or two moving platens. Several
possible arrangements of the endplates, motor platens, and sensors allow simultaneous
measurement of the tensile force in the filamentFp and the mid-filament diameterDmid
as the endplates move apart according to a carefully controlled separation historyLp(t).
Additional important components of the instrument include the data acquisition and con-
trol software on an attached computer, a temperature sensor, and possibly equipment to
image the flow near the rigid endplate.

In an ideal uniaxial extensional flow, in which the extensional rate is constant, the
axial velocity in the fluidvz is proportional to the axial positionz, leading to an endplate
separation profile which increases exponentially with time

Lp~t! 5 L0 exp~Ėt!, ~21!

FIG. 5. Schematic diagram of a generic filament stretching device. Basic elements include:~a! fluid filament,
~b! linear motor with one or two moving platens,~c! force transducer,~d! top endplate,~e! bottom endplate,~f!
diameter sensor,~g! ~optional! camera for observing profile near endplate, and~h! computer system for control
and data acquisition. Components can be arranged in several different configurations; the specific configurations
of the three devices used in this study are summarized in Table III.
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where Ė is the imposedconstant stretch rate andL0 is the initial length. The total
deformation of the fluid filament is defined in terms of theHencky strain, for which the
nominal value is computed from the length

«L 5 lnSLp~t!

L0
D 5 Ėt. ~22!

Table III summarizes the specific configuration and geometry details of the three labora-
tory instruments. The main differences in the devices involve the diameterD0 of the rigid
endplates and the configuration of the motor platens and force transducers. At M.I.T.,
D0 5 7.0 mm, and the force transducer is mounted to the bottom endplate. At Monash
and Toronto,D0 5 3.0 mm, and the force transducer is attached to the upper endplate.
The three laboratories have different motion configurations: at M.I.T., the top endplate
moves upward from the stationary bottom endplate; at Monash, both endplates move

TABLE III. Component specifications of the filament stretching devices.

Toronto M.I.T. Monash

Flow kinematics and motion control

Motor
Belt-driven dc

Servo
Linear dc

Servo
Linear dc

Servo

Configuration
top: fixed

bottom: moves
top: moves

bottom: fixed
top: moves

bottom: fixed
Lmax ~cm! 200 180 90/plate
DLmin ~cm! — 131024 131024

Vmax ~cm/s! 200 300 200/plate
DVmin ~cm/s! 0.3 0.035 a

«̇* ~1/s! 1.50 1.67 2.22

Force measurement

Sensor
Cantilevered
quart beams Strain gage

Cantilevered
quartz beams

Configuration fixed, top fixed, bottom moves, bottom
Fmax ~g m! 1 or 10 10 5
DFmin ~g m! 0.0002 0.01 0.0001
Sensor response — two-pole —
f c ~Hz! — 12 40
gD ~1/s! — 58 —

Diameter measurement
Sensor Zumbach ODAC Omron Z4LA Zumbach ODAC
Dmax ~mm! 8 10 30
DDmin ~mm! 0.05 0.01 0.05

Geometry

D0 ~mm! 3.0 7.0 3.0

L0 4/3 1.0 1.0

Dimensionless parameters

«L
max 6.90 6.24 7.09

Desag~SM-1! 1.43 3.33 1.43
Desag ~SM-2! 10.2 23.7 10.2
Desag ~SM-3! 42.1 98.3 42.1
Bo 0.75 4.1 0.75

aMachine reports velocity in steps of 0.25 cm/s, calculated from length.
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simultaneously in opposite directions away from the stationary midplane of the filament;
and at Toronto, the bottom endplate moves downward from the stationary top endplate.
Each configuration leads to a slightly different balance of forces on the fluid filament, the
details of which will be discussed later in this section. In contrast to the other two
instruments, in the Toronto device the filament diameter is measured at the filament
midplane only up to a total plate separation of aboutLp ' 48 mm, at which time the
diameter sensor stops moving. This method is expected to yield acceptable diameter
measurements for at least strongly strain-hardening fluids because the filament diameter
has been found to be uniform for dilute polymer solutions@Sridharet al. ~1991!#.

In each device, the diameter sensor has a resolution of better than 50mm, and the
force transducer has a resolution of less than 0.1% of the maximum measurable force.
Both diameter and force sensors are calibrated periodically at each laboratory using
optical fibers of known diameter and calibration weights, respectively. Each force trans-
ducer has a different dynamical response, characterized by the rolloff frequencyf c and
the damping coefficientgD , given in Table III. The values of these parameters determine
the characteristic time of the transducer to respond to transient loads. Fluctuations in the
force data can be reduced using a low-pass filter. Finally, the initial aspect ratio of the
fluid filament L0 [ L0 /(D0/2) is approximately unity for each rheometer, leading to
similar initial transient force responses as stretching begins@Spiegelberget al. ~1996!#.

Geometric dimensions and motor capacity determine the ranges of experimental pa-
rameters accessible in a given device. Figure 6 depicts the generic operating space for a
device, where endplate velocity is plotted as a function of endplate position. The maxi-
mum positionLmax and the maximum velocityVmax achievable by the motors form the
bounds of the operating space. An ideal uniaxial extensional flow, described by Eq.~21!,

is a straight line on this phase diagram, with a slope equal to the imposed strain rateĖ.
It is clear from the diagram that a given experiment will be limited by either the total
travel available to the motor platens or by the maximum velocity the motors can provide.

The optimum strain rate,«̇* 5 Vmax /Lmax , is the rate which utilizes the full ranges of

FIG. 6. Operating space of a generic filament stretching device. Motor and sensor limitations translate
into parameter ranges in uniaxial extensional flow, shown here for an ideal experiment in which

Lp(t) 5 L0exp(«̇0t). Fluid properties and geometry considerations can also lead to additional limitations due to
gravitational sagging and endplate instabilities.
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both position and velocity. For each experiment, the maximum achievable Hencky strain
is determined by the limiting variable: if position-limited,

«max 5 lnSLmax

L0
D , ~23a!

if velocity-limited,

«max 5 lnSVmax

ĖL0
D . ~23b!

Conversely, the maximum stretch rate for a device is dictated by the desired final Hencky

strain for a given experiment, and can be found by solving Eq.~23b! for Ėmax .
In addition to these considerations, it must be remembered that the motor responds in

a finite time (dt ' 50–100 ms! to a motion command, further limiting the maximum

controllable strain rate. The maximum stretching rate«̇max that can be attained in a
filament stretching device is ultimately determined by the limiting~i.e., slowest! response
time dtmax of either the velocity-position feedback controller, the radial micrometer, or
the force transducer. A~generous! estimate of this limiting strain rate can be found by
considering an experiment of total durationdtmax which is also velocity limited so that at
the end of the experiment we have

Vmax 5 V0exp~«̇maxdtmax!. ~24!

Substituting forV0 5 «̇maxL0 and rearranging leads to the following implicit expression
for the maximum stretch rate of a given filament stretching device

~dtmax! «̇max1 ln~«̇max! 5 ln~Vmax/L0!. ~25!

For a typical filament stretching device withdtmax ' 0.050 s,Vmax ' 2.0 m/s, and
an initial sample size ofL0 ' 231023 m, the maximum stretch rate is thus

«̇max ' 57s21. Carefully controlled ‘‘type III’’ experiments@Kolte et al. ~1997!# at such
stretch rates would be extremely difficult to realize in practice due to the very limited
time available for communication between the linear stage, the radius measuring device,
and the controller. These limits on the range of attainable Hencky strains and strain rates
will affect whether a steady state extensional viscosity can be measured in a given
experiment.

The procedure for performing a successful filament stretching experiment begins by
determining the correct plate motion to impose. Although the endplate position profile
Lp(t) is nominally described by Eq.~21!, the no-slip condition at the endplates intro-
duces shearing there, which affects the midfilament diameterDmid(t). Several authors
have examined this nonideal flow@Shipmanet al. ~1991!; Spiegelberget al. ~1996!; Yao
and McKinley ~1998!#, and methods of performing and analyzing filament stretching
experiments have been proposed by Kolte and coworkers@Kolte et al. ~1997!#. It has
been found that the optimal endplate separation is not a simple exponential function but
rather a more complex motion such that the midfilament diameter decreases exponen-
tially, according to

Dmid 5 D0exp~20.5«̇0t !. ~26!

This so-called ‘‘type III’’ test@Kolte et al. ~1997!# is straightforward to generate numeri-
cally but difficult to realize experimentally. In early work, the required endplate motion
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was obtained by trial-and-error. However, two equivalent methods of realizing this ideal
diameter profile have recently been put forward@Anna et al. ~1999!; Orr and Sridhar
~1999!#, and these ‘‘master-curve’’ techniques are used in this study to achieve nearly
ideal flow kinematics.

Once the correct endplate position historyLp(t) has been determined@i.e., the one
which results in aDmid(t) profile that decreases according to Eq.~26!#, this motion
profile is downloaded to the motion controller. A small volume of fluid is introduced into
the gap between the endplates such that the fluid forms a right-circular cylinder of
diameterD0 and lengthL0. While the fluid filament is being stretched, the forceFp(t)
and the midfilament diameterDmid(t) are measured simultaneously. Since the diameter
decreases exponentially, the actual strain rate is determined by least-squares fitting of the
logarithm of the diameter to a linear function of time.

In order to compute the transient extensional viscosity from the measurements, forces
on a viscoelastic filament must be balanced. A detailed analysis of this force balance,
incorporating surface tension, filament curvature, weight of the filament, inertia, and
endplate acceleration, has been presented elsewhere@Szabo~1997!#. Because each labo-
ratory has a different motion and force configuration, each applies a slightly different
formula to compute tensile stresses. At M.I.T., where the force transducer is mounted to
the stationary bottom endplate, the force balance yields

^tzz2trr& 5
Fp

~pDmid
2 /4!

1
1

2

rgV0

~pDmid
2 /4!

2
s

~Dmid/2!
1

1

2

rV0L̈p

~pDmid
2 /4!

, ~27!

where ^tzz2t rr & is the principal tensile stress difference in the fluid filament,
V0 5 pL0(D0 /2)2 is the volume of the fluid sample,s is the surface tension of the
fluid, andr is the density of the fluid. At Toronto, where the force transducer is mounted
to the stationary top endplate, the sign of the second term in Eq.~27! is negative. And at
Monash, where the force transducer moves with the top plate and both plates move apart,

the Toronto equation is used without the finalL̈p term arising from fluid inertia. In
practice, this inertial term is found to contribute less than 1% to the stress difference, so
this term is not actually computed. From Szabo’s detailed force balance analysis, we
neglect terms involving axial filament curvatureRs9 and other inertial terms because
filaments of dilute polymer solutions become increasingly uniform along their length
during stretching@Szabo~1997!#. The force balance given in Eq.~27! assumes that the
force transducer has been taredprior to loading the fluid sample.

Finally, the dimensionless extensional viscosity, orTrouton ratio ~Tr! is computed,
utilizing time–temperature superposition when necessary, by the following expression:

Tr 5
h̄1~T!

aTh0
5

^tzz2t rr &

«̇0aTh0

, ~28!

where«̇0 is obtained from the fit to the raw diameter data, andaT is given by Eq.~8!.
The Hencky strain at the midplane of the filament is computed using the measured
mid-filament diameter

«D [ 22 ln~Dmid~ t !/D0! 5 «̇0t. ~29!

Investigators at each laboratory independently verified that their measurements of the
Trouton ratio are reproducible for identical conditions. Errors are a major concern in
experimental work, of course, and thus we examined the contribution of various sources
of error by performing standard error propagation analyses using Eqs.~27! and ~28!.
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Since the first term in the force balance equation is the dominant one during stretching,
we restrict our analysis to this term only. The error in the Trouton ratio as a function of
the Hencky strain is given by

dTr

Tr
5 H S dF

F D 2

1S 2dD

D D 2

1S daT

aT
D 2

1S d«̇0

«̇0
D 2J 1/2

, ~30!

wheredF is the magnitude of fluctuations in a baseline force signal,dD is the deviation
from the ideal diameter profile given in Eq.~26!, daT is the temperature measurement

error, andd«̇0 is the standard deviation resulting from the least-squares fit to the strain
rate as described earlier. Each term in Eq.~30! can contribute significantly at different

times in the stretching. AlthoughdaT /aT and d«̇0 / «̇0 are generally constant during a
given experiment,dF/F anddD/D both vary with time. Calculations using Eq.~30! will
be given for a specific experiment in Sec. III C. Finally, we note that experiments were
performed on the M.I.T. device using bothD0 5 3.0 mm andD0 5 7.0 mm endplates,
with identical initial aspect ratiosL0 5 1.0 for each experiment. The resulting values of
Tr agreed well until late times, when the filament diameter fell below the resolution of the
diameter sensor and produced unreliable and noisy data.

The operating conditions of a particular experiment can be characterized by several
dimensionless groups. The most important of these is the Deborah number De, which is
the dimensionless extensional rate, defined by

De 5 lZ«̇0 . ~31!

Another dimensionless group, the Bond number Bo, describes the competition between
gravity, which causes the filament to sag and drain, and surface tension, which acts to
maintain the cylindrical shape of the filament. The Bond number is given by

Bo 5
rgD0

2

4s
. ~32!

This number is useful because it is a measure of the axial asymmetry of the initial static
fluid column about its midplane. Large Bond numbers, Bo. 1, indicate that surface
tension is not able to maintain a perfectly cylindrical fluid filament; in practice, a visible
bulge appears in the fluid below the midplane, which increases in size as Bo increases
@Szabo~1997!; Domann and McKinley~1998!#. Another dimensionless group related to
surface tension is the capillary number Ca, which describes the competition between
viscous forces and surface tension

Ca 5
h0«̇0D0

2s
. ~33!

For Newtonian fluids at least, the capillary number is a measure of the stability of the
slender fluid filament as it is stretched. Viscous forces in the filament tend to stabilize the
cylindrical shape, while surface tension acts to destabilize the shape by causing the
diameter to rapidly decrease until the filament breaks apart@Ide and White~1976!; Has-
sageret al. ~1998b!#.

The ratio of the Bond number to the capillary number

Bo

Ca
5

rgD0

2h0«̇0

~34!
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expresses the competition between gravitational and viscous forces during stretching. A
large value of Bo/Ca indicates that a significant amount of fluid drains below the mid-
plane of the filament during stretching. In strongly strain-hardening fluids, draining is not

an issue because stresses in the filament are of the orderh̄1«̇0 rather thanh0«̇0. At
lower stretch rates, however, sagging can be important. Nevertheless, in computing the
transient extensional viscosity from Eqs.~27! and~28!, it is assumed that exactly half the
volume of the fluid filament lies below the midplane@Szabo~1997!#. If Bo/Ca > 1,
significantly more than 50% of the fluid volume will drain below the midplane, leading to
an additional correction term in Eq.~27! of the form

rgdV

~pDmid
2 /4!

, ~35!

wheredV is the extra volume below the midplane. The evolution of this incremental
volume with time is a complicated function of surface curvature and cannot be computed
analytically even for a Newtonian filament. Although the correction term in Eq.~35! is
not easy to calculate, it can become large, and extensional viscosities computed without
accounting for it exhibit anomalously low values at moderate Hencky strains, even be-
coming negative for large enough Bo/Ca values.

The experimental conditions for which gravitational sagging will become important
can be estimated using dimensionless quantities. Since gravitational forces begin to domi-
nate when the ratio Bo/Ca approaches unity, Eqs.~34! and~8! can be used to compute a

critical strain rate«̇sagbelow which sagging becomes important

«̇sag5
rg D0

2h0aT
. ~36!

This condition leads to a critical Deborah number Desag, which depends on material
properties and test geometry and which is only a weak function of temperature@cf. Eq.
~8!#:

Desag5 lZ

rgD0

2h0

T0

T
. ~37!

Values of the dimensionless groups Bo and Desagare given in Table III for each rheom-
eter and for the three SM test fluids at the reference temperatureT0. The Deborah number
for a given experiment can be compared to Desag to determine if sagging effects are
important; Deborah numbers greater than Desagare expected to be less affected by sag-
ging. For the SM fluids, it was shown in Sec. II B that the longest relaxation timelZ
increases much more rapidly with molecular weight than does the total shear viscosity
h0; hence Eq.~37! shows that the potential for saggingincreasesnot only with the plate
size but also with molecular weight.

Gravitational sagging is a particularly important constraint in filament stretching de-
vices if one wishes to explore experimentally the coil–stretch transition in dilute polymer
solutions at Deborah numbers of De' 0.5. This may be demonstrated by considering the
critical Deborah number for sagging in more detail. For a dilute polymer solution de-
scribed by the Zimm theory, the longest relaxation time and polymer contribution to the
viscosity may be expressed aslZ 5 2.369@h#hs Mw /(NA kBT) and hp [ (h02hs)
5 @h# hsc, respectively. The critical Deborah number for sagging can thus be written in

the compact form
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Desag[
lZrgD0

2h0
5

2.369@h# Mw rg~D0 /2!

~NA kBT0!~11@h#c!
. ~38!

The intrinsic viscosity can also be represented in the form of the Mark–Houwink–

Sakaruda expression@h# 5 K8 Mw
a8 ~in which K8 anda8 are tabulated constants for a

particular polymer–solvent pair!. For the solution to be considered dilute we require
c @h# < 1, which places an upper bound on the denominator. If we require Desag
< 0.5 then Eq.~38! can be reduced to

1.18~K8 Mw
11a8! rg ~D0 /2!

R T0
< 0.5, ~39!

whereR 5 NA kB is the ideal gas constant.
For most polymer solutions in good solvents, the constantK8 is in the range (10

< K8 < 50)31023 ml/g @see e.g., Brandrupet al. ~1999!#. Taking typical values of
rg ' 104 J/m4, RT0 ' 2400 J/mol andD0 /2 ' 1023 m we thus need to perform
experiments with fluids having relative molecular masses in the range

~0.5– 2.5!310210~Mw!11a8 < 0.5. ~40!

The Zimm theory gives (11a8) [ 3n, wheren is the scaling exponent for the coil
size determined from light scattering. For example, from Table I we findn ' 0.52 and
K ' 3531023 ml/g for the PS/PS fluids employed in this study. We would therefore
need to use polymers with molecular weightslessthanMw < 1.153106 g/mol in order
to explore the coil–stretch transition in the absence of appreciable gravitational sagging.

It is interesting to note that although this result does depend on the solvent quality
parametern, it is independent of the viscosity of the solvent~since both the longest
relaxation time and the polymer contribution vary linearly onhs). Changing the solvent
viscosity does, however, change the absolute magnitude of the tensile force exerted on
the endplates during the stretching. This places another independent constraint on the
experimental range attainable by filament stretching devices.

B. Realization of kinematics

This component of the study was undertaken with the hope that, in spite of slight
variations in instrument configuration, different laboratories can achieve the same results
for identical fluids. Before we compare our results from the different instruments, we first
examine how closely the ideal stretching history is achieved.

As mentioned in the previous section, the first step in a successful filament stretching
experiment is to determine the correct kinematics, i.e., the endplate separationLp(t) and

velocity L̇p(t) that result in the midfilament diameter decreasing exponentially@Eq. ~26!#.
We use the techniques developed at M.I.T. and Monash to determine these kinematics
@Annaet al. ~1999!; Orr and Sridhar~1999!#. Figure 7 shows a so-called ‘‘master curve’’
in which one measure of the total Hencky strain is plotted against the other, the two
Hencky strains being given by Eqs.~22! and ~29!. The nonlinearity of this plot reflects
the influence of the no-slip boundary condition at the endplates and the extent of the
strain hardening in the fluid rheology. A filament which is deforming ideally is cylindri-
cal along its entire length for the duration of the experiment, and then the Hencky strain
based on endplate separation would exactly equal the Hencky strain based on midfilament
diameter. In reality, they are not equal. However, for sufficiently high strain rates, the
curve should be independent of the kinematics for a particular test fluid, as suggested by
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extensive experimentation and constitutive arguments@Anna et al. ~1999!; Orr and
Sridhar~1999!#. The plot can thus be used to invert a nonideal experiment, in which the
endplate position is described by Eq.~21!, into a nearly ideal experiment, in which the
midfilament diameter is described by Eq.~26!. Details of the inversion process are de-
scribed elsewhere@Annaet al. ~1999!; Orr and Sridhar~1999!#. The curves shown in Fig.
7 are data from the three laboratories for SM-1 at similar Deborah numbers. The three
curves are very close, indicating that the imposed kinematics are virtually the same at the
three laboratories. Each laboratory found that the curve actually is weakly dependent on
the Deborah number, and so this ‘‘master curve’’ must be recreated for each imposed
strain rate@Anna et al. ~1999!#.

We further investigate the kinematics by comparing the endplate positions and veloc-
ity profiles achieved by the individual motors. Since the linear motor~s! in each rheometer
controlseitherposition or velocity, but not both, plotting an operating diagram similar to
that in Fig. 6 would allow a proper comparison. However, since the initial axial separa-

tion L0 is different at each laboratory, and since the imposed strain rates«̇0 are also

slightly different, the endplate velocity is normalized by the characteristic velocity«̇0L0
and the endplate position by the initial separationL0. ~This type of operating diagram
essentially plots a third characteristic Hencky strain, based on the endplate velocity, as a
function of the Hencky strain based on position.! The results are shown in Fig. 8, for the
same data presented in Fig. 7. Again, we observe that the kinematics realized by the
different devices agree reasonably well. We have found that quantitative agreement be-
tween imposed velocityand position profiles is crucial in obtaining good agreement
between transient Trouton ratio profiles. Fluctuations in the low velocity data shown for
the Monash and Toronto devices result from low resolution in the velocitiesreportedby
the motion controller, although the actual velocities are observed to be smooth. The
velocity profile shown for the M.I.T. device is smoother because it is computed during
postprocessing by fitting a spline curve to the reported endplate position data.

Finally, we can examine how successfully the modified kinematics achieve the desired
midfilament diameter profiles. Figure 9~a! shows the actual midfilament diameter profiles
from the three laboratories along with the ideal diameter, the solid line, given by Eq.~26!.

FIG. 7. Comparison of the ‘‘master curves’’ for SM-1 from the three filament stretching devices at similar
Deborah numbers. Good agreement is found between the Hencky strain profiles measured by M.I.T. (s,
De 5 17.0!, Monash (h, De 5 14.0!, and Toronto (n, De 5 12.0!.
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These curves appear to show excellent agreement, as they are nearly indistinguishable
from the ideal curve on this scale. A more illuminating plot is shown in Fig. 9~b!, which
shows diameter error. This error measure is defined as the deviation of the actual
midfilament diameter from the ideal value and normalized by the ideal value so that

dD

D
5

Dideal2Dmid

D ideal
5 12

Dmid

D0e20.5«̇0
. ~41!

Figure 9~b! shows that all three laboratories are able to maintain an error of less than 10%
for the duration of a run. Although the error plot has a distinct shape for each laboratory,
showing that the errors are not random, the errors are small and not expected to signifi-
cantly affect the resulting transient extensional viscosities. The excellent agreement be-
tween imposed endplate kinematics and resulting midfilament diameter profiles from the
three laboratories leads us to expect similarly good agreement between the transient
extensional viscosities computed with the three devices. These viscosities are presented
in Sec. IV.

IV. EXTENSIONAL RHEOLOGY OF SM FLUIDS

Having imposed proper flow kinematics, we now compare transient extensional vis-
cosities from the three laboratories. Figure 10 shows the transient Trouton ratios for
SM-1 fluid after appropriate versions of Eqs.~27! and~28! are applied. As we had hoped,
the Trouton ratio profiles agree very well, consistent with the good agreement between
endplate kinematics and midfilament diameter profiles in Figs. 7, 8, and 9. The shape of
the Trouton ratio profile is also consistent with previously reported measurements of the
transient extensional rheology of dilute polymer solutions@Sridharet al. ~1991!; Kröger
et al. ~1992!; Tirtaatmadja and Sridhar~1993!; Berg et al. ~1994!; Solomon and Muller
~1996b!; Spiegelberget al. ~1996!; Spiegelberg and McKinley~1996!; van Nieuwkoop
and Muller von Czernicki~1996!; Jain et al. ~1997!; Remmelgaset al. ~1998!; Anna
et al. ~1999!; Orr and Sridhar~1999!; Verhoef et al. ~1999!#. Figure 10 shows that the
fluid response is primarily viscous initially, for the Trouton ratio has a constant value of
approximately 3, consistent with the value expected for a purely Newtonian fluid@Trou-
ton ~1906!#. For Boger fluids, the initial Trouton ratio should be slightly lower than 3,

FIG. 8. Comparison of endplate kinematics with the SM-1 fluid@M.I.T. (s, De 5 17.0!, Monash (h, De
5 14.0!, and Toronto (n, De 5 12.0!#.
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with a value of 3hs /h0, since the total viscosityh0 is larger than the solvent viscosity
hs . At moderate strains of about« ; 2, the polymer chains are stretched significantly,
strain hardening begins to occur, and the Trouton ratio begins to rise. Finally, at Hencky
strains of about« ; 6, the polymer chains are nearly fully stretched, and the Trouton
ratio approaches a steady state value Tr` . For SM-1, gravitational effects are found to be
unimportant because the experimental Deborah numbers are considerably larger than the
critical Deborah number Desag.

Error bars at selected strains have been computed from Eq.~30! and are also included
in Fig. 10. At low Hencky strains, such as those near~a! in the plot, viscous forces are
large and diameter values are well above sensor resolution; hence the error bars are less
than 5% of the total Trouton ratio in this region. At moderate Hencky strains~b!, the
viscous force has decayed significantly and strain hardening has not yet begun; hence the
measured force is a minimum and possibly close to the resolution of the transducer. In
this region, errors can be as high as 50% of the transient Trouton ratio, depending on the

FIG. 9. Comparison of~a! midfilament diameter and~b! diameter error for SM-1. In~a! the midfilament
diameter measurements from all three laboratories@M.I.T. (s, De 5 17.0!, Monash (h, De 5 14.0!, and
Toronto (n, De 5 12.0!# are nearly indistinguishable from the ideal profile~solid line!. The diameter errors in
~b! show that all three filament stretching devices produce diameters within 10% of the ideal value during
stretching.
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resolution of the force transducer. Once the force begins to increase due to strain hard-
ening at strain~c!, the error again becomes small and, for Hencky strains of about
« ; 3–4, the error bars are less than 5%. Finally, near the end of the experiment at strain
~d!, the force is decreasing and the diameter is approaching the resolution of the sensor.
In this region, error bars can reach 15%–20% of the transient Tr value.

In addition to random fluctuations in the measured data, systematic errors can arise.
We have found that it is essential to calibrate the force and diameter sensors frequently
and carefully, and to ensure that the dynamical response of each sensor is fast enough that
no noticeable delay is introduced in the signal. The temperature needs to be monitored
frequently and recorded immediately prior to stretching because the fluid viscosities, and
therefore the relaxation times, are extremely sensitive to temperature, as shown by Eq.
~8!. An error in the temperature shifts the entire Tr curve by a constant factor, which
increases rapidly as the magnitude of the temperature error increases. Other important
considerations for reproducible data include: ensuring that the endplates are clean, axially
aligned, and parallel; loading the sample such that the initial liquid bridge is free of
bubbles; and obtaining accurate measurements of density, surface tension, and viscomet-
ric properties.

Figures 11 and 12 compare filament stretching data for similar Deborah numbers for
the SM-2 and SM-3 fluids, respectively. For SM-2, the data from Monash and Toronto
agree quite well. However, the effect of gravitational sagging is significant in the M.I.T.
data for the reason described in the text after Eq.~37!, and this curve does not begin to
approach the other two curves until Hencky strains of about« ; 4. The ratios of the
experimental Deborah number to the critical Deborah number for each laboratory are
De/Desag5 0.64, 1.5, and 3.1 for M.I.T., Monash, and Toronto, respectively, and
these values help to explain the observed trends. The ratio is significantly smaller than
unity for M.I.T., indicating greater potential for sagging. The ratio isO~1! for the other
two laboratories, suggesting that gravity should not play an observable role. For SM-3,
sagging is again significant for the M.I.T. data, although the ratio of the Deborah numbers
is about De/Desag5 1.2 in this case. Agreement between the Monash and Toronto data
is not quite as good in this case, and the discrepancy can be explained by sagging, since
the Deborah number ratios are De/Desag5 0.76 (Monash) and 2.6 (Toronto). Based

FIG. 10. Comparison of transient Trouton ratio profiles for SM-1@M.I.T. (s, De 5 17.0, T 5 21.3 °C!,
Monash (h, De 5 14.0, T 5 19.5 °C!, and Toronto (n, De 5 12.0, T 5 21.6 °C!#. The bars indicate the
estimated error at low, moderate, and high Hencky strains.
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on these ratios, one might expect the sagging effect in both the M.I.T. and Monash data
to have nearly the same magnitude. We believe other factors influence the transient
evolution of these two curves, namely the Bond number Bo and the initial aspect ratio
L0, which are not captured in the simple dimensionless criterion of Eq.~37!. For the
M.I.T. experiments, Bo andL0 are both significantly larger than those for the Monash
experiments. These combined factors result in more asymmetry in theinitial fluid col-
umn, which propagates into the force balance during stretching.

No laboratory was able to measure Trouton ratios beyond Hencky strains of about
« ; 4–5, for either SM-2 or SM-3, because of an elastic instability near the endplates.
This instability has been observed and characterized previously for polystyrene- and
polyisobutylene-based Boger fluids@Spiegelberg and McKinley~1996!; Rasmussen and
Hassager~1999!#. Its onset is preceded by a rapid drainage of the fluid adjacent to the
endplates, leading to a large negative pressure gradient across the free surface of the

FIG. 11. Comparison of transient Trouton ratio profiles for SM-2@M.I.T. (s, De 5 15.2, T 5 25.3 °C!,
Monash (h, De 5 15.6,T 5 21.0 °C!, and Toronto (n, De 5 31.8,T 5 27.5 °C!#. The effect of gravitational
sagging is evident in the experiments performed at M.I.T. in which larger endplates were used.

FIG. 12. Comparison of transient Trouton ratio profiles for SM-3@M.I.T. (s, De 5 114, T 5 23.1 °C!,
Monash~h, De 5 31.8,T 5 25.0 °C!, and Toronto (n, De 5 110,T 5 28.8 °C!#.
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liquid ‘‘foot’’ and a destabilization of the azimuthal uniformity of the filament cross-
section at large Hencky strains. These perturbations at the foot grow until the filament
splits into ‘‘fingers,’’ which elongate and move radially outward as the endplates con-
tinue to separate. For highly elastic fluids, the filament can completely detach from the
endplates, and this occurs at all Deborah numbers for both fluids. Similar fibrillation is
observed in adhesive materials@Fergusonet al. ~1997!; Crosby and Shull~1999!#. The
detachment occurs at strains less than« ; 5, which prevents an approach to steady state
conditions for these fluids, and thus prevents determination of the dependence of steady
state Trouton ratios on polymer molecular weight. This elastic instability also limits our
ability to compare transient curves with predictions from constitutive models.

In Figs. 13, 14, and 15 we show data for all three fluids over ranges of Deborah
numbers. The transient Trouton ratios for SM-1, shown in Fig. 13, agree well when the
Deborah numbers are similar in magnitude, as observed previously in Fig. 10. In addi-
tion, the Trouton ratio is seen to depend weakly on De, with the slope of the curve at
moderate strains increasing slightly as De increases. Steady-state plateaus were apparent
for several values of De, and the behavior of these plateaus will be discussed later. The
Deborah numbers in Fig. 13 are larger than the critical Deborah number Desag, and thus
sagging has no effect.

Predictions from the FENE-PM bead-spring model~discussed in Sec. II B! are also
included in Fig. 13, for two values of De which bound the experimental data. As shown
in the figure, the predictions of the initial and steady state Trouton ratios agree well with
the experimental values. However, the predicted evolution to steady state does not agree
well. The onset of strain hardening occurs too late in the FENE-PM model, and the
Peterlin approximation~FENE-P model! leads to an anomalously sharp approach to
steady state. The dependence on De for this model does follow the experimentally ob-
served trend, with the slope of the curve at moderate Hencky strains increasing with
Deborah number.

FIG. 13. Transient extensional rheology of SM-1 fluid over a range of Deborah numbers. Data from all three
filament stretching devices are represented@M.I.T. ~3, De 5 17.0,T 5 21.3 °C;1, De 5 27.2,T 5 22.2 °C;
n, De 5 71.0, T 5 22.1 °C!, Monash (d, De 5 14.0, T 5 19.5 °C; j, De 5 28.2, T 5 19.5 °C; l, De
5 47.6,T 5 21.0 °C!, and Toronto (s, De 5 12.0,T 5 21.6 °C;h, De 5 19.5,T 5 22.5 °C;L, De 5 46.7,

T 5 23.5 °C!#. Predictions from the FENE-PM model are also shown for both a high Deborah number and a
low Deborah number~De 5 10, dashed line; De5 50, solid line!.
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The FENE-PM model underpredicts the stress at intermediate strains 3< « < 4.
Brownian dynamics calculations@Doyle et al. ~1998!; Larsonet al. ~1999!# of bead-rod
and bead-spring chains show that this stress discrepancy can arise from nonequilibrium
internal configurations of the chain, which become trapped and thus develop ‘‘kinks’’
during strong deformations. The stress associated with such configurations leads to the
stress-orientation hysteresis which has been observed in polymer solutions but which
cannot be captured by closed-form models such as the FENE-PM model@Doyle et al.
~1998!#.

FIG. 14. Transient extensional rheology of SM-2 fluid over a range of Deborah numbers. Data from all three
filament stretching devices are represented@M.I.T. (3, De 5 3.3,T 5 24.7 °C;1, De 5 8.0,T 5 25.1 °C;n,
De 5 15.2, T 5 25.3 °C;,, De 5 26.4, T 5 25.4 °C;�, De 5 58.3, T 5 22.7 °C!, Monash (d, De 5 5.4,
T 5 21.0 °C;j, De 5 8.2,T 5 21.0 °C;l, De 5 10.9,T 5 21.0 °C;m, De 5 15.6,T 5 21.0 °C!, and Tor-
onto (s, De 5 20.9,T 5 29.3 °C;h, De 5 31.8,T 5 27.5 °C;L, De 5 58.5,T 5 26.8 °C!#.

FIG. 15. Transient extensional rheology of SM-3 fluid over a range of Deborah numbers. Data from all three
filament stretching devices are represented@M.I.T. (3, De 5 21.2,T 5 23.6 °C;1, De 5 34.7,T 5 24.1 °C;
n, De 5 83.9, T 5 23.9 °C; ,, De 5 114, T 5 23.1 °C!, Monash (d, De 5 10.8, T 5 25.0 °C; j, De
5 15.3,T 5 25.0 °C;l, De 5 31.8,T 5 25.0 °C!, and Toronto (s, De 5 110,T 5 28.8 °C!#.
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The transient Trouton ratios for SM-2 and SM-3 in Figs. 14 and 15 exhibit similar
trends to those found for SM-1. However, as observed in Figs. 11 and 12, sagging plays
a significant role in the data reported from M.I.T., and may also play a minor role in the
data reported from Monash. As the Deborah number increases, the sagging effect in the
M.I.T. data decreases, and the transient Trouton ratio curves begin to look similar to the
curves reported from Monash and Toronto. As observed for SM-1, the curves for both
SM-2 and SM-3 become steeper at moderate Hencky strains as De increases. The Hencky
strain achieved in each experiment for SM-2 and SM-3 was limited by the fingering
instability and filament detachment described earlier in this section. Only one experiment
~performed at M.I.T.! reached a steady state value for SM-2, and this one corresponded to
the lowest De, with De/Desag5 0.14. Without additional steady state values, it is unclear
whether this single value is valid or is artificially low because of gravity.

Although steady state Tr values could not be observed for the two most elastic SM
fluids due to elastic instability, values of Tr` could be extracted over a range of De for
SM-1. Figure 16 shows the extracted values. Error bars have been included for the M.I.T.
data to show that data from the three laboratories agree reasonably well within experi-
mental error. In addition to the data, predicted curves are shown for both the FENE-P and
FENE-PM models, as described in Sec. II B. The steady state Trouton ratio for the
FENE-P model can be found by simplifying Eqs.~17! and ~18!, and is given by

Tr` > 2L2S hp

h0
D F S 12

3

L2D 2
1

2De
1O~De22! . . . G , ~42!

while for the FENE-PM model the Trouton ratio is approximately

Tr` > 2
nkBTbNm

h0
F S 12

3

bNm
D 2

1

2DeG , ~43!

wherebNm [ L2. The FENE-PM model thus predicts a steady state extensional viscos-
ity that is a factor of( i 5 1

Nm i 2(21s̃) smaller (' 2.4711 forNm 5 200 ands̃ 5 20.5,
corresponding toh* 5 0.25 in the Zimm model!. This factor is a consequence of some

FIG. 16. Steady-state Trouton ratios for SM-1 fluid as a function of Deborah number. Values extracted from
filament stretching experiments are shown for each device~M.I.T., d; Monash,l; and Toronto,m), and these
experimental values agree to within 1 standard deviation. Theoretical predictions from the FENE-P model and
the FENE-PM model are shown by the dashed and solid lines, respectively.
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of the elastic stress in the FENE-PM dumbbell model being redistributed into less elastic
~lower time constant! modes that do not stretch during uniaxial elongation@McKinley
~1998!#. Both the FENE-P and FENE-PM models predict that Tr` rapidly approaches a
constant value as De increases. For De between 10 and 30, the FENE-PM asymptote
nearly agrees with the data. The FENE-P model appears to describe an upper bound for
Tr` , while the FENE-PM model gives a lower bound. At higher De, the experimental
values of Tr̀ decrease and fall below the predicted FENE-PM value. This ‘‘extension
thinning’’ at high De may be a consequence of a stress-dependent drag on the chain
@Gupta et al. ~2000!#, or of intermolecular interactions of the highly extended chains.
However, the effect is unavoidably coupled with the physical limitations of the motors
used in filament stretching rheometers, for the following reason: the maximum Hencky

strain realized in a filament stretching device must decrease for all«̇ . «̇* , in accor-
dance with Eq.~23b!. For example, in the M.I.T. device, withVmax 5 3.0 m/s at

«̇ 5 9.0 s21, the final Hencky strain is« ' 4.5, which is clearly below the value
needed to reach the steady state plateau observed in Fig. 13. Calculating the predicted
FENE-PM values of Trmax that correspond to these finite Hencky strains«max rather than
the true steady state value attained at infinite strain allows the extension thinning effect to
be qualitatively captured, as shown in Fig. 16. Although the Monash and Toronto devices
achieved higher final Hencky strains than those at M.I.T., extension thinning was still
observed. The approach to ‘‘true’’ steady state conditions may be very slow, so the
constraints imposed by physical hardware limitations must be considered when analyzing
data at higher strains and strain rates.

V. DISCUSSION AND CONCLUSIONS

The outcome of our collaborative project is a comprehensive characterization of both
the shear and extensional rheology of a set of carefully prepared test fluids. In our
molecular characterization of the solutions, intrinsic viscosity measurements yield an
excluded volume exponent ofn 5 0.52, indicating slightly better than theta solvent be-
havior. A Zimm bead-spring model predicts the linear viscoelasticity data remarkably
well for all three fluids, and the resulting viscometric properties—the relaxation timelZ
and polymeric viscosityhp—also scale with molecular weight in the manner expected.
The excluded volume scaling exponentsn determined from both intrinsic viscosity and
viscometric data agree remarkably well, to well within the estimated experimental error.
FENE-P and FENE-PM model predictions are found to agree only qualitatively with
steady and transient shear flow data. The FENE-PM model is slightly more successful
than the FENE-P model at predicting some of the observed nonlinearities in the transient
stress growth and relaxation curves.

The main goal of this study is to compare in detail measurements from three different
filament stretching rheometers, in part to assess the accuracy and reproducibility of re-
sults obtained from this new type of device, and in part to demonstrate the current state
of research in extensional rheometry. The imposed and measured flow kinematics during
stretching are found to agree quantitatively for experiments with similar Deborah num-
bers performed at each laboratory. By paying careful attention to detail in the filament
stretching experiment~proper sample loading, correct axial alignment, accurate measure-
ments of fluid properties and temperature, calibration of sensors!, and by consistent
postprocessing of the raw data, excellent interlaboratory agreement is obtained for mea-
surements of the transient extensional viscosity of the test fluid SM1, a dilute solution of
polystyrene of molecular weight 2.03106 g/mol dissolved in oligomeric styrene. This
agreement is obtained despite differences in instrument configuration.

111FILAMENT-STRETCHING RHEOMETERS



The set of filament stretching experiments span the useful operating ranges of the
instruments, shown in Fig. 6, at least for SM-1, and we have thus been able to directly
quantify the practical limitations of the device. Gravitational sagging and elastic insta-
bilities are found to limit the useful operating space for SM-2 and SM-3. That is, sagging
occurs at low strain rates, and fingering occurs at high strain rates and high strains.
Nonetheless, we show that filament stretching devices can provide a significant amount
of reliable, quantitative information regarding tensile stress growth in viscoelastic fluids.
For the least elastic fluid, SM-1, the transient uniaxial elongational viscosity is observed
to approach steady state conditions, and predictions from the FENE-P and FENE-PM
models for Tr̀ are shown to bound the measured values for moderate Deborah numbers.
The transient extensional viscosities predicted by the FENE-PM model do not agree as
well with the experimental values, especially at moderate strains. This is most likely a
consequence of the distribution of internal microscopic configurations in the polymer
chains, which can be captured only by molecular models, such as bead-rod or bead-spring
models, which retain internal degrees of freedom.

We show that filament stretching rheometry has matured into a reliable method of
measuring the response of viscoelastic fluids, particularly dilute polymer solutions, to a
nearly ideal uniaxial extensional deformation. The kinematics of the flow effectively
isolate extensional effects from those of shearing. Thus filament stretching rheometry has
the potential to provide useful information for the development of constitutive equations.
The information can also help predict behavior in more complex flows such as those that
contain both shearing and elongation. The authors hope that filament stretching rheom-
etry will become a standard rheological technique, and that measurements of transient
extensional viscosity will be regularly reported alongside data for steady and unsteady
shear.
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