
Carnegie Mellon University
Research Showcase @ CMU

Department of Philosophy Dietrich College of Humanities and Social Sciences

2004

Fundamental Notions of Analysis in Subsystems of
Second-Order Arithmetic
Jeremy Avigad
Carnegie Mellon University, avigad@cmu.edu

Ksenija Simic
University of Arizona - Tucson

Follow this and additional works at: http://repository.cmu.edu/philosophy

Part of the Philosophy Commons

This Article is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research Showcase @ CMU. It has
been accepted for inclusion in Department of Philosophy by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fphilosophy%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/philosophy?utm_source=repository.cmu.edu%2Fphilosophy%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hss?utm_source=repository.cmu.edu%2Fphilosophy%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/philosophy?utm_source=repository.cmu.edu%2Fphilosophy%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/525?utm_source=repository.cmu.edu%2Fphilosophy%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu


Fundamental notions of analysis

in subsystems of second-order arithmetic
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Abstract

We develop fundamental aspects of the theory of metric, Hilbert, and Banach spaces
in the context of subsystems of second-order arithmetic. In particular, we explore
issues having to do with distances, closed subsets and subspaces, closures, bases,
norms, and projections. We pay close attention to variations that arise when for-
malizing definitions and theorems, and study the relationships between them. For
example, we show that a natural formalization of the mean ergodic theorem can be
proved in ACA0; but even recognizing the theorem’s “equivalent” existence asser-
tions as such can also require the full strength of ACA0.
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1 Introduction

A good deal of work in the foundations of mathematics in the nineteenth cen-
tury was directed towards grounding mathematics, and analysis in particular,
in the theory of the natural numbers. Of course, constructions of the real
numbers, like those of Weierstrass, Dedekind, and Cantor, required an appro-
priate “logical,” or set-theoretic background; and almost as soon as there were
full-blown set-theoretic foundations for mathematics, there were concerted ef-
forts to determine the extent to which portions of analysis can be carried out
in restricted fragments. Weyl’s landmark Das Kontinuum [26], Hilbert and
Bernays’ Grundlagen der Mathematik [10], and, more recently, Takeuti’s Two
Applications of Logic to Mathematics [24] contributed to this program.

Such formalizations of analysis are often couched in terms of restricted subsys-
tems of second-order arithmetic. In this context, the “reverse mathematics”
program, promoted principally by Harvey Friedman and Stephen Simpson,
aims to calibrate the strength of central mathematical theorems in terms of
the axiomatic set existence principles that are needed to prove them.

Because set-theoretic language and terminology pervade modern mathemat-
ics, the first step in the reverse mathematician’s analysis is to adapt the rel-
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evant definitions and concepts to the language of second-order arithmetic. At
the outset, this can pose problems, since infinitary mathematical objects and
structures must ultimately be represented in terms of sets of natural num-
bers. This can force one to restrict one’s attention, say, to countable algebraic
structures and separable spaces. In the language of second-order arithmetic,
there is, for example, no way to represent the notion of an arbitrary function
between separable metric spaces; one may reasonably restrict one’s attention
to continuous functions, but then these have to be defined indirectly, in terms
of their countable representations, rather than as arbitrary functions that hap-
pen to satisfy the usual epsilon-delta characterization.

To make matters worse, the body of theorems that one can ultimately derive in
restricted theories can be sensitive to one’s choice of definitions. For example,
Cauchy sequences are often easier to deal with than Dedekind cuts of ratio-
nals, and even with the choice of the former it makes a difference whether or
not one requires an explicit rate of convergence. Other examples abound; for
example, it takes some axiomatic strength to prove the equivalence of various
formulations of compactness for separable metric spaces (see [2,22]), as well
as the equivalence of various notions of a closed subset (see [3]). It can also
take some axiomatic strength to obtain moduli of uniform continuity for con-
tinuous functions on a compact space (see [22,14]), or distance functions for
closed sets (see [8,7]). In reverse mathematics, as in the study of constructive
and recursive mathematics, it is common to insist that objects come equipped
with such additional information, especially when such information is typically
available. In the prologue to Bishop and Bridges’ Constructive Mathematics
[1], Bishop refers to this practice as the “avoidance of pseudogenerality.”

Of course, in many instances, the choice of formal definition is more-or-less
canonical, or various natural definitions can be shown to have equivalent prop-
erties in a weak base theory. This is certainly the case, for example, with re-
spect to finitary notions from number theory and combinatorics. We contend,
however, that in situations where there are a plurality of inequivalent “nat-
ural” representations of mathematical notions, this should not be viewed as
a bad thing. Indeed, the nuances and bifurcations that arise constitute much
of the subject’s appeal! Set theoretic foundations provide a remarkably uni-
form language for communicating mathematical concepts, as well as powerful
principles to aid in their analysis; but from the point of view of the mathe-
matical logician, this uniformity and power can sometimes obscure interesting
methodological issues with respect to the way the concepts are actually used.
When it comes to developing a mathematical theory in a restricted framework,

• various natural definitions may turn out to be provably equivalent in a weak
base theory;

• among definitions that are not provably equivalent, one may prove to be
more natural, or more useful; or
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• different definitions may prove to be useful in different contexts.

We maintain that in each case, something interesting has been learned. Thus
one can view reverse mathematics as a study of the ways in which mathemat-
ical theories can (or have to) be developed if one is committed to avoiding
abstract set-theoretic notions in favor of more explicit representations. Such
a study can be interesting in its own right, for the mathematical insights it
brings, or for the mathematical questions it raises; it can also be of use to
logical analyses which aim to extract algorithms and other useful information
from classical mathematical developments.

Our goal here is to present an analysis of a number of fundamental notions
from the theories of metric, Hilbert, and Banach spaces in the context of
subsystems of second-order arithmetic. We believe that the results presented
here support the contentions above. For example, in Section 5, we observe that
there are at least three fundamentally different notions of a closed subset of
a complete separable metric space; and in Section 11 we note that these lift
to three different notions of a closed subspace of a Hilbert space or a Banach
space. We invest a good deal of effort in clarifying the relationships between
these notions, and understanding situations in which they arise. We will see, for
example, that the distinctions are important in an analysis of von Neumann’s
mean ergodic theorem, stated in the general context of a Hilbert space; and,
in the other direction, our analysis of the mean ergodic theorem turns out to
be quite helpful in sorting out the relationships between the various notions.

The formalization of mathematics in subsystems of second-order arithmetic is
closely related to work carried out in the fields of constructive mathematics
and recursive mathematics. There are key differences between reverse mathe-
matics and these other fields, however. In one sense, our work is less restricted,
since we allow the use of classical reasoning and noncomputable constructions.
Indeed, our goal is often to clarify the extent to which non-computable con-
structions are necessary. In another sense, however, we are more constrained,
in that we pay careful attention to the axiomatic framework in which the
constructions take place. This attention makes it possible to subject the for-
mal developments to proof-theoretic analysis, as in, say, Kohlenbach’s “proof
mining” program [16,15].

In any event, in the present work we have drawn on ideas from the literature
in all three subjects. In particular, we have benefited a good deal from the
constructive developments of the theory of metric, Hilbert, and Banach spaces,
especially those of Bishop and Bridges [1], and Spitters [23]; from the recursive
development of Hilbert and Banach space theory in Pour-El and Richards
[20]; and, of course, from a number of works in reverse mathematics, including
[22,3,6,8]. We are especially grateful to the anonymous referee for a very careful
reading, and numerous suggestions and corrections.
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2 Preliminaries

We will assume familiarity with the study of subsystems of second-order arith-
metic as in [22]. To recap the essentials: the language of second-order arith-
metic is a two-sorted language with variables x, y, z, . . . intended to denote
natural numbers, and X, Y, Z, . . . intended to denote sets of numbers. The
language has 0, 1, +,×, and <, as well as a binary relation ∈ to relate the two
sorts. The notations Σ0

n, Π0
n, Σ1

n, and Π1
n denote the usual syntactic hierar-

chies, and we will drop the superscripted 0 in the first two. All the theories
we will consider here include the schema of induction for Σ1 formulas, which
are allowed to have number and set parameters; in particular, we always have
the induction axiom for any set, i.e. induction for the formula x ∈ X. What
distinguishes the theories from one another are their set existence principles.
The base theory, RCA0, is based on the schema of recursive comprehension
axioms, (RCA):

∀x (ϕ(x) ↔ ψ(x)) → ∃Z ∀x (x ∈ Z ↔ ϕ(x)),

where ϕ and ψ are Σ1 and Π1 respectively. Intuitively, this asserts that if a class
of numbers is both a computably enumerable and co-computably enumerable
(and so, computable), this class forms a set. Similarly, the theory ACA0 is
based on the comprehension schema for arithmetic formulas, denoted (ACA),
and the theory Π1

1-CA0 is based on the comprehension schema for arithmetic
Π1

1 formulas, denoted (Π 1
1 -CA). Of the two remaining theories in the main

reverse mathematics hierarchy, WKL0 will play only a small role here, and
ATR0 will not come up at all.

Working in RCA0, one can code various finite objects like rational numbers,
pairs of natural numbers, or finite sequences of natural numbers, as numbers;
and one can code e.g. functions from N to N and real numbers as sets of
numbers. A pair or a countable sequence of sets of numbers can also be coded
as a set of numbers. We will take such codings and their properties for granted;
see [22] for details.

In RCA0, the arithmetic comprehension schema, (ACA), is equivalent to a
single axiom that asserts that for each set Z, the Turing jump of Z exists.
Here the Turing jump of Z can be taken to be the set {x | ∃y θ(x, y, Z)},
where θ is ∆0 and ∃y θ(x, y, Z) is a complete Σ1 formula. The following lemma
provides alternative characterizations that will be useful.

Lemma 2.1 (RCA0) Each of the following statements is equivalent to (ACA):

(1) Every increasing sequence 〈an | n ∈ N〉 of real numbers in [0, 1] has a
limit.

(2) If 〈bn | n ∈ n〉 is any sequence of reals such that for each n,
∑

i<n b2
i ≤ 1,
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then
∑

b2
i exists.

(3) If 〈cn | n ∈ n〉 is any sequence of real numbers, the set C = {i ∈ N | ci 6=
0} exists.

Proof. The equivalence of 1 with (ACA) can be found in [22]. Taking an =∑
i<n b2

i shows 1 implies 2. Conversely, given 〈an〉 as in 1, let b0 = a0 and
bn =

√
an − an−1 for n > 1; then

∑
i<n b2

i = an and
∑

b2
n = limn an.

Finally, the set C in 3 is easily obtained using arithmetic comprehension from
the sequence 〈cn〉. Conversely, given θ defining the Turing jump of Z as above,
one can prove in RCA0 that the sums

ci =
∑

{j | θ(i,j,Z)}
2−j,

exist, and clearly ci 6= 0 ↔ ∃j θ(i, j, Z). 2

The next useful lemma is a formalization of the fact that any multifunction
with a computably enumerable graph can be uniformized by a computable
function.

Lemma 2.2 Let ϕ(x, y) be any Σ1 formula, possibly with set and number
parameters other than the ones shown. Then RCA0 proves

∀x ∃y ϕ(x, y) → ∃f ∀x ϕ(x, f(x)).

Proof. Using pairing we can assume that ϕ(x, y) is of the form ∃z ψ(x, y, z),
where ψ is ∆0. Using (RCA), define g(x) to be the least number w coding a
pair 〈y, z〉 satisfying ψ(x, y, z). (Clearly the graph of g has a Σ1 description;
but then the equivalence g(x) 6= w ↔ ∃w′ (g(x) = w′ ∧ w 6= w′) yields a
Σ1 description of the complement of the graph of g.) Using (RCA) again, let
f(x) = (g(x))0. 2

Finally, we gather some principles that can be justified on the basis of Σ1

induction, although they may initially appear to be considerably stronger. In
the statement of the next lemma, the class of ∆0(Σ1) formulas is defined to
be the smallest class of formulas containing the Σ1 formulas and closed under
boolean operations (including negation) as well as bounded quantification.

Lemma 2.3 The following induction principles are available are derivable in
RCA0:

(1) Ordinary induction for ∆0(Σ1) formulas.
(2) Complete induction for ∆0(Σ1) formulas.
(3) The least-element principle for ∆0(Σ1) formulas.

6



One can prove Lemma 2.3 by showing that Σ1 induction can be used to justify
a comprehension principle for finite sets defined by ∆0(Σ1) formulas; see, for
example, [22, Theorem II.3.9] or [9, Lemma 2.14].

3 Leftmost paths through trees

A tree on {0, 1} is defined to be a set of finite sequences from {0, 1}, closed
under initial segments. Similarly, a tree on ω is a set of finite sequences from
N closed under initial segments. In either case, a path through such a tree T
is defined to be a function f such that every initial segment of f is in T . A
leftmost path f through T is one that is least in the lexicographic ordering,
so that if g is any other path through T , then f(i) < g(i) for the least i at
which f and g differ. In this section, we show that statements asserting the
existence of leftmost paths through non-well-founded trees on {0, 1} and ω
are equivalent to (ACA) and Π1

1-CA, respectively. These facts will be used in
Section 6.

Lemma 3.1 (RCA0) (ACA) is equivalent to the assertion that any infinite
tree on {0, 1} has a leftmost path.

Proof. To show using (ACA) that every infinite tree has a leftmost path, use
arithmetic comprehension to define the set S of elements of T with infinitely
many elements extending them. It is easy to define the leftmost path recur-
sively from this set; see [22] for details. Conversely, suppose every tree has a
leftmost path, and let us show that for every X the Turing jump of X exists.
Given X and θ as above, put a binary sequence σ in T if and only if

∀x < length(σ) (∃y < length(σ) θ(x, y, X) → (σ)x = 1).

In other words, whenever there is a witness less than the length of σ that x is
in the Turing jump of X, (σ)x = 1. Since every finite sequence of 1’s is in T ,
T is infinite. If f is any path through T and ∃y θ(x, y, X), taking an initial
segment of f long enough shows that f(x) = 1. Conversely, if f is a leftmost
path, whenever f(x) = 1 it is the case that ∃y θ(x, y, X); otherwise, we could
obtain a path further to the left by changing f(x) to 0. 2

In RCA0, Π1
1 comprehension is equivalent to Σ1

1 comprehension. With (ACA),
one can use skolemization to show that every Σ1

1 formula ϕ(x, Z) is equivalent
to one of the form

∃f ∀σ ⊂ f θ(x, σ, Z),

where f is a function from N to N, σ ⊂ f means that σ is a finite initial
segment of f , and θ is ∆0. Modifying θ we can assume that for each x the
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set of σ satisfying θ(x, σ, Z) is closed under initial segments. This leads to the
following lemma (details can be found in [22]):

Lemma 3.2 (RCA0) Π1
1 comprehension is equivalent to the assertion that if

Tx is any sequence of trees on ω, then there is a set S such that for x, x is in
S if and only if there is a path through Tx.

The following alternative characterization of Π1
1 comprehension will be useful

to us below. It appears in [18, Theorem 6.5] with a slightly different proof;
the recursion-theoretic analog may well be folklore, but we have been unable
to find a reference.

Lemma 3.3 (RCA0) Π1
1 comprehension is equivalent to the assertion that for

every tree T on ω, if T has a path, it has a leftmost path.

Proof. The leftmost path through T can be defined recursively in the set of
nodes of T through which there is a path, and this set, in turn, is Σ1

1-definable
relative to T . This construction can be formalized straightforwardly in Π1

1-CA0;
see [22] for details.

Conversely, to prove Π1
1 comprehension from the leftmost path principle, let

ϕ(x, Z) be the Σ1
1 formula ∃f ∀σ ⊂ f θ(x, σ, Z) as above. The idea is to define

a tree T , recursive in Z, such that a function g is a path through T if and
only if it satisfies the following conditions:

(1) 1− g(0), 1− g(2), 1− g(4), . . . is the characteristic function of a set A; in
other words, for every x, χA(x) = 1− g(2x).

(2) This set A is a subset of {x | ϕ(x, Z)}. In other words, whenever x is in
A, there is a function fx witnessing ∀σ ⊂ fx θ(x, σ, Z).

(3) The sequence g(1), g(3), g(5), . . . codes this information, in the sense that
for each x in A, the function

fx(y) = g(2(〈x, y〉) + 1)

is such a witness.

We will assume that our pairing function 〈x, y〉 is monotone in x and y, and
so, in particular, 〈x, y〉 ≥ x for every x and y. Clearly the sequence λx 1
(corresponding to A = ∅) meets the three criteria above. On the other hand,
a leftmost path will have the property that as many even values of g as pos-
sible will be 0, which is to say, A will be as big as possible. This will imply
{x | ϕ(x, Z)} is a subset of A, and so equal to A.

The definition of T is as follows. To decide whether or not a finite sequence τ
is in T , first write τ as 〈a(0), b(0), . . . , a(k − 1), b(k − 1)〉; if the length of τ is
odd ignore the last element. Put τ in T if and only if for each x < k, a(x) is
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either 0 or 1, and every initial segment σ of

〈b(〈x, 0〉), . . . , b(〈x, y〉)〉

satisfies θ(x, σ, Z), where y is the largest number such that 〈x, y〉 < k. Clearly
any path through T satisfies the conditions above.

Suppose now that g is the leftmost path; we only need to show {x | ϕ(x, Z)}
is a subset of A. Suppose not; then there is an x and an fx such that g(2x) = 1
(implying x 6∈ A) but fx satisfies ∀σ ⊂ fx θ(x, σ, Z). But then we can define
g′ by

g′(2x) = 0

g′(2〈x, y〉+ 1) = fx(y) for every y

g′(z) = g(z) for other values of z

Then g′ is also a path through T , with g′(2x) < g(2x). Since 2〈x, y〉+ 1 > 2x
for every y, this contradicts the fact that g is a leftmost path. 2

4 Complete separable metric spaces

The following section reviews some of the definitions from [22] that are relevant
to the development of the theory of complete separable metric in subsystems
of second-order arithmetic. All of the definitions presented here take place in
the language of these subsystems.

Definition 4.1 A (code for a) complete separable metric space Â consists of
a set A together with a pseudometric on A, that is, a function d : A×A → R
such that for all x, y, z ∈ A, d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x), and
d(x, z) ≤ d(x, y)+d(y, z). A (code for a) point of Â is a sequence 〈an | n ∈ N〉
of elements of A such that for every n and m ≥ n we have d(an, am) < 2−n.

In other words, a complete separable metric space is presented as the com-
pletion of a countable dense subset A, and the elements of such a space are
Cauchy sequences with an explicit rate of convergence. Equality and compar-
isons between reals are defined in a natural way; in particular, the relation
x < y is given by a Σ1 formula, and the relations x = y and x ≤ y are Π1.
A space is said to be compact if there is a sequence 〈Fn | n ∈ N〉 of finite
sequences of points, such that for each n, every point in the space is within a
distance of 2−n from some element of Fn.

An open set O is presented as the union of a countable sequence of balls, with
rational radii, centered at points in A. The notion x ∈ O is then given by a
Σ1 formula. A closed set is presented as the complement of an open set. An
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Fσ set is presented as the union of a countable sequence of closed sets, and
similarly for Gδ sets, etc. See [22] for more general classes in the Borel and
projective hierarchies. A set S is said to be separably closed if it is the closure
of a countable sequence of elements 〈yn | n ∈ N〉. In other words, a separably
closed set S is given by the sequence 〈yn〉, and x ∈ S is defined to mean
∀ε > 0 ∃i (d(x, yi) < ε). Notice that a separably closed subset of a complete
separable metric space can be viewed as such a space in its own right, under
the inherited metric.

As examples of complete separable metric spaces, R arises in the usual way as
the completion of Q, and its subspace [0, 1] ⊆ R is compact. Another example
that will be of interest to us is Baire space, that is, the space of functions
f : N → N, where for f 6= g we define d(f, g) to be 1/2i, where i is the least
value at which f and g differ. A basis for the topology is given by sets of the
form [σ] = {f | f ⊇ σ}, where σ is any finite sequence of natural numbers.
It is not hard to show that Baire space can be represented as the completion
of the set of finite sequences of natural numbers with an appropriate metric,
and that a closed set in this representation corresponds to the set of paths
through a tree. Details can be found in [22].

The definition of a continuous function f between complete separable metric
spaces can also be found in [22]; roughly, a continuous function f is given by a
sequence of pieces of information to the effect that a ball B(a, δ) in the domain
is mapped into a ball B(b, ε) in the range. The statement f(x) = y is a ∆1

statement, and in RCA0 one can show that if f is a continuous function from
one space Â to another B̂ and x is an element of Â, then there is a unique
element y (up to equality in B̂) such that f(x) = y. One can also show that
the inverse image of an open set is open, and so on.

If S is a (closed, open, etc.) nonempty subset of Â, x ∈ Â, and r ∈ R, then the
statement that the distance from x to S is less than r, written d(x, S) < r, has
to be interpreted as the statement that there is an ε > 0 such that for every y ∈
S, d(x, y) < r−ε. Statements of the form d(x, S) > r, d(x, S) ≤ r, d(x, S) ≥ r,
and d(x, S) = r have to be interpreted in similar ways. In particular, one
cannot always show in restricted subsystems that such distances exist, i.e. one
cannot always prove ∃r (d(x, S) = r). Note that these notions make sense for
any class of elements S that can be defined by a formula in the language of
second-order arithmetic.

For S as above, a locating function for S is a continuous function f such
that for every x, f(x) = d(x, S). In constructive mathematics, it is common
to require that sets under consideration are located. We will see in the next
section that such functions cannot always be obtained constructively.
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We will find it convenient to consider the empty set to be both located and
separably closed. In proofs below we can freely proceed by cases according to
whether a set in question is empty or not; note that this move is not available in
constructive mathematics, where instead one typically restricts one’s attention
to sets that are inhabited.

5 Closed sets

The previous section indicates that there are at least four notions of a closed
subset of a complete separable metric space that we may reasonably consider:

(1) closed sets;
(2) separably closed sets;
(3) closed and located sets;
(4) separably closed and located sets.

Furthermore, the metric space in question may or may not be compact. The
goal of this section is to clarify the relationships between these four notions,
in the context of both compact and arbitrary spaces.

To start with, the following theorem shows that the third and fourth notions
are actually equivalent. (This is stated and proved in [8] only for the special
case where the space is compact.)

Theorem 5.1 (RCA0) Every closed and located set is separably closed and
located, and vice-versa.

Keep in mind that, in the language of second-order arithmetic, there is no
notion of an “arbitrary” subset of a metric space. So the theorem above has
to be interpreted as the statement that given a (code for) a closed set C
and a (code for) a locating function for C, there is a (code for) a separably
closed set C ′, such that C and C ′ have the same elements. In other words,
the statement asserts the existence of equivalent representations. This point
should be kept in mind throughout this paper, since we will continue to use
such terminological shortcuts.

Proof. If C is separably closed, located, and nonempty, then the set

S = {〈a, δ〉 ∈ A×Q | d(a, C) > δ}

exists by recursive comprehension, and then the complement of C is equal to⋃
〈a,δ〉∈S B(a, δ). This shows that C is closed.
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Conversely, suppose C is closed, located, and nonempty. To show that C is
separably closed, it suffices to define a countable sequence 〈xi | i ∈ N〉 of
elements of C such that for every a ∈ A and positive δ ∈ Q, if B(a, δ) intersects
C then there is an element xi in B(a, δ). (Proof: then for every y in C and ε > 0,
there is an a ∈ A such that d(a, y) < ε/2, and an xi such that d(xi, a) < ε/2,
so that d(xi, y) < ε.)

Note that there are only countably many such pairs 〈a, δ〉, and B(a, δ) in-
tersects C if and only if d(a, C) < δ. Furthermore, if B(a, δ) intersects C
then there are arbitrarily small values δ′ and elements a′ of A such that
B(a′, δ′) ⊆ B(a, δ) and B(a′, δ′) intersects C. (Proof: if y is in B(a, δ) ∩ C,
then d(a, y) < δ. Given δ′ < (δ − d(a, y))/2, there is an a′ in A such that
d(a′, y) < δ′. So B(a′, δ′) intersects C, and B(a′, δ′) ⊆ B(a, δ) since for any
z ∈ B(a′, δ′), d(z, a) ≤ d(z, a′) + d(a′, y) + d(y, a) < δ′ + δ′ + (δ − 2δ′) = δ.)

Now suppose i codes a pair 〈a, δ〉 such that B(a, δ) intersects C. Define a
sequence of pairs 〈bi,j, γi,j〉 by 〈bi,0, γi,0〉 = 〈a, δ〉 and 〈bi,j+1, γi,j+1〉 = 〈b̂, γ̂〉,
where 〈b̂, γ̂〉 is the pair such that B(b̂, γ̂) ⊆ B(bi,j, γi,j), B(b̂, γ̂) intersects

C, γ̂ < 2−(j+1), and 〈b̂, γ̂〉 has the least code of any pair satisfying these
conditions. Since this sequence can be defined uniformly in i, we can define xi

to be 〈bi,j | j ∈ N〉 whenever i codes a pair 〈a, δ〉 such that B(a, δ) intersects
C, and any fixed element of C otherwise. Then for every i, 〈bi,j | j ∈ N〉
is a Cauchy sequence of elements of A that converges to a point in C, and
whenever i codes a pair 〈a, δ〉 that intersects C, 〈bi,j | j ∈ N〉 converges to a
point in C. 2

The following theorem provides an equivalent characterization of closed, lo-
cated sets (and therefore of separably closed located sets). Roughly speaking,
it implies that O is the complement of a closed and located set if and only if
the relation B(a, δ) ⊆ O is decidable, for a ∈ A and δ ∈ Q.

Theorem 5.2 (RCA0) A set C is closed and located if and only if the set
S = {〈a, δ〉 | B(a, δ) ⊆ C} exists.

Proof. The forward direction is included in the proof of the previous theorem.
For the converse direction, suppose x is any fixed element of C and suppose
that S exists. Since a code for the locating function can be obtained, in RCA0,
from the sequence 〈d(a, C) | a ∈ A〉, it suffices to show how to define d(a, C)
uniformly for a ∈ A. Note that if δ = d(a, x) + 1, then B(a, δ) intersects C,
and so 〈a, δ〉 is not in S. For each a we can therefore define (da)j to be the least
value of the form i/2j+1 such that B(a, (da)j) intersects C, i.e. 〈a, i/2j+1〉 6∈ S.
Then it is not hard to show that for each a, 〈(da)j | j ∈ N〉 is a Cauchy
sequence converging to d(a, C). 2
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The relationships between closed sets and separably closed sets are expressed
by the following theorem are due to Brown [3]. Brown’s proof of the reversal
of statement 4 to (ACA) is incorrect, but Hirst [11] provides a corrected proof.

Theorem 5.3 (RCA0) Each of the following statements is equivalent to (ACA):

(1) In a compact space, every closed set is separably closed.
(2) In [0, 1], every closed set is separably closed.
(3) In an arbitrary space, every separably closed set is closed.
(4) In [0, 1], every separably closed set is closed.

Each of the following statements is equivalent to (Π 1
1 -CA):

(1) In an arbitrary space, every closed set is separably closed.
(2) In Baire space, every closed set is separably closed.

What does it take to show that either a closed set or a separably closed set
has a locating function? The following theorem answers this question more
generally, for classes in the Borel and projective hierarchies as well.

Theorem 5.4 (RCA0) Each of the following statements is equivalent to (ACA):

(1) Every Fσ set in a compact space is located.
(2) Every closed set in a compact space is located.
(3) Every closed set in [0, 1] is located.
(4) Every separably closed set in an arbitrary space is located.
(5) Every separably closed set in [0, 1] is located.
(6) Every open set in an arbitrary space is located.
(7) Every open set in [0, 1] is located.

Each of the following is equivalent to (Π 1
1 -CA):

(1) Every analytic set in an arbitrary space is located.
(2) Every closed set in Baire space is located.
(3) Every Gδ subset of [0, 1] is located.

Proof. In the first set of statements, the equivalence of 2, 3, and 5 with (ACA)
are found in [8], and the equivalence of 4 with (ACA) is found in [7]. Of course,
1 implies 2 and 3, and 4 implies 5. The reversal from 5 to (ACA) also follows
from part 6 of Theorem 6.1.

Thus, to show 1–5 are each equivalent to arithmetic comprehension, we only
need to prove 1 from (ACA). To make our argument entirely self-contained,
however, we first show that (ACA) implies 4. Suppose C is nonempty and
the separable closure of a countable sequence 〈ci | i ∈ N〉. As in the proof
of Theorem 5.2 it suffices to show that one can define d(a, C) uniformly for
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elements a of the countable dense subset A of the entire space. But using
(ACA) this is easy, since d(a, C) = infi d(a, ci).

To prove 1, we have by Theorem 7.2 below that (ACA) proves that every Fσ

subset of a compact space has a separable closure. The desired result follows
from this and the fact that (ACA) implies 4, since it is not hard to show that
the distance from a point to a set is the same as the distance from the point
to its separable closure, assuming the latter exists.

Thus 1–5 are all equivalent to (ACA). That (ACA) implies 6 follows similarly
from the fact that, by Theorem 7.2, (RCA0 ) proves that every open set has a
separable closure. Clearly 6 implies 7, and that 7 implies (ACA) follows from
part 4 of Theorem 6.1 below.

For the second group of equivalences, the fact that (Π 1
1 -CA) implies 1 follows

again from the fact that, by Theorem 7.2, (Π 1
1 -CA) proves that every ana-

lytic set has a separable closure. Clearly 1 implies 2 and 3. The implications
from each of 2 and 3 to (Π 1

1 -CA) again follow from the stronger results in
Theorem 6.1. 2

The equivalence of (Π 1
1 -CA) with the statement that every closed set in an

arbitrary space is located can also be found in [7]. The more detailed analysis
in [8], which focuses on compact spaces, offers additional information about
locating functions. For example, if a subset of a compact metric space is both
closed and separably closed, a locating function can be obtained in WKL0.

The reader may be put off by the forward references to Theorems 7.2 and 6.1
in the proof of Theorem 5.4, but we found it preferable to state all the latter
results up front. In the proof, only parts of Theorem 7.2 asserting provability
from (ACA) or (Π 1

1 -CA) were used, to justify assertions in Theorem 5.4 of
the same type; and reverse implications in Theorem 6.1 were used to obtain
corresponding reversals in Theorem 5.4. The careful reader can easily verify
that there is no circularity.

6 Distances from a point to a set

In this section, we show that the axioms shown by Theorem 5.4 to be necessary
for obtaining locating functions are even necessary, in general, to obtain the
distance of a single point from a given set.

Theorem 6.1 (RCA0) Each of the following statements is equivalent to (ACA):

(1) In a compact space, if C is any nonempty closed set and x is any point,
then d(x,C) exists.
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(2) If C is any nonempty closed subset of [0, 1], then d(0, C) exists.
(3) In an arbitrary space, if O is a nonempty open set and x is any point,

then d(x,O) exists.
(4) If O is any nonempty open subset of [0, 1], then d(0, O) exists.
(5) In an arbitrary space, if C is a nonempty separably closed set and x is

any point, then d(x,C) exists.
(6) If C is any nonempty separably closed subset of [0, 1], then d(0, C) exists.

Each of the following statements is equivalent to (Π 1
1 -CA):

(1) In an arbitrary space, if C is any nonempty closed set and x is any point,
then d(x,C) exists.

(2) In any compact space, if S is any nonempty Gδ set and x is any point,
then d(x, S) exists.

(3) If S is any nonempty Gδ subset of [0, 1], then d(0, S) exists.

Proof. For the first set of equivalences, provability of 1, 3, and 5 from (ACA)
follows easily from parts 2, 6, and 4 of Theorem 5.4, and it is clear that 1,
3, and 5, in turn, imply 2, 4, and 6 of the current theorem, respectively. To
show that 2 implies (ACA), we will use Lemma 2.1. Let ai be an increasing
sequence in [0, 1], and let C be the closed set

⋂
[ai, 1]. Then lim ai = d(0, C).

To show that 4 implies (ACA), we can similarly consider the distance from
1 to

⋃
(0, ai). To show that 6 implies (ACA), it is not hard to show that the

closure of
⋃

(0, ai) is separably closed; see the proof of Theorem 7.2.1.

For the second cycle of equivalences, provability of 1 and 2 from (Π 1
1 -CA) again

follows from the stronger statements in Theorem 5.4, and clearly 2 implies 3.
We are therefore reduced to showing that each of the statements 1 and 3 imply
(Π 1

1 -CA).

For both reversals we will make use of Lemma 3.3. It is well-known that
Baire space can be embedded homeomorphically as a Gδ subset of any un-
countable Polish space (see [13]). We will show that in fact Baire space, with
lexicographic ordering, can be embedded as a Gδ subset of [0, 1] in an order-
preserving way. The leftmost path of a non-well-founded tree on ω will then
be obtainable from the distance from 0 to a nonempty Gδ subset of [0, 1]; and
also from the distance from λx 0 to a closed subset of Baire space, under the
metric induced by the embedding.

The details are as follows. To start with, we need any two increasing sequences
〈ai | i ∈ N〉, 〈bi | i ∈ N〉 in [0, 1] such that

0 < a0 < b0 < a1 < b1 < . . . < 1.

To each finite sequence of natural numbers σ assign an open interval Aσ, as
follows: A∅ = (0, 1), and once Aσ = (cσ, dσ) has been assigned, set Aσ 〈̂i〉 =
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(cσ 〈̂i〉, dσ 〈̂i〉), where

cσ 〈̂i〉 = cσ + (dσ − cσ) · ai

dσ 〈̂i〉 = cσ + (dσ − cσ) · bi

Then for each σ and i < j, Aσ 〈̂i〉 is to the left of Aσ 〈̂j〉, and if τ is a sequence
properly extending σ, Aτ is a subinterval of Aσ with endpoints distinct from
those of Aσ. For each i, bi − ai < 1 − a0 < 1, and so for each σ, dσ − cσ ≤
(1−a0)

length(σ). This implies that for each element f of Baire space the sequence

c∅, c〈f(0)〉, c〈f(0),f(1)〉, . . .

is Cauchy with an explicit rate of convergence, and has the same limit as

d∅, d〈f(0)〉, d〈f(0),f(1)〉, . . . .

We can associate to each such f the limit of this sequence. The association is
clearly injective. In fact, if we define

U =
⋂

i∈N

⋃

{σ | length(σ)=i}
Aσ,

then U is a Gδ set, and each f in Baire space is associated to the limit of

c∅ + d∅
2

,
c〈f(0)〉 + d〈f(0)〉

2
,
c〈f(0),f(1)〉 + d〈f(0),f(1)〉

2
, . . . ,

an element of U . It is not hard to check that conversely, every element of U
corresponds to such an f .

Now suppose we are given a tree T on Baire space with at least one path.
Then

S =
⋂

i∈N

⋃

{σ∈T | length(σ)=i}
Aσ

is a Gδ set, and the path through T gives rise to an element of S. Assuming 3,
the distance d from S to 0 exists. For each i, choose σi of length i rightmost
in the lexicographic ordering such that cσi

≤ d. (There is always such a σi,
since there is at least one path through T ; if g is such a path, τ is the initial
segment of g of length i, and τ ′ is to the right of τ , then cτ ′ > d.) Then for
each i, there is no point in S to the left of Aσi

, since d(0, S) ≥ cσi
> cτ , for

any τ to the left of σi. On the other hand, for each i there is a point of S in
Aσi

, since otherwise d < cτ for the τ of length i immediately to the right of
σi. In particular, for each i < j we have that σj extends σi, and the element
of Baire space corresponding to lim cσi

is the leftmost path through T . This
shows that 3 implies (Π 1

1 -CA).

To show that 1 implies (Π 1
1 -CA), note that in the construction above, Baire

space (corresponding to U) can be viewed as a complete separable metric space
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in its own right with the induced metric from [0, 1]. In this subspace the collec-
tion of paths through a tree T is a closed set S, and the leftmost path through
a non-well-founded tree is the path closest to the constant zero sequence λx 0.
As above, this leftmost path can be computed from d(λx 0, S). 2

7 Closures

The closure of a set X is defined to be a closed set that is included in every
closed set that includes X, and the separable closure of a set X is defined to
be a separably closed set that is included in every separably closed set that
includes X. (The interior of X is defined similarly.) Given the information we
have about closed and separably closed sets, a reasonable question to ask is:
what does it take to obtain the closure, or separable closure, of a set in the
Borel hierarchy?

Theorem 7.1 (RCA0) Each of the following statements is equivalent to (ACA):

(1) In a compact space, every Fσ set has a closure (or, dually, every Gδ has
an interior).

(2) In an arbitrary space, every open set has a closure (or, every closed set
has an interior).

(3) In [0, 1], every open set has a closure (or, every closed set has an interior).

Each of the following statements is equivalent to (Π 1
1 -CA):

(1) In an arbitrary space, every analytic set has a closure (or every co-
analytic set has an interior).

(2) In Baire space, every Fσ set has a closure (or every Gδ set has an inte-
rior).

(3) In [0, 1], every Gδ set has a closure (or every Gδ set has an interior).

Proof. Let us consider the first set of equivalences first. To show that (ACA)
implies 1, suppose that S =

⋃
Ci in a compact space X = Â, with each Ci

closed. By Theorem 5.3 each Ci is separably closed, and so includes a countable
dense sequence 〈xi,j | j ∈ N〉. But then if B = B(a, δ) is the open ball around
a with radius δ, with a in A and δ rational, B is a subset of the complement
of S if and only if for every i and j, d(a, xi,j) ≥ δ. This last condition is
arithmetic, and the union of these B(a, δ) is the interior of the complement of
S. So, using arithmetic comprehension, the closure of S exists.

The proof that (ACA) implies 2 is similar; if O =
⋃

B(bi, εi) is open, B(a, δ)
is a subset of the complement of O if and only if for every i, d(a, bi) > δ + εi.
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Clearly each of 1 and 2 imply 3. We only need to show that 3 implies arithmetic
comprehension. To that end, let ai be an increasing sequence as in Lemma 2.1,
let O =

⋃
(0, ai), and let C be the closure of O. If there is a rational number

q such that q is the limit of the ai we are done. Otherwise, the collection of
rationals in O is the same as the collection of nonzero rationals in C; since this
provides both a Σ1 and Π1 description, this collection forms a set. It is easy
to obtain the limit of the ai computably from this set, that is, using recursive
comprehension.

For the second cycle of equivalences, the proof that (Π 1
1 -CA) proves that

every analytic set has a closure is similar to the proofs of 1 and 2 above. If S
is analytic, then B(a, δ) is a subset of the complement of S if and only if

∀y (d(a, y) < δ → y 6∈ X),

and this last formula is Π1
1. So the set of a ∈ A and δ ∈ Q with this property,

and hence the interior of the complement of S, can be obtained using Π1
1

comprehension.

Clearly 1 implies 2 and 3. To show that 2 implies Π1
1 comprehension, first note

that we have arithmetic comprehension by the first part of the theorem. We
will use Lemma 3.2. Let Ti be any sequence of trees on ω; the idea is that by
constructing an appropriate Fσ set we can use the closure to test whether or
not there is a path through each Ti.

Specifically, for each i and j, let Si,j be the tree

Si,j = {σ | σ ⊆ 〈i, 0, . . . , 0〉} ∪ {〈i, 0, . . . , 0〉̂ σ | σ ∈ Ti〉
where there are j zeros after i in the indicated sequence. In other words, Si,j

is a tree obtained by grafting a copy of Ti onto an initial segment 〈i, 0, . . . , 0〉.

Let Ci,j be the closed set of paths through Si,j. Then for every j, Ci,j is
nonempty if and only if there is a path through Ti, and so the infinite sequence
〈i, 0, 0, . . .〉 is in the closure of

⋃
j Ci,j if and only if there is a path through Ti.

Let D =
⋃

i,j Ci,j and, assuming 2, let E be the closure of D. Then for each i,
there is a path through Ti if and only if 〈i, 0, 0, 0, . . .〉 is in E. Hence the set
of i such that there is a path through Ti exists, by arithmetic comprehension.

Finally, to show that 3 implies Π1
1 comprehension, we will show that the em-

bedding of Section 6 sends the set E just constructed to a Gδ subset of [0, 1].
Let S be the union of the trees Si,j. The set of paths through S is a closed
subset of Baire space; as in Section 6 this embeds as a Gδ subset of [0, 1]. The
set

⋃
i,j Ci,j is equal to the set of paths through S minus a countable set of

paths of the form 〈i, 0, 0, . . .〉. The latter embeds as a countable set of points,
which is therefore Fσ. Thus the embedding of

⋃
i,j Ci,j is equal to a Gδ set mi-

nus an Fσ set, and hence Gδ. As above, there is a path through Ti if and only
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if the embedding of 〈i, 0, 0, . . .〉 is in the closure of the embedding of
⋃

i,j Ci,j.
So, by (ACA), if the latter closure exists, then so does the set of i such that
there is a path through Ti. 2

Theorem 7.2 (RCA0) Every open subset of an arbitrary space has a separable
closure. Also, each of the following statements is equivalent to (ACA):

(1) Every Fσ subset of a compact space has a separable closure.
(2) Every closed subset of [0, 1] has a separable closure.

Each of following statements is equivalent to (Π 1
1 -CA):

(1) Every analytic subset of an arbitrary space has a separable closure.
(2) Every closed subset of Baire space has separable closure.
(3) Every Gδ subset of [0, 1] has a separable closure.

Proof. For the first statement, it is easy to see that if B(a, δ) is any open
ball and A is the countable dense subset of the entire space, then B(a, δ) ∩A
is a countable dense subset of B(a, δ). So in RCA0 the closure of any open
ball is the closure of a sequence of points from A. It is also not hard to show
that the closure of a union of open balls is the closure of the union of the
corresponding dense subsets. The argument that ACA0 proves that every Fσ

subset of a compact space has a separable closure is similar, given that, by
Theorem 5.3, ACA0 proves that every closed subset of a compact space is
separably closed. The reversal from 2 to (ACA) is also given by Theorem 5.3,
since if a closed set C has a separable closure C ′, it is not hard to see that
C = C ′.

In the next set of equivalences, that (Π 1
1 -CA) implies 1 follows from the fact

that (Π 1
1 -CA) proves that every analytic set has a closure (by Theorem 7.1)

and that every every closed set is separably closed (by Theorem 5.3). Clearly
1 implies 2 and 3. That 2 implies (Π 1

1 -CA) follows from Theorem 5.3.

For the last reversal, suppose 3. By the first part of the theorem, we have
(ACA), and hence, by Theorem 5.4, that every set with a separable closure is
located. Thus 3 implies that every Gδ subset of [0, 1] is located, which, again
by Theorem 5.4, implies Π1

1-CA. 2

8 Iterative functions on metric spaces

In numerical and functional analysis, it is common to define functions, or
sequences of elements of a space, using iterative procedures that can be given a
computational interpretation. For example, if f(x) is a computable (and hence
continuous) function from R to R, then the function g(n, x) returning the nth
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iterate fn(x) of f on x is computable. It follows that for any x the sequence
〈xn | n ∈ N〉 defined by xn = g(n, x) is also computable. One has to be
careful in subsystems of second-order arithmetic, however, since verifying that
the resulting function or sequence is well-defined can require some axiomatic
strength. For example, Friedman, Simpson, and Yu [6] show that either Σ2

induction or (WKL) can be used to show that if f is continuous on a compact
space, then so is every iterate fn(x); and that this latter statement is in fact
equivalent to the disjunction of these two principles.

Friedman, Simpson, and Yu note, however, that the statement is provable in
RCA0 in cases where f has a modulus of uniform continuity, i.e. there is a
function g : N → N such that for every n ∈ N , x, and y, if d(x, y) < 2−g(n),
then d(f(x), f(y)) < 2−n. The next theorem is a useful generalization of this
fact, justifying a strong form of primitive recursion.

We view functions f(x0, . . . , xk−1) with multiple arguments as functions on
the associated product space, so saying that g is a modulus of continuity
means that for every n, ~x, and ~y, if d(xi, yi) < 2−g(n) for all i < k, then
d(f(~x), f(~y)) < 2−n. In the statement of the theorem, ~z is meant to be a
sequence of parameters from any choice of separable metric spaces, which can
include e.g. N as a discrete space.

Theorem 8.1 (RCA0) Let f0(~z), f1(~z, x0), f2(~z, x0, x1), . . . be any sequence of
continuous functions with arguments from complete separable metric spaces,
where the functions fi have a common range, X, and the arguments x0, x1, . . .
are from X. Assume also that there is a sequence g0, g1, g2, . . . such that each
gi is a modulus of uniform continuity for fi. Then there is a sequence of
continuous functions hi(~z) satisfying

h0(~z) = f0(~z)

hn+1(~z) = fn+1(~z, h0(~z), . . . , hn(~z)).

Proof. We simply modify the proof of [6, Lemma 2.7], adopting the notation
(a, r)f(b, s) used there to mean that the code for the continuous function f
maps B(a, r) into B(b, s). Keep in mind that here the relevant metrics are sup
metrics on product spaces.

As in [6] we can assume without loss of generality that all the codes fk satisfy
the property that for all k, n ∈ N and B(~a, r) with r < 2−gk(n) there is a
neighborhood condition (~a, r)fk(b, s) with s < 2−n. Define the functions hn so

that (~a, r)hn(~b, s) holds if and only if there are sequences b0, . . . , bn−1 in the
common range of the functions fi and s0, . . . , sn−1 in Q such that r ≤ s0 ≤
. . . ≤ sn−1 and

(~a, r)f0(b0, s0), (~a 〈̂b0〉, s0)f1(b1, s1), . . . , (~a 〈̂b0, . . . , bn−1〉, sn−1)fn(b, s).
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As in [6], using the moduli of uniform continuity for the functions fn it is not
hard to show that each hn is a code for a continuous function that is everywhere
defined, and that the sequence 〈hi〉 satsify the defining equations. 2

In fact, one can obtain moduli of uniform continuity for the sequence of func-
tions hn, though we will not need this below. Note that if there are no param-
eters ~z, the result of the lemma is just a sequence h0, h1, h2, . . . of elements of
the underlying space.

9 Hilbert spaces and Banach spaces

We now turn to the general theory of Banach spaces, and the theory of Hilbert
spaces as a particular case. In light of Sections 5–7 and the fact that infinite
dimensional Hilbert and Banach spaces are not even locally compact, dealing
with distances, closures, and countable dense subsets may, a priori, require
strong axioms. Our goal will be to understand how, in some cases, we can use
the additional structure of a Hilbert or Banach space to avoid using the full
strength of (Π 1

1 -CA). The definitions that follow are from [22].

Definition 9.1 A countable vector space A over a countable field K consists
of a set |A| ⊆ N with operations + : |A| × |A| → |A| and · : |K| × |A| → |A|
and a distinguished element 0 ∈ |A| such that (|A|, +, ·) satisfies the usual
properties of a vector space over K.

Definition 9.2 A (real) separable Banach space B consists of a countable
vector space A over Q together with function ‖ · ‖ : A → R satisfying

(1) ‖qa‖ = |q|‖a‖ for all q ∈ Q and a ∈ A.
(2) ‖a + b‖ ≤ ‖a‖+ ‖b‖ for all a, b ∈ A

Given a Banach space B as above, we can define a pseudometric d(x, y) on
A by d(x, y) = ‖x − y‖. We think of B as the completion of A under this
pseudometric, and often write B = Â. We thus define an element x of B to be
a sequence 〈xn | n ∈ N〉 of elements of A, such that d(xn, xm) < 2−n whenever
n < m. The norm is extended to the whole space by defining ‖x‖ = limn ‖xn‖
for x = 〈xn〉. We define x = y to mean that d(x, y) = 0, making d a metric. As
a metric space, then, B is separable and Cauchy complete, provably in RCA0.

Definition 9.3 A (real) separable Hilbert space H consists of a countable
vector space A over Q together with a function 〈·, ·〉 : A× A → R satisfying

(1) 〈x, x〉 ≥ 0
(2) 〈x, y〉 = 〈y, x〉
(3) 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉
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for all x, y, z ∈ A and a, b ∈ Q.

Every Hilbert space can be viewed as a Banach space with norm ‖x‖ =
〈x, x〉1/2. The triangle inequality and the Cauchy-Schwartz inequality follow
from the axiomatic characterization of the inner product, and then the in-
equality

‖〈x, y〉 − 〈z, w〉‖ = ‖〈x, y − w〉+ 〈x− z, w〉‖ ≤ ‖x‖‖y − w‖+ ‖x− z‖‖w‖
shows that the inner product is continuous. We view H = Â as the completion
of A as above, and extend the inner product to the whole space by defining
〈x, y〉 = limn〈xn, yn〉 for x = 〈xn〉 and y = 〈yn〉; the inequality above can be
used to find an explicit code for the inner product as a continuous function
on H ×H.

The standard examples of separable infinite dimensional Hilbert spaces as
well as of Banach spaces can be developed in RCA0. Examples of Hilbert
spaces include the space L2(X) of square-integrable real-valued functions on
any compact separable metric space X, and the space l2 of square-summable
sequences of reals (see, for example, [22,4]). Examples of Banach spaces are
the space C(X) of continuous functions on a compact space X under the sup
norm, and L1(X), the space of integrable real-valued functions over X (see
[22]).

In the theory of Banach spaces, an important notion is that of a bounded
linear operator:

Definition 9.4 A bounded linear operator between separable Banach spaces
Â and B̂, is a function F : A → B̂ such that

(1) F is linear, i.e. F (q1a1 + q2a2) = q1F (a1)+ q2F (a2) for all q1, q2 ∈ Q and
a1, a2 ∈ A.

(2) The norm of F is bounded, i.e. there exists a real number M such that
‖F (a)‖ ≤ M‖a‖ for all a ∈ A.

Then, for x = 〈xn | n ∈ N〉 ∈ Â we define F (x) = limn→∞ F (xn).

The fact that the limit defining F (x) exists can be established in RCA0. Note
that if M satisfies the second clause in the definition then ‖F (x)‖ ≤ M‖x‖
for every x ∈ Â. The infimum of all such M , if it exists, is called the norm of
F , and denoted by ‖f‖.

Simpson [22] shows that every bounded linear operator on a Banach space is
a continuous function on the associated metric space, and, conversely, every
continuous and linear function is a bounded linear operator. We will, in par-
ticular, be interested in bounded linear functionals, that is, bounded linear
operators from a Banach space to R.
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A number of good introductory textbooks cover the elementary facts about
Hilbert and Banach spaces that we will use here; [5,17] are two examples.

10 Bases and independent generating sequences

With respect to a Banach space B, we will call a sequence S = 〈xi | i ∈ N〉
an independent generating sequence if its elements are linearly independent
(that is, zero cannot be written nontrivially as a finite linear combination of
elements from S) and B is the closure of the linear span of S. Note that when
B is the closure of the linear span of S, the sequence of all rational linear
combinations of elements of S is dense in B.

In this section we will show that WKL0 proves that every Banach space has
an independent generating sequence. The corresponding statement for Hilbert
space can be obtained in RCA0. In fact, RCA0 proves that there is a generating
sequence in which the elements are orthonormal, which is to say, distinct ele-
ments are orthogonal (i.e. have inner product 0) and the norm of each element
is 1. The usual proof shows, in RCA0, that such a sequence is necessarily a
(Schauder) basis, which is to say, every element of the space can be repre-
sented uniquely as an infinite linear combination of basis elements. (It is not
the case that every Banach space has a Schauder basis.)

Our constructions will use a result from the development of Banach spaces
in [12], and draw on ideas from the corresponding developments in recursive
mathematics [20] and constructive mathematics [1]. There are, however, sub-
tleties and key differences, some of which are discussed at the end of this
section.

Given a Banach space B = Â, by applying the law of the excluded middle
in RCA0 we have that either some finite sequence of elements of A spans all
of A, or not. In the first case, B is said to be finite dimensional, and in the
second case, B is said to be infinite dimensional. These definitions will be
further justified by developments below. Note that this appeal to the law of
the excluded middle is not available in constructive mathematics, a fact which
accounts for many of the differences between the presentations of [1] and [20].

First we will show that RCA0 proves that every finite dimensional Hilbert space
has an orthonormal basis, and that WKL0 proves that every finite dimensional
Banach space has an independent generating sequence. Then we will consider
the infinite cases.

Lemma 10.1 Assuming that 〈v0, . . . , vk〉 is a sequence of vectors in a Hilbert
space, the statement that the given vectors are linearly independent is equiva-
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lent to a Σ1 formula in RCA0.

Proof. Imagine using Gram-Schmidt process on v0, . . . , vk to obtain an or-
thonormal sequence e0, . . . , ek: define

e0 = v0/‖v0‖
ei+1 =

vi+1 −∑
j≤i〈vi+1, ej〉ej

‖vi+1 −∑
j≤i〈vi+1, ej〉ej‖ .

The process comes to a screeching halt at some stage i if and only if the
numerator of the corresponding fraction is 0, which happens, in turn, if and
only if vi is linearly dependent on v0, . . . , vi−1.

It is the fact that there is a quotient involved that prevents us from apply-
ing Theorem 8.1 to define the sequence e0, . . . , ek by primitive recursion up
to k; otherwise, functions obtained by composing the inner product, finite
sums and products of reals, and so on, have moduli of uniform continuity (see
[22, Remark IV.2.8]). The solution is to modify the construction to accept a
rational parameter ε and make sure that we never divide by a quotient less
than ε, thereby guaranteeing an appropriate modulus of continuity. In other
words, we use primitive recursion up to k to define a sequence e′0, e

′
1, . . . , e

′
k,

depending on ε, satisfying

e′0 = v0/ max(ε, ‖v0‖)
e′i+1 =

vi+1 −∑
j≤i〈vi+1, e

′
j〉e′j

max(ε, ‖vi+1 −∑
j≤i〈vi+1, e′j〉e′j‖)

.

We claim that v0, . . . , vk are linearly independent if and only if

for some rational ε > 0, for every i ≤ k, ‖vi −∑
j<i〈vi, e

′
j〉e′j‖ > ε.

Using Σ1 collection, derivable in RCA0 (see [22,9]), this formula is equivalent
to one that is Σ1.

First, note that, assuming for some ε > 0 the property holds for every i less
than or equal to some value l ≤ k, the definition of the sequence e′0, . . . , e

′
l

amounts to the definition of e0, . . . , el. Using induction up to l we can show
that the sequence is orthonormal, i.e. ‖ei‖ = 1 for every i ≤ l, and 〈ei, ej〉 = 0
for every j < i ≤ l. Using primitive recursion up to l (on the space of finite
sequences of reals, i.e. a disjoint union of the spaces Ri for i ∈ ω), we can also
work backwards to solve for the ei’s in terms of the vi’s. In other words, we
can compute a sequence d0, d1, d2, . . . such that each di is a sequence of reals
of length i + 1, and such that we can show by induction up to k that for each
i ≤ l we have

ei =
∑

j≤i

(di)jvj.
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To show the formula above works as advertised, suppose, in the forward di-
rection, there is an ε with this property, but the sequence v0, . . . , vk is linearly
dependent. By the preceding paragraph, we have that e0, . . . , ek are linearly
dependent, so there is a sequence α0, . . . , αk, at least one of which is nonzero,
such that

α0e0 + . . . + αkek = 0.

If αi 6= 0, we obtain the usual contradiction by taking the inner product of
both sides with ei.

On the other hand, suppose there is no such ε. Let ψ(m) be the formula

∃ε > 0 ∀i ≤ m (‖vi −
∑

j<i

〈vi, e
′
j〉e′j‖ > ε).

We are assuming ¬ψ(k); by the least element principle, we obtain the least
value of m ≤ k such that ¬ψ(m). So we have

(∀j < m ψ(j)) ∧ ¬ψ(m).

Using Σ1 collection on the left conjunct, we obtain a single ε that works
uniformly; hence, by the discussion there is a sequence of coefficients expressing
v0, . . . , vm−1 in terms of e0, . . . , em−1. On the other hand, we have that for every
ε > 0,

‖vm −
∑

j<m

〈vm, e′j〉e′j‖ < ε.

so vm−∑
j<m〈vm, e′j〉e′j is equal to 0. Thus there is an expression for vm in terms

of v0, . . . , vm−1, showing that v0, . . . , vm are not linearly independent. 2

Lemma 10.2 (RCA0) Every finite dimensional Hilbert space has an ortho-
normal basis.

Proof. Let σ be a finite sequence of elements of A that spans A, and suppose
A has length m. Let ϕ(n) be a formula asserting

There is a sequence 〈v0, . . . , vn−1〉 of distinct elements of σ that is linearly
independent.

Applying the least-element principle to the formula θ(i) ≡ ϕ(m− i) we obtain
a maximum value of k such that there is a linearly independent sequence of
elements of σ of length k. Let S = 〈v0, v1, . . . , vk−1〉 be such a sequence. By
maximality, S spans σ, and hence A. Since S is independent, there is an ε > 0
such that the Gram-Schmidt process goes through, yielding 〈e0, . . . , ek−1〉. By
the argument above, one can prove, in RCA0, that this sequence is orthonormal,
and spans the elements 〈v0, . . . , vk−1〉. 2

In fact, the argument above can be used to show that any two bases for a finite
dimensional space have the same cardinality, and so the notion of dimension
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for such spaces is well-defined.

Our proof of Lemma 10.2 made heavy use of Σ1 induction. This is unavoidable,
since [22, page 411] cites unpublished work by Friedman that shows that the
statement that every finite dimensional vector space has a basis implies Σ1

induction over a weak base theory.

More is required to handle more general Banach spaces. The following lemma
is a consequence of Humphreys and Simpson [12]; see also the “independence
criterion” in [20, page 143], or [17, Lemma 2.4-1].

Lemma 10.3 Assuming that 〈v0, . . . , vk〉 is a sequence of vectors in a Ba-
nach space, the statement that the given vectors are linearly independent is
equivalent to a Σ1 formula in WKL0.

Since independence of the given vectors is easily expressible with a Σ2 formula,
and the Σ2 least-element principle can be justified from Σ2 induction, we
obtain the following just as in the proof of Lemma 10.2:

Lemma 10.4 (RCA0) The disjunction of (WKL) and Σ2 induction implies
that every finite dimensional Banach space has an independent generating se-
quence.

We now turn to the infinite dimensional case. The proof below adapts a con-
struction from [20, Section 4.7], carried out there in the context of a Banach
space.

Lemma 10.5 (RCA0) Every infinite dimensional Hilbert space has an inde-
pendent generating sequence.

Proof. Elements of our generating sequence will be chosen from the under-
lying vector space, A. We start by choosing an enumeration of the natural
numbers u0, u1, u2, . . . such that each natural number occurs infinitely often;
for example, we can define ui = (i)0, where (i)0 denotes the first number of
the pair coded by i in any reasonable coding of pairs of natural numbers.

Suppose at stage i we have already chosen elements xj0 , xj1 , . . . , xjk
to be part

of the generating sequence. We next consider whether to add xui
. By the law

of the excluded middle, either 〈xj0 , . . . , xjk
, xui

〉 is linearly independent, or it
isn’t. In the first case, there is a witness to the Σ1 formula characterizing
linear independence given by Lemma 10.1; in the second case, there is a finite
sequence of rationals q0, . . . , qk such that

‖xui
−∑

l≤k

qlxjl
‖ < 2−i.

Hence, if we search simultaneously for a suitable witness to the independence
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and a suitable sequence of rationals (together with a witness to the corre-
sponding inequality), we are guaranteed to find one or the other. If we find
the witness to the independence, we add xui

to the generating sequence, by
defining jk+1 to be ui; otherwise, we do nothing. Notice that in the second
case, we have not established that xui

is linearly dependent on the previous
vectors, but only that it can be approximated to within a factor of 2−i. This
is why we chose our enumeration 〈ui〉 in such a way that each element xn is
considered infinitely often; in the end, if xn has not been added at any stage,
it is because it is in the closure of the span of our generating sequence.

Let us describe the proof in a little more detail. By Lemma 2.2 there is a
function f(σ, i) with the following property: whenever σ is a finite sequence
〈σ0, . . . , σk〉 of indices, f(σ) either returns a number witnessing the fact that
〈xσ0 , . . . , xσk

〉 is linearly independent, or a sequence of rationals q0, . . . , qk−1

such that ‖xσk
−∑

l≤k qlxσl
‖ < 2−i together with a witness to this inequality.

Define a function j by primitive recursion on the natural numbers by setting
j(0) to be the empty sequence, and setting j(i + 1) to be equal to j(i)̂ 〈i〉 if
f(j(i)̂ 〈xui

〉, i) returns a witness for linear independence, and j(i) otherwise.

Because we are assuming that no finite sequence of elements of A spans all
the elements of A, we have that for every i there is an n > i such that j(n)
properly extends j(i). Define a function k by primitive recursion, where k(0)
is the least value n such that j(n) is not the empty sequence, and k(i + 1)
is the least value of n such that j(n) properly extends j(i). We obtain the
desired generating sequence by defining vi = x(j(k(i)))i

. 2

The argument just given can be generalized to arbitrary Banach spaces, Using
the Σ1 independence criterion given by Lemma 10.3, rather than the Σ1 cri-
terion for Hilbert spaces. However, Lemma 10.3 relied on (WKL). In fact, the
argument can be made to go through in RCA0, though this involves unraveling
some of the technical details of the independence criterion. The proof below
relies on the following notation from [20, page 143]: for each m and k, let Smk

denote the set of all k-tuples 〈β0, . . . , βk−1〉 of rationals whose denominators
are 2m and which satisfy

1 ≤ |β0|2 + . . . + |βk−1|2 ≤ 4.

Lemma 10.6 (RCA0) Suppose x0, . . . , xk are elements of a Banach space,
and suppose, for some m,

min{‖β0x0 + . . . + βk−1xk−1‖|〈β0, . . . , βk−1〉 ∈ Smk} >

2−m(‖x0‖+ . . . + ‖xk−1‖).

Then, for any ε > 0, either there is a sequence of rationals q0, . . . , qk−1 such
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that

‖xk −
∑

i<k

qixi‖ < ε,

or there is an m′ such that

min{‖β0x0 + . . . + βkxk‖|〈β0, . . . , βk〉 ∈ Sm′(k+1)} >

2−m′
(‖x0‖+ . . . + ‖xk‖).

Furthermore, if the second disjunct holds, the sequence 〈x0, . . . , xk−1〉 is inde-
pendent.

Proof. Given m and ε as in the hypotheses, let us work backwards to determine
conditions on a choice of m′ that guarantee the conclusion.

First, note that the condition on m guarantees that for any m′ ≥ m and any
〈β′0, . . . , β′k−1〉 ∈ Sm′k, we have

‖β′0x0 + . . . + β′k−1xk−1‖ > δ(‖x0‖+ . . . + ‖xk−1‖)

with δ = (4/9)2−(m+1) > 2−(m+3). This is so because given any such sequence
we can scale it by a factor of at most 3/2 to obtain a sequence of real numbers
〈γ0, . . . , γk−1〉 on the sphere of radius 3/2, i.e. satisfying |γ0|2 + . . . + |γk−1|2 =
9/4, and then approximate 〈γ0, . . . , γk−1〉 by a sequence 〈β0, . . . , βk−1〉 in Smk

with each |βi − γi| ≤ 2−m+1.

Now, for any m′, if the second disjunct fails, there is a sequence 〈β0, . . . , βk−1〉
in Sm′(k+1) such that

‖β0x0 + . . . + βkxk‖ ≤ 2−m′
(‖x0‖+ . . . + ‖xk‖). (1)

Assuming βk > 0 and 2−m′
/βk < ε, we can divide through by βk to obtain the

desired sequence q0, . . . , qk−1. It therefore suffices to obtain a lower bound for
βk for sufficiently large m′ in terms of m and x0, . . . , xk+1, since then we can
simply choose m′ large enough to ensure 2−m′

/βk < ε.

Assume, then, that (1) holds. Using the triangle inequality in the form ‖u‖ ≥
‖v‖ − ‖u + v‖, we have

‖bkxk‖ ≥ ‖β0x0 + . . . + βk−1xk−1‖ − ‖β0x0 + . . . + βkxk‖
> 2−(m+3)(‖x0‖+ . . . + ‖xk−1‖)− 2−m′

(‖x0‖+ . . . + ‖xk‖).

If m′ ≥ m + 4, we have

(βk + 2−m′
)‖xk‖ > (2−(m+3) − 2−m′

)(‖x0‖+ . . . + ‖xk−1‖)
≥ 2−(m+4)(‖x0‖+ . . . + ‖xk−1‖)
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and so

βk > (2−m+4/‖xk‖)(‖x0‖+ . . . + ‖xk−1‖)− 2−m′

> (2−m+5/‖xk‖)(‖x0‖+ . . . + ‖xk−1‖)

as long as m′ is large enough.

The fact that the second disjunct implies that the sequence 〈x0, . . . , xk−1〉 is
independent is proved as in [20]; the argument is similar to that in the second
paragraph in this proof. 2

Since the inequalities in the statement of Lemma 10.6 are Σ1, making the
corresponding changes to the proof of Lemma 10.5 shows the following:

Lemma 10.7 (RCA0) Every infinite dimensional Banach space has an inde-
pendent generating sequence.

In the case of Hilbert spaces, we can apply the Gram-Schmidt process to make
any generating sequence orthonormal.

Lemma 10.8 (RCA0) Every infinite dimensional Hilbert space has an ortho-
normal basis.

Proof. Let v0, v1, . . . be an independent generating sequence for the space.
Since each initial segment v0, . . . , vk is independent, as a by-product of Lemma 10.1
we know that for each k there is a ε such that in the Gram-Schmidt process
run up to k, the norm in the denominator is greater than ε. This last ex-
pression is Σ1, so by Lemma 2.2 there is a function h(i) such that for each i,
the norm in the denominator is at least h(i). Thus we can re-express the full
Gram-Schmidt process with the recursion

e0 = v0/ max(h(0), ‖v0‖)
ei+1 =

vi+1 −∑
j≤i〈vi+1, ej〉ej

max(h(i + 1), ‖vi+1 −∑
j≤i〈vi+1, ej〉ej‖) .

It is the presence of h in the denominator that ensures that each step of the
process has a modulus of uniform continuity, thereby allowing us to apply The-
orem 8.1. As before we can employ a complementary recursion to re-express
the vi’s in terms of the ei’s, and use induction to show that the sequence is
orthonormal and spans the vi’s.

The usual proofs can be carried out in RCA0 to show that if x is any element
of the space then x =

∑
i〈x, ei〉ei, and that this representation is unique. 2

Summing up, then, we have shown:

Theorem 10.9 (RCA0) Every Hilbert space has an orthonormal basis.
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Theorem 10.10 RCA0 together with the disjunction of (WKL) and Σ2 induc-
tion proves that every Banach space has an independent generating sequence.

The nonconstructive components in the proofs of these two theorems include
the use of the law of the excluded middle to distinguish the finite-dimensional
and infinite-dimensional cases and the use of the least-element principle in
the finite-dimensional case. Thus, one obtains constructive versions if one ei-
ther restricts to the infinite dimensional case, or if one allows vectors in the
“orthonormal basis” to be zero. One can also obtain a constructive version of
Lemma 10.2 with a more stringent notion of a finite dimensional space. Details
can be found in [1].

Theorems 10.9 and 10.10 imply their computable analogs, which is what is
addressed by Pour-El and Richards [20]. In other words, the constructions
described are computable uniformly from the underlying space (though, of
course, the dimension of the space cannot be determined computably, in gen-
eral); it is just the axiomatic verification that the construction works that
requires extra effort.

Two Hilbert spaces H1, H2 are said to be isomorphic if there exist bounded
linear functionals F : H1 → H2 and G : H2 → H1 that are inverses to each
other. If 〈ei〉 and 〈e′i〉 are orthonormal bases of H1 and H2 respectively of the
same cardinality, clearly we can obtain such an F and G by setting F (ei) = e′i
and G(e′i) = ei.

Corollary 10.11 (RCA0) Any two infinite dimensional Hilbert spaces are iso-
morphic, as are any two finite dimensional Hilbert spaces of the same dimen-
sion.

11 Closed subspaces

The notion of a closed subspace is central to the theory of Banach spaces.
Ordinarily, this is simply defined to be a closed linear set, that is, a closed
set satisfying ax + by ∈ B for every x, y in B and a, b in R. In Section 6,
however, we saw that in non-compact spaces much can depend on how one
treats the associated topological and metric notions. In the situation at hand,
three different notions arise:

(1) A closed linear set is a closed subset of B that is further linear.
(2) A closed subspace is a separably closed subset of B that is linear.
(3) A located closed subspace is a closed subspace with a locating function.
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By Theorem 5.1, there is no need to consider located closed linear subsets,
since these amount to the same things as located closed subspaces. Note
that a closed subspace of a Banach (resp. Hilbert) space inherits the norm
(resp. inner product) from the larger space, and so can be considered a Ba-
nach (resp. Hilbert) space in its own right. Note also that one can equivalently
present a closed subspace as the closure of the linear span of a countable se-
quence of vectors; taking all finite rational linear combinations of the vectors
provides the corresponding linear set. We will use this equivalence freely be-
low. In the case of Hilbert spaces, we know by Theorem 10.9 that in RCA0 we
can even take the closed subspace to be given by an orthonormal basis; and
by Theorem 10.10 that in WKL0 every closed subspace has an independent
generating sequence.

In reverse mathematics, one usually uses the notion of a closed subspace, as
defined above; in constructive mathematics it is common to require that the
subspaces under consideration are furthermore located. All these notions are
equivalent in the presence of Π1

1 comprehension. The goal of this section is to
indicate some of the relationships that hold in weaker subsystems of second-
order arithmetic.

In fact, all three notions above come up naturally in practice. For example, if
f is a bounded linear functional, its kernel, kerf , is clearly a closed linear set;
below we will show that, in RCA0, it is also a subspace, and that it is located
if and only if the norm of f exists. When we turn to the ergodic theorem,
we will consider sets of the form {x | Tx = x}, where T is a bounded linear
operator from a Hilbert space to itself. It is easy to show that this is always
a closed linear set; below we will see that the assertion that it is separably
closed in general is equivalent to (ACA). In our proof of the ergodic theorem
we will also consider the closure of sets of the form {Tx − x | x ∈ H}; this
is always a separably closed set, but we will see that the statement that it is
always closed is equivalent to (ACA).

The following theorem collects some of the results we will ultimately obtain:

Theorem 11.1 (RCA0) The following hold with respect to both Hilbert spaces
and Banach spaces:

(1) The statement that every closed subspace is a closed linear set is equivalent
to (ACA).

(2) The statement that every closed linear set is a closed subspace is implied
by (Π 1

1 -CA) and implies (ACA).
(3) The statement that every closed subspace is located is equivalent to (ACA).
(4) The statement that every closed linear set is located is implied by (Π 1

1 -CA)
and implies (ACA).
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The implications from (ACA) and (Π 1
1 -CA) in all four statements, for Banach

spaces as well as Hilbert spaces, follow from the more general results for metric
spaces, Theorem 5.3 and 5.4. Since every Hilbert space is a Banach space, it
suffices to obtain the reversals for the former. For 1 and 2, these are found in
Theorem 11.2 and Corollary 15.2, respectively. The reversals for 3 and 4 are
consequences of Theorems 13.1 and 13.4, though stronger reversals for indi-
vidual distances are given by Theorems 12.5 and 12.6. Note that statements
2 and 4 are not sharp; see the discussion in Section 16.

Theorem 11.2 (RCA0) The statement that every closed subspace of a Hilbert
space is closed implies (ACA).

Proof. Let ∃y θ(x, y, Z) be the complete Σ1 formula relative to Z discussed in
Section 2. Let H be the Hilbert space l2 with orthonormal basis 〈ei | i ∈ N〉.
Let 〈bi | i ∈ N〉 be the sequence

bi =





ej if i = 〈j, k〉 and θ(j, k, Z)

0 otherwise

and let C be the closed subspace spanned by the sequence 〈bi〉. Assuming C
is a closed linear set, its complement is open, and we have

∃y θ(i, y, Z) ↔ ei ∈ C

↔ ei 6∈ C

showing that ∃y θ(i, y, Z) is equivalent to a Π1 formula. 2 2

A strengthening of this theorem is contained in Theorem 15.1 below.

12 Distances and projections

If M is a closed linear set or a closed subspace, the notion of the distance of
a point x to M , and the notion of a distance function for M , carry over from
the case of metric spaces. In the case of Hilbert spaces, we can also define the
notion of the projection onto a closed subspace.

Definition 12.1 Let M be a closed subspace of a Hilbert space H. Let x and y
be elements of H, with y in M . If the distance from x to y is less than or equal
to the distance from x to any other point in M , y is said to be the projection
of x on M . Let P be a bounded linear operator from H to itself. If for every x
in H, Px is the projection of x on M , P is said to be the projection function
for M .
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As was the case with distances, the notion of being a projection makes sense
more generally for any class M that can be defined by a formula in the language
of second-order arithmetic. In particular, the definition above makes sense for
closed linear subsets M as well. Note that if y is the projection of x on M ,
then ‖x− y‖ = d(x, M). Using the parallelogram identity,

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2,

one can show that in a Hilbert space the projection is unique. For, suppose
y and y′ are both projections of x on M . Then ‖x − y‖ = ‖x − y′‖, and by
linearity 1

2
(y + y′) is also in M . But then

‖x− y‖ ≤ ‖x− 1
2
(y + y′)‖ = ‖1

2
(x− y) + 1

2
(x− y′)‖ ≤

1
2
‖x− y‖+ 1

2
‖x− y′‖ = ‖x− y‖

and so these are all equalities. Let d = ‖x − y‖. The parallelogram identity
then implies

4d2 = ‖(x− y) + (x− y′)‖2 =

− ‖y − y′‖2 + 2(‖x− y‖2 + ‖x− y′‖2) = −‖y − y′‖2 + 4d2,

so ‖y − y′‖ = 0 and y = y′.

Lemma 12.2 (RCA0) Let M be linear. An element y is the projection of x
on M if and only if y is in M and x− y is orthogonal to M .

Proof. The standard argument formalizes without difficulty. Suppose y is the
projection of x onto M , but x− y is not orthogonal to M . Let z ∈ M be such
that 〈x− y, z〉 6= 0. Then for every a ∈ R, y− az is also an element of M , and

〈x− y + az, x− y + az〉 ≥ d(x,M)2 = 〈x− y, x− y〉.

Since the left-hand side is equal to 〈x− y, x− y〉+ 2〈x− y, az〉+ 〈az, az〉, we
obtain that for every a ∈ R,

2a〈x− y, z〉+ |a|2‖z‖2 ≥ 0.

Since a can be positive or negative, we can choose an a with sufficiently small
absolute value to obtain a contradiction.

Conversely, suppose y is in M with 〈x − y, z〉 = 0 for all z ∈ M . Using the
Pythagorean theorem we have that for every y′ 6= y in M

‖x− y′‖2 = ‖x− y‖2 + ‖y − y′‖2 > ‖x− y‖2.

So y is the closest point in M to x, and hence the projection of x onto M . 2
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We will often use the notation PM to denote the projection function for M , so,
for example, the statement “PM exists” is shorthand for the statement that
“there exists a projection function for M .” The next theorem demonstrates the
relationship between distances and projections in the context of a subspace.

Theorem 12.3 (RCA0) Let H be a Hilbert space, let M be a closed subspace
of H, and let x be any element of H. Then the following are equivalent:

(1) The distance from x to M exists.
(2) The projection from x to M exists.

Moreover, for any closed subspace M , the following are equivalent:

(1) M is located.
(2) The projection function, PM , exists.

Proof. In both cases, the direction 2 implies 1 is immediate, since if y is the
projection of x on M , then d(x,M) = d(x, y).

For the first implication 1 → 2, suppose M is a closed subspace with 〈wm | m ∈
N〉 a dense sequence of points in M , and suppose d = d(x,M) = inf{d(x, y) | y ∈
M} exists. By the definition of an infimum, we have

∀n ∃m d(x,wm) < d + 2−n.

By Lemma 2.2, there is a sequence of points yn from 〈wm〉 such that for every
n,

d ≤ d(x, yn) < d + 2−n.

It suffices to show that the sequence 〈yn〉 is Cauchy with an explicit rate of
convergence, since if y = limn yn, then clearly d(x, y) = d = d(x,M). Since
1
2
(yn + ym) is in M , we have d(1

2
(yn + ym), x) ≥ d. Using the parallelogram

identity, we then have

‖yn − ym‖2 = ‖(yn − x)− (ym − x)‖2

= 2‖yn − x‖2 + 2‖ym − x‖2 − 4‖1
2
(yn + ym)− x‖2

≤ 2(d + 2−n)2 + 2(d + 2−m)2 − 4d2

= (2−n+2 + 2−m+2)d + 2−2n+1 + 2−2m+1.

Since the last quantity can be made arbitrarily small by requiring n and m to
be large, we are done.

The second implication 1 → 2 is just a uniform version of the preceding
argument. To define the code of P as a bounded linear operator we define its
value at each element of the countable dense subset A of H, as above. We
only need to check that P is linear and bounded. For linearity, given a, b ∈ Q,
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x, y ∈ A, and z ∈ M , we have

〈ax + by − (aPx + bPy), z〉 = a〈x− Px, z〉+ b〈y − Py, z〉 = 0

so, by Lemma 12.2,
aPx + bPy = P (ax + by),

and P is linear. Finally, for any x ∈ H,

‖x‖2 = 〈x, x〉 = 〈x− Px + Px, x− Px + Px〉 = ‖x− Px‖2 + ‖Px‖2

so ‖Px‖ ≤ ‖x‖. Therefore, ‖P‖ ≤ 1. 2

If one replaces “closed subspace” by “closed linear subset” in Theorem 12.3,
the situation changes. The uniform case stays the same: the existence of a
locating function is equivalent to the existence of a projection function. For
an individual point, however, it is not clear whether knowing the distance to
the set helps find the projection at all.

Theorem 12.4 (RCA0) Suppose M is a closed linear subset of a Hilbert space
and x is a point.

(1) If PMx exists, then so does d(x,M).
(2) PM exists if and only if M is located.

Proof. As above, if PMx exists, then d(x,M) = ‖x − PMx‖, proving part 1.
Similarly, if PM exists, this equality provides a locating function, proving one
direction of 2.

All that remains is to prove the converse direction of 2. So, suppose M is
located in a Hilbert space H = Â. To prove that the projection function exists,
it suffices to show that one can define the sequence of values 〈PMy | y ∈ A〉.
In other words, we need to show how the projection y of x on M can be
obtained in RCA0 uniformly from a locating function for M . The construction
is similar to that of Theorem 12.3, but instead of choosing each element ym

from a sequence of points that is dense in M , we choose it from the dense
subset A of H, using the locating function to ensure that ym is close enough
to M .

Let d = d(x,M). Note that by the definition of distance, for every n there
is a point w in M such that d ≤ ‖x − w‖ < d + 2−(n+1). Then there is
a point y′ in A such that ‖y′ − w‖ < 2−(n+1). Hence we have ‖x − y′‖ ≥
‖x− w‖ − ‖y′ − w‖ > d− 2−(n+1), ‖x− y′‖ ≤ ‖x− w‖+ ‖y′ − w‖ < d + 2−n,
and d(y′,M) ≤ ‖y′ − w‖ < 2−(n+1).

Thus we have

∀n ∃y′ (d− 2−n < ‖y′ − x‖ < d + 2−n ∧ d(y′,M) < 2−n).
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By Lemma 2.2 there is a sequence 〈yn | n ∈ N〉 such that each yn witnesses the
matrix above for the corresponding n. It suffices to show that 〈yn〉 is Cauchy,
since if 〈yn〉 converges to y, it is clear that d(y, M) = 0, implying y ∈ M ; and
‖x− y‖ = d, so that y is necessarily the projection of x on M .

As in the proof of Theorem 12.3 we have

‖yn − ym‖2 = 2‖yn − x‖2 + 2‖ym − x‖2 − 4‖1
2
(yn + ym)− x‖2

≤ (d + 2−n)2 + (d + 2−m)2 − 4‖1
2
(yn + ym)− x‖2

so it suffices to show that ‖1
2
(yn+ym)−x‖ is not too much smaller than d. Since

d(yn,M) < 2−n, there is a w′ ∈ M such that ‖yn−w′‖ < 2−(n−1), and similarly
there is a w′′ ∈ M such that ‖ym − w′′‖ < 2−(m−1). Then 1

2
(w′ + w′′) ∈ M , so

‖1
2
(w′ + w′′))− x‖ ≥ d. Thus we have

‖1
2
(yn + ym)− x‖ ≥ ‖1

2
(w′ + w′′)− x‖ − ‖1

2
(yn + ym)− 1

2
(w′ + w′′)‖

≥ d− 1
2
‖yn − w′‖ − 1

2
‖ym − w′′‖

≥ d− 2−n − 2−m.

The proof then proceeds just as the proof of Theorem 12.3. 2

We do not know how things stand with respect to the converse of 1; the
strength of the statement “if d(x, M) exists then so does PMx” is left as an
open question in Section 16.

Given the close relationship between distances and projections, what does it
take to show the existence of either?

Theorem 12.5 (RCA0) Each of the following statements is equivalent to (ACA):

(1) For every closed subspace M of a Hilbert space, the projection on M
exists.

(2) Every closed subspace of a Hilbert space is located.
(3) For every closed subspace M and every point x, the projection of x on M

exists.
(4) For every closed subspace M and every point x, d(x,M) exists.

Proof. Note that 3 follows immediately from 1. By Theorem 12.3, 1 and 2 are
equivalent, as are 3 and 4, and by Theorem 5.4 we have that (ACA) implies 2.
To close the chain it suffices to show that 4 implies (ACA); this follows from
Theorem 13.4, or, alternatively, from Corollary 15.4 below. 2

If we replace “closed subspace” by “closed linear subset,” we have the follow-
ing:

Theorem 12.6 (RCA0) Each of the following statements is implied by (Π 1
1 -CA)

and implies (ACA):
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(1) For every closed linear subset M of a Hilbert space, the projection on M
exists.

(2) Every closed linear subset of a Hilbert space is located.
(3) For every closed linear subset M and every point x, the projection of x

on M exists.
(4) For every closed linear subset M and every point x, d(x,M) exists.

Proof. Again, we have seen that 1 and 2 are equivalent, and it follows from
Theorem 5.4 that they are implied by (Π 1

1 -CA). Also, each of 1 and 2 im-
plies 3, which in turn implies 4. The fact that 4 implies (ACA) is given by
Corollary 15.2 below. 2

The results of this section can be made more general. The notion of projection
does not make sense in arbitrary Banach spaces, because there need not be
a unique closest point to a given point x in a closed subspace M . This is,
however, always the case for uniformly convex Banach spaces ; these are Banach
spaces with the additional property that for every two sequences of vectors
〈xn | n ∈ N〉 and 〈yn | n ∈ N〉, if ‖xn‖ → 1, ‖yn‖ → 1, and ‖xn + yn‖ → 2,
then ‖xn−yn‖ → 0. In subsystems of second-order arithmetic, it is reasonable
to ask that such spaces come equipped with a modulus of convexity, that is,
a function δ(ε) from Q to Q such that whenever ‖u‖ ≤ 1, ‖v‖ ≤ 1, and
1
2
‖u − v‖ ≥ 1 − δ(ε), then ‖u − v‖ ≤ ε. For such spaces, the analogs of

Theorems 12.3–12.5 are provable in RCA0. The modulus of convexity is used
in place of the parallelogram identity, e.g. to show that the sequence 〈yn〉
defined in the proof of Theorem 12.3 is a Cauchy sequence.

13 Norms and kernels of bounded linear functionals

Recall that by a bounded linear functional we mean a bounded linear operator
from the space in question to R, and, in RCA0, every bounded linear functional
on a Banach space is equivalent to a linear continuous function. As a result,
if f is a bounded linear functional, it is clear that kerf is a closed linear set,
since it is the inverse image of the closed set {0}. In this section we will show
that it is also a closed subspace, provably in RCA0, and that it is located if
and only if the norm of f exists.

Theorem 13.1 (RCA0) The kernel of any bounded linear functional on a Ba-
nach space is a closed subspace as well as a closed linear set.

Proof. We have already noted that kerf is a closed linear set. If f is the
constant zero function, the statement that kerf is a closed subspace is trivial.
Thus we can assume that there is a y ∈ B such that f(y) 6= 0. Replacing y by
y/f(y) if necessary, we can assume that f(y) = 1.
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Let M be a bound on the norm of f , so for every x, |f(x)| ≤ M‖x‖. In
particular, we have M‖y‖ ≥ |f(y)| = 1. Let A = 〈an | n ∈ N〉 be a sequence
of points that is dense in B, and define the sequence 〈xn | n ∈ N〉 by xn =
an − f(an)y. Then for each n we have

f(xn) = f(an − f(an)y) = f(an)− f(an)f(y) = 0,

so xn is in the kernel of f . It suffices to show that the sequence xn is dense in
the kernel, that is, for every ε > 0 and every x such that f(x) = 0, there is a
point a ∈ A such that ‖x− (a− f(a)y)‖ < ε.

Because A is dense in B, we may choose a ∈ A such that ‖x−a‖ < ε/(2M‖y‖).
By the choice of M we then have ‖x − a‖ < ε/2, as well as |f(a)|‖y‖ =
|f(x− a)|‖y‖ ≤ M‖x− a‖‖y‖ ≤ ε/2. Therefore

‖x− (a− f(a)y)‖ ≤ ‖x− a‖+ |f(a)|‖y‖ < ε/2 + ε/2 = ε,

as required. 2

When is the kernel of a functional located? The following theorem is adapted
from [1].

Theorem 13.2 (RCA0) Let f be any bounded linear functional on a Banach
space. The following statements are equivalent:

(1) The norm of f exists.
(2) kerf is located.

Proof. 1 → 2: Let f be a bounded linear functional with norm ‖f‖. If f ≡ 0
then d(x, kerf) = 0 for all x, so assume ‖f‖ > 0. We will show that for every
x ∈ B,

d(x, kerf) =
|f(x)|
‖f‖ .

This implies that d(x, kerf) is the desired locating function.

On the one hand, if f(z) = 0,

|f(x)| = |f(x− z)| ≤ ‖f‖‖x− z‖,

and so ‖x− z‖ ≥ |f(x)|/‖f‖. This implies d(x, kerf) ≥ |f(x)|/‖f‖.

In the other direction, we need to show that d(x, kerf) ≤ |f(x)|/‖f‖. Since
‖f‖ > 0, there is an ε′ > 0 such that ‖f‖ > ε′. We have

‖f‖ = sup{|f(x)|
‖x‖ | x ∈ H, x 6= 0}
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So for any ε < ε′, there exists y ∈ H such that

|f(y)| > (‖f‖ − ε)‖y‖.

Let z = x− f(x)y
f(y)

. Then, f(z) = 0 and

‖x− z‖ =
|f(x)|‖y‖
|f(y)| <

|f(x)|‖y‖
(‖f‖ − ε)‖y‖ =

|f(x)|
‖f‖ − ε

.

Since ε can be made arbitrarily small, we have d(x, kerf) ≤ |f(x)|/‖f‖, as
required.

As for 2 → 1, suppose kerf is located. Again, if f is identically zero, ‖f‖ = 0.
Otherwise, there is an x0 such that f(x0) = 1, and, since f is continuous,
d(x0, kerf) > 0. Then we have

d(x0, kerf) = inf{‖x0 − z‖ | z ∈ kerf} = inf{‖y‖ | f(y) = 1}.

The first equality follows from the definition of distance. The second equality
follows from the fact that if y = x0− z then f(y) = f(x0)− f(z) = 1; and, on
the other hand, if f(y) = 1, we can write y = x0−(y−x0), with y−x0 ∈ kerf .
Now, if f(y) = 1 and x = y/‖y‖, then ‖x‖ = 1 and f(x) = 1/‖y‖; and if
‖x‖ = 1 and y = x/f(x), then f(y) = 1 and ‖y‖ = 1/|f(x)|. Thus we have

d(x0, kerf)−1 = sup{‖y‖−1 | f(y) = 1}
= sup{|f(x)| | ‖x‖ = 1}
= ‖f‖,

showing that ‖f‖ exists. 2

For Hilbert spaces, we have the following refinement. Note that clause 4 is one
form of the Riesz Representation Theorem.

Theorem 13.3 (RCA0) Let f be any bounded linear functional on a Hilbert
space H. The following are equivalent:

(1) The norm of f exists.
(2) kerf is located.
(3) If f is not identically 0, then d(x, kerf) exists for some x such that f(x) 6=

0.
(4) There is a y in H such that for every x, f(x) = 〈x, y〉.

Proof. The equivalence of statements 1 and 2 has just been proved, and clearly
2 implies 3. It remains to show 3 → 4 and 4 → 1.

3 → 4: If f ≡ 0, we can simply take y = 0. Otherwise, suppose f(x0) 6= 0
and d(x0, kerf) exists. By Theorem 13.1, kerf is a closed subspace, and by
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Theorem 12.3, the projection Px0 of x0 on kerf exists. Let z = x0 − Px0, so,
by Lemma 12.2, z is orthogonal to kerf . Let w = z/‖z‖, and let y = wf(w).
Then ‖w‖ = 1, ‖y‖ = |f(w)|, f(y) = (f(w))2, and y is still orthogonal to
kerf . Then for any x,

f(x− f(x)

f(y)
y) = f(x)− f(x)

f(y)
f(y) = 0,

so x− (f(x)/f(y))y ∈ kerf . Then

0 = 〈x− f(x)

f(y)
y, y〉

= 〈x, y〉 − f(x)

f(y)
‖y‖2

= 〈x, y〉 − f(x).

This implies f(x) = 〈x, y〉, as required.

4 → 1. Suppose f(x) = 〈x, y〉 for every x. Then f(y) = ‖y‖2, so ‖f‖ ≥ ‖y‖. On
the other hand, by the Cauchy-Schwartz inequality, |f(y)| = |〈y, y〉| ≤ ‖y‖2,
and so ‖f‖ ≤ ‖y‖. 2

Theorem 13.4 (RCA0) The following statements are equivalent to (ACA):

(1) Every bounded linear functional on a Banach space has a norm.
(2) Every bounded linear functional on a Hilbert space has a norm.
(3) For every bounded linear functional f on a Banach space, kerf is located.
(4) For every bounded linear functional f on a Hilbert space, kerf is located.
(5) For every bounded linear functional f on a Hilbert space, if f is not

identically 0, then d(x, kerf) exists for some x such that f(x) 6= 0.
(6) Every bounded linear functional f on a Hilbert space is representable,

i.e. there is a y in the space such that, for every x, f(x) = 〈x, y〉.

Proof. By the preceding theorems, 1 and 3 are equivalent, as are 2, 4, 5, and
6. Since clearly 1 implies 2, it suffices to show (ACA) implies 1 and 6 implies
(ACA).

(ACA) → 1: If f is not identically 0, then ‖f‖ = sup{|f(x)|/‖x‖ | 0 6= x ∈ A}.
Since f is a bounded linear functional, 〈|f(x)|/‖x‖ | 0 6= x ∈ A〉 is a bounded
sequence of real numbers, and (ACA) implies that it has a least upper bound.

6 → (ACA). We will use Lemma 2.1. Let 〈bn | n ∈ N〉 be any increasing
sequence of real numbers in [0, 1] such that for each n,

∑
i<n b2

i ≤ 1. We will
show that 6 implies that

∑
b2
i exists. Let H be l2, the collection of all square

summable countable sequences of reals, with orthonormal basis 〈en | n ∈ N〉.
Define a functional f on the orthonormal basis by f(ei) = bi and extend it
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linearly to all of H. To show f is bounded, we use Hölder’s inequality, which
can be formalized in RCA0: for each n,

|f(
∑

i<n

xiei)| = |∑
i<n

xibi| ≤ (
∑

i<n

x2
i )

1
2 (

∑

i<n

b2
i )

1
2 ≤

‖∑
xiei‖(

∑

i<n

b2
i )

1
2 ≤ ‖∑

xiei‖. (2)

So the norm of f is bounded by 1.

Assuming 6, we have that f(x) = 〈x, y〉 for some y, in which case ‖f‖ = ‖y‖.
From (2), we see that ‖y‖ = ‖f‖ ≤ (

∑
i b

2
i )

1
2 , assuming the latter exists. On the

other hand, if we take xi = bi for i < n in (2), we have
∑

i<n f(xiei) =
∑

i<n b2
i ,

and so for each n, ‖y‖ = ‖f‖ ≥ (
∑

i<n b2
i )

1
2 . Hence ‖y‖ = ‖f‖ = (

∑
i b

2
i )

1
2 , and

so ‖y‖2 =
∑

b2
i exists, as required. 2

14 The mean ergodic theorem

Although von Neumann’s mean ergodic theorem (see, for example, [19,25]) was
initially stated in the context of a measure space, it can be stated and proved
naturally in the more general context of a Hilbert space. In this setting, the
theorem is as follows:

If T is an isometry of a Hilbert space and x is any point, then the sequence
〈Snx | n ∈ N〉 of partial averages

Snx =
1

n
(x + Tx + . . . + T n−1x)

converges.

Here an isometry is a linear transformation T satisfying ‖Tx‖ = ‖x‖ for
every x. The theorem holds more generally if T is any nonexpansive linear
transformation, i.e. T satisfies ‖Tx‖ ≤ ‖x‖ for every x. Think of x as describing
some measurement on a physical system, depending on the system’s state, and
think of Tx as denoting the same measurement taken after a unit of time. The
mean ergodic theorem states that sequence of partial averages converges in the
Hilbert space norm.

(The mean ergodic theorem originally dealt with measure preserving trans-
formations U on a measure space X. Such a transformation gives rise to an
isometry T of the Hilbert space L2(X) defined by (Tf)(x) = f(U(x)). In this
case, the mean ergodic theorem asserts that the sequence of time averages, as
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a function of the initial state, converges in the L2 norm. The Birkhoff point-
wise ergodic theorem implies that the sequence converges pointwise almost
everywhere, and in the L1 norm. We will not consider the pointwise ergodic
theorem here.)

In fact, the standard proof of the mean ergodic theorem gives more informa-
tion. Given T as above, let M = {x | Tx = x} be the set of fixed points, and
let N be the closure of the set {Tx − x | x ∈ H}. Then M and N are closed
subspaces, and standard proof shows:

M and N are orthogonal complements to one another, and the sequence
〈Snx〉 converges to the projection of x on M .

We need to do some work to make sense of this in the context of subsystems
of second-order arithmetic. Given an isometry or nonexpansive mapping T ,
note that M and N can certainly be described by formulas in the language
of second-order arithmetic, so the notion of a projection makes sense. In fact,
it is not hard to see that M is a closed linear set, since it is the kernel of the
continuous function f(x) = ‖Tx− x‖; and that N is a closed subspace, since
the set {Tx− x | x ∈ A} forms a countable dense subset.

Note that if T is a nonexpansive mapping, then for every x and y we have

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ ‖x− y‖.

So, if T is considered as a continuous function, the identity is a modulus of
uniform continuity for T . Using Lemma 2.2 we can therefore make sense of
the sequence of iterations T n, and hence also the partial averages Sn. Since,
in general, the statement that T is linear (resp. an isometry, nonexpansive
operator) is Π1, we can show by induction in RCA0 that if T is an isometry
(resp. a nonexpansive linear operator) then so is T n for each n. Similarly, we
can show that each Sn exists, and is nonexpansive.

It turns out that in either formulation the mean ergodic theorem is equivalent
to arithmetic comprehension:

Theorem 14.1 (RCA0) Each of the following statements is equivalent to (ACA):

(1) For every Hilbert space H, nonexpansive linear operator T , and point x,
the sequence of partial averages Snx converges.

(2) For every Hilbert space H, isometry T , and point x, the sequence of partial
averages Snx converges.

Clearly 1 implies 2. The fact that 2 implies (ACA) is a consequence of Theo-
rem 15.3 below, and the fact that (ACA) implies 1 is Corollary 14.5 below.
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In fact, our analysis will yield much more information. The following theorem,
essentially from Spitters [23, Section 7.2], spells out some of the relationships
between existence statements that are implicit in conventional proofs of the
mean ergodic theorem. Our proof follows that of [23], but our Lemma 14.4 is
new and allows us to avoid an appeal to the Riesz representation theorem.

Theorem 14.2 (RCA0) Let T be any nonexpansive linear operator on a Hilbert
space, let x be any point. With the notation above, the following are equivalent:

(1) PNx exists.
(2) x can be written as x = xM + xN , where xM ∈ M and xN ∈ N .
(3) limn→∞ Snx exists.

Furthermore, if these statements hold, then the decomposition in 2 is unique
and PMx also exists. In fact, we have the following equalities:

lim
n

Snx = PMx = xM = x− PNx

To prove this, we isolate two helpful lemmas.

Lemma 14.3 (RCA0) Let T be any nonexpansive linear operator on a Hilbert
space, and let N be the closure of the set {Tx− x | x ∈ H}. Then for every x
in N , limn Snx = 0.

Proof. Suppose x ∈ N . Then for every ε > 0 there is a u ∈ H such that
‖x− (u− Tu)‖ < ε. Then we have

Sn(u− Tu) =
1

n

n−1∑

k=1

(T k−1u− T ku) =
1

n
(u− T nu)

and so

‖Sn(u− Tu)‖ ≤ 1

n
(‖u‖+ ‖T nu‖) ≤ 2‖u‖

n
→ 0.

Also, since ‖x− (u− Tu)‖ < ε, we have

‖Snx− Sn(u− Tu)‖ = ‖Sn(x− (u− Tu))‖ < ε.

Since ε was arbitrary, we have Snx → 0 as well. 2

Lemma 14.4 (RCA0) Let T be any nonexpansive linear operator on a Hilbert
space, let M = {x | Tx = x} and let N be the closure of the set {Tx− x | x ∈
H}. Then N⊥ = M , that is, every element orthogonal to N is in M and
vice-versa. Hence, M ∩N = {0}.
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Proof. Suppose x ∈ H is orthogonal to N , i.e. 〈x, y − Ty〉 = 0 for all y ∈ H.
In particular, 〈x, x− Tx〉 = 0, or

〈x, Tx〉 = 〈x, x〉 = ‖x‖2

So

‖Tx− x‖2 = 〈Tx− x, Tx− x〉 = ‖Tx‖2 − 2〈Tx, x〉+ ‖x‖2 ≤
‖x‖2 − 2‖x‖2 + ‖x‖2 = 0.

Therefore, x = Tx, and so x is in M , as required.

Conversely, suppose x is in M , i.e. Tx = x. To show that x is orthogonal
to N , it suffices to show that 〈x, Ty − y〉 = 0 for every y ∈ H. Since T is
nonexpansive, for every α ≥ 0 we have

‖x + αTy‖ = ‖T (x + αy)‖ ≤ ‖x + αy‖,

and so, squaring both sides, we have

‖x‖2 + 2α〈x, Ty〉+ α2‖Ty‖2 ≤ ‖x‖2 + 2α〈x, y〉+ α2‖y‖2.

Hence

〈x, Ty − y〉 ≤ α

2
(‖y‖2 − ‖Ty‖2)

for every α, so 〈x, Ty − y〉 ≤ 0. For every α ≤ 0, the same calculation shows

〈x, Ty − y〉 ≥ α

2
(‖Ty‖2 − ‖y‖2).

So 〈x, Ty − y〉 = 0, as required.

To see that M ∩N = {0}, note that if x is in both M and N , then 〈x, x〉 = 0,
so x = 0. 2

We now turn to the proof of Theorem 14.2.

Proof. 1 → 2: Write x = (x − PNx) + PNx. Then PNx is in N , and since
x− PNx is orthogonal to N , the previous lemma implies x− PNx is in M .

2 → 3: If x ∈ H and x = xM + xN then Sn(xM) = xM for all n, so
limn Sn(xM) = xM . Lemma 14.3 implies limn Sn(xN) = 0. So limn Snx = xM .

3 → 1: Let y = lim Snx, and let z = x−y. We will show that z is the projection
of x on N . By Lemma 12.2, it suffices to show that z is in N and x − z in
orthogonal to N .
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To see that z is in N , for each n let

yn = (
n− 1

n
I +

n− 2

n
T + · · ·+ 1

n
T n−1)x.

Then for every n, yn − Tyn = n−1
n

x− Snx → x− y = z, so z is in N .

To see that x − z = y is orthogonal to N , by Lemma 14.4 it suffices to show
that y is in M , i.e. Ty = y. This follows from the fact that

TSnx =
1

n
(Tx + . . . T nx) = Snx +

1

n
(T nx− x),

and so

Ty = lim
n

TSnx = lim Snx = y,

as required.

To see that the decomposition in statement 2 is unique, suppose xM + xN =
x′M + x′N . Then xM − x′M = xN − x′N is in M ∩ N , and Lemma 14.4 applies
these differences are equal to 0. The proof of 3 → 1 establishes that PNx =
x − limn Snx. It also establishes that limn Snx is in M , and so to show that
PMx = limn Snx, it suffices to show that x− limn Snx is orthogonal to M . But
this also follows from Lemma 14.4: if y is any element of M , it is orthogonal
to every element of N , including x− limn Snx. 2

Corollary 14.5 (ACA0) The mean ergodic theorem holds, i.e. for every H
and nonexpansive mapping T , for every x ∈ H, Snx converges. In fact, both
PM and PN exist, and for every x, PMx = x− PNx = limn Snx.

Proof. Since N is a closed subspace, ACA0 proves that PN exists by Theo-
rem 12.3. Theorem 14.2 then finishes it off. 2

Note that the statement “PMx exists” is notably absent from the list of equiv-
alent statements in Theorem 14.2. This was not an oversight: in fact, Theo-
rem 15.3 below shows that the hypothesis that PMx exists provides no help
at all in proving the mean ergodic theorem! That is, on the assumption that
PMx exists, we can show that if limn Snx exists it has to be equal to PMx; but
even with the assumption that PMx exists and is equal to 0, it still requires
(ACA) to show that limn Snx exists. (Similarly, although, by Lemma 14.4,
RCA0 proves N⊥ = M , in general it requires (ACA) to show that M⊥ = N ;
the sticking point is showing M⊥⊥ ⊆ M .)
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15 Complex Hilbert spaces and the remaining reversals

The mean ergodic theorem asserts the existence of something characterizing
the long term behavior of a system evolving over time. One would not expect
this theorem to be provable in RCA0, since that would imply that such limiting
behavior can be determined computably. For example, suppose 〈ai | i ∈ N〉
is a sequence of reals in [0, 1], and define an operator T on l2 by Tei =
(1 − ai)ei. Then T is a nonexpansive mapping, and it is not hard to see
that Snei remains fixed at ei if ai = 0, and converges to 0 otherwise. Let
x =

∑
i 2
−iei, and let y = limn Snx. Then for each i, 〈y, ei〉 6= 0 if and only if

ai = 0, providing a Σ1 equivalent to the Π1 assertion ai = 0. By Lemma 2.1,
this shows that the mean ergodic theorem for nonexpansive mappings implies
arithmetic comprehension.

To extend the reversal for the mean ergodic theorem to isometries, it is helpful
to introduce the notion of a Hilbert space over the complex numbers. These
can be defined in subsystems of second-order arithmetic in the expected way,
replacing R by C in Definition 9.3 and changing clause 2 to 〈x, y〉 = 〈y, x〉.
The notion of a bounded linear operator can be lifted accordingly. Note that
any n-dimensional Hilbert space over the complex numbers can be viewed as
a 2n-dimensional Hilbert space over the real numbers: if {e0, . . . , en−1} is an
orthonormal basis for a complex space, a vector

∑
j ujej with complex coeffi-

cients uj can alternatively be viewed as a vector
∑

j(Re(uj)e
′
2j + Im(uj)e

′
2j+1)

in a real Hilbert space with orthonormal basis {e′0, e′1, . . . , e′2n−2, e
′
2n−1}. Sim-

ilarly, any infinite-dimensional complex Hilbert space can be viewed as an
infinite-dimensional real Hilbert space, and any bounded linear operator in
the sense of the complex space can be viewed as a bounded linear operator in
the sense of the real space, with the same norm.

Given any sequence 〈ak | k ∈ N〉 of real numbers in [0, 1], define the sequence
of complex numbers

βk =
1 + aki

|1 + aki| .

So |βk| = 1 for each k and βk = 1 if and only if ak = 0. Define a linear operator
T on the complex Hilbert space l2 of square-summable sequences of complex
numbers by Tek = βkek. The fact that |βk| = 1 for each k implies that T is
an isometry. Once again, if βk = 1, then Snek is fixed at ek; otherwise,

Snek =
1

n
(1 + βk + β2

k + . . . + βn−1
k )ek

=
1− βn

k

n(1− βk)
ek
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which converges to 0 as n increases, since

∣∣∣∣∣
1− βn

k

n(1− βk)

∣∣∣∣∣ ≤
|1|+ |βn

k |
n|1− βk|

=
2

n|1− βk| .

As above, if x =
∑

2−kek and y = limn Snx, then we have 〈y, ek〉 6= 0 if and
only if βk = 1, i.e. if and only if ak = 0. Once again, by Lemma 2.1, this
implies arithmetic comprehension. Readers who prefer to think of the mean
ergodic theorem in terms of measure-preserving transformations can recast
this argument in terms of a measure preserving operator U on ω copies of the
torus R/(2πZ), where U rotates the kth component a small amount if ak > 0
and leaves it fixed otherwise.

The sketch above provides one way of completing the proof of Theorem 14.1. In
fact, Theorem 15.3 provides an even stronger result. But first, we can use these
constructions to pay off some old debts. Remember that for M = {x | Tx = x}
and N the closure of {Tx − x | x ∈ H}, as in the proof of the mean ergodic
theorem, RCA0 proves that M is a closed linear set, and N is a closed subspace.

Theorem 15.1 (RCA0) Each of the following statements is equivalent to (ACA):

(1) For any nonexpansive mapping T on a Hilbert space, M is a closed sub-
space.

(2) For any isometry T on a Hilbert space, M is a closed subspace.
(3) For any nonexpansive mapping T on a Hilbert space, N is a closed linear

set.
(4) For any isometry T on a Hilbert space, N is a closed linear set.
(5) For any nonexpansive mapping T on a Hilbert space and any x, the pro-

jection PMx exists.
(6) For any isometry T on a Hilbert space and any x, the projection PMx

exists.
(7) For any nonexpansive mapping T on a Hilbert space and any x, the dis-

tance from x to M exists.
(8) For any isometry T on a Hilbert space and any x, the distance from x to

M exists.

Proof. By Corollary 14.5, (ACA) implies that both PM and PN exist for any
nonexpansive mapping T . This implies 5 right away. Also, by Theorems 12.4
and 12.3 respectively, it implies that M and N are both located; and by
Theorem 5.1 this, in turn, implies that M and N are separably closed and
closed, respectively. Hence (ACA) proves 1, 3, and 5. Clearly 1 implies 2, 3
implies 4, 5 implies 6–8, 6 implies 8, and 7 implies 8. Thus we only need to
establish reversals from each of 2, 4, and 8 to (ACA).
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Let us first show that 2 implies (ACA). We will use statement 3 of Lemma 2.1.
Given a sequence of real numbers 〈ak | k ∈ N〉 in [0, 1], define an isometry
T as described just before the statement of the theorem. By 2, the set M =
{x | Tx = x} is a closed subspace, with a countable dense sequence 〈yk | k ∈
N〉. But then for every k we have

ak = 0 ↔ ek ∈ M

↔ ∃j (‖ek − yj‖ < 1),

providing a Σ1 definition of {k | ak = 0}. (To see that ∃j (‖ek − yj‖ < 1)
implies that ek ∈ M , note that if ek 6∈ M we have 〈ek, yj〉 = 0 for every yj.
But then ‖ek − yj‖2 = 〈ek − yj, ek − yj〉 = ‖ek‖2 + ‖yj‖2 = 1 + ‖yj‖2 ≥ 1.)

To show 4 implies (ACA), given 〈ak〉 we use the same T . Assuming 4, N is
a closed set. But then ak = 0 ↔ ek 6∈ N again provides a Σ1 definition of
{k | ak = 0}.

To show 8 implies (ACA), once again we use the same construction. Let x =∑
2−kek. Assuming 8, d = d(x,M) exists. Define a sequence 〈cn | n ∈ N〉

recursively, as follows:

cn =





0 if d2 −∑
k<n ck · 4−k < 1

2
· 4−n

1 if d2 −∑
k<n ck · 4−k > 1

2
· 4−n

either 0 or 1 otherwise.

We can do this because the relation x ≤ y is Π1, and for every x and y, either
x ≤ y or y ≤ x; thus cn is obtained by searching for a witness to the failure of
one condition or the other. Using induction on n, we can show

∀k < n (ck = 1 ↔ ak 6= 0),

as follows. Assuming the statement is true for n, we need to show that cn =
1 ↔ an 6= 0. Suppose an 6= 0. By the inductive hypothesis, we have that
for every k < n, whenever ck = 1, then ak 6= 0; this in turn implies ek 6∈ M .
Similarly, by assumption, an 6= 0 and so en 6∈ M . Thus if

∑
αkek is any element

of M , we have ∀k < n (ck = 1 → αk = 0), and αn = 0. So

d(x,M)2 ≥ ∑

k<n

ck · 4−k + 4−n,

which implies cn = 1.

On the other hand, suppose an = 0. By the inductive hypothesis, we have that
for every k < n, if ck = 0 then ak = 0, which, in turn, implies 2−kek ∈ M . By
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our assumption, we also have 2−nen ∈ M . So

d(x,M)2 ≤ ∑

k<n

ck · 4−k +
∑

k>n

4−k

=
∑

k<n

ck · 4−k +
1

3
· 4−n,

whence cn = 0. Thus 〈cn〉 works as advertised, and so S = {n | an 6= 0} =
{n | cn = 1} exists. 2

Corollary 15.2 (RCA0) Each of the following implies (ACA):

(1) If S is any closed subspace of a Hilbert space, then S is a closed linear
set.

(2) If S is any closed linear set in a Hilbert space, then S is closed subspace.
(3) If S is any closed linear set in a Hilbert space and x is any point, the

projection of x on S exists.
(4) If S is any closed linear set in a Hilbert space and x is any point, the

distance from x to S exists.

The first implication duplicates the conclusion of Theorem 11.2, whereas the
second completes the proof of Theorem 11.1. The third and fourth implications
complete the proof of Theorem 12.6.

Theorem 15.3 RCA0 proves that the following are equivalent to (ACA):

(1) For every isometry T on a Hilbert space and any point x, limn Snx exists.
(2) For every isometry T on a Hilbert space and any point x, if PMx exists,

then limn Snx exists.
(3) For every isometry T on a Hilbert space and any point x, if PMx = 0,

then limn Snx exists.
(4) For every isometry T on a Hilbert space and any point x, if PMx = 0,

then limn Snx = 0.

Corollary 14.5 implies (ACA) implies 1. Clearly 1 implies 2 and 2 implies 3.
The fact that 3 implies 4 is given by Theorem 14.2. So, we only need to show
that 4 implies (ACA).

By the observations above, nothing is lost if we interpret statement 4 in terms
of complex Hilbert spaces. The existential content of statement 4 becomes
clearer if we write it in its contrapositive form:

For every isometry T on a Hilbert space and any point x, if limn Snx either
fails to exist or is not equal to 0, then PMx either fails to exist or is not
equal to 0.

Note that the conclusion implies, in particular, there exists a element y of
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M such that 〈x, y〉 6= 0. To obtain the reversal, then, it suffices to prove the
following in RCA0: given a sequence 〈ak | k ∈ N〉 in [0, 1] such that the partial
sums

∑
k≤n a2

k are all bounded by 1, there is a complex Hilbert space H, a
point x, and an isometry T such that

• the sequence limn Snx is bounded away from 0; and
• the existence of any y satisfying Ty = y and 〈x, y〉 6= 0 implies

∑
a2

k exists.

To obtain such a construction, we will use a strategy employed in a differ-
ent context by [20, Section 4.4]. Let e0, e1, e2, . . . denote the standard basis
on l2. We will describe another basis f, e1, e2, . . . that cannot, in general, be
computably obtained from the first, or vice-versa. We will carry out the con-
struction by thinking in terms of the first basis but proceeding formally in
terms of the second.

This paragraph and the next, then, are purely heuristic. First, by shifting
the sequence 〈ak〉 if necessary, we can assume without loss of generality that
a0 = 0; multiplying each term e.g. by 1/2 we can also assume that the partial
sums

∑
k<n a2

k are bounded strictly below 1. Let

f = γe0 +
∑

k≥1

akek

where γ is chosen so that ‖f‖ = 1; in other words,

γ =

√
1−∑

a2
k.

Clearly the existence of γ is equivalent to the existence of
∑

a2
k. (In the actual

proof below, we will show how to define a Hilbert space in terms of the ba-
sis f, e1, e2, . . ., without assuming the existence of γ.) Let T be the isometry
defined by

Te0 = e0

Tek =
1− i/2k

‖1− i/2k‖ek for n ≥ 1,

so that, as n increases, Sne0 stays fixed at e0, while Snek converges to 0 for
each k ≥ 1. It should be clear, then, that as n increases Snf approaches γe0.
In other words, the existence of limn Snf implies the existence of γ.

To carry out the reversal we will show the following, in RCA0:

• One can define the Hilbert space and operator T above, with respect to the
basis f, e1, e2, . . ., solely in terms of the sequence 〈ak〉;

• The fact that
∑

a2
k is bounded strictly below 1 is enough to guarantee that

it is not the case that limn Snf = 0;
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• The statement that PMf 6= 0 implies the existence of γ, and hence of
∑

a2
k.

The real proof that 4 implies (ACA) now follows.

Proof. Let 〈ak | k ∈ N〉 be any sequence of elements of [0, 1] as above, that is,
such that a0 = 0 and the partial sums

∑
k<n a2

k are strictly bounded by 1/2.
Assuming 4, we will show that

∑
a2

k exists.

We define the (complex) Hilbert space H in terms of a basis f, e1, e2, . . . by
specifying the value of the inner product on these basis elements:

〈ek, ej〉 =





1 if k = j

0 otherwise

〈f, f〉 = 1

〈f, ek〉 = 〈ek, f〉 = ak.

Note that although the norm of each basis element is 1, the last clause means
that in interesting cases the basis will not be orthogonal; although Theo-
rem 10.9 implies the existence of an orthonormal basis, we will have no use
for it. In a moment we will see that the basis vectors are linearly independent.
The inner product extends linearly to the set of linear combinations of the
basis elements with coefficients from Q(i), and then to the completion of this
set, H.

We claim that every element of the Hilbert space has a unique representation
as a sum of the form

α0f +
∑

k≥1

αkek.

To prove existence, let x be any element of the Hilbert space. By definition,
x is the limit of a Cauchy sequence 〈cn | n ∈ N〉 with an explicit rate of
convergence, where each cn is a finite linear combination

cn = βn,0f +
∑

1≤k<mn

βn,kek.

We claim first that the sequence 〈βn,0 | n ∈ N〉 is a Cauchy sequence with an
explicit rate of convergence. Considering differences between the ck’s, it suffices
to show in general that if γ0f +

∑
1≤k<m γkek is any finite linear combination

of f and e1, . . . , em−1, and

‖γ0f +
∑

1≤k<m

γkek‖ < ε,

then |γ0| < 2ε. Since e1, . . . , em−1 are orthonormal, it is easy to check that
γ0f − γ0

∑
1≤k<m〈f, ek〉ek is orthogonal to the subspace spanned by e1, . . . , ek.
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Hence, by Lemma 12.2, γ0
∑

1≤k<m〈f, ek〉ek is the projection of γ0f onto this
subspace. So we have

ε > ‖γ0f +
∑

1≤k<m

γkek‖

≥ ‖γ0f − γ0

∑

1≤k<m

〈f, ek〉ek‖

≥ |γ0|(‖f‖ − ‖
∑

1≤k<m

akek‖)

= |γ0|(1−
∑

1≤k<m

a2
k)

≥ |γ0|/2,

so |γ0| < 2ε, as required. Thus the sequence βn,0 converges to a complex
number α0. Now define a sequence

c′n =
∑

1≤k<mn

βn,kek,

by deleting the first term of each cn. It is easy to check that the resulting
sequence is again a Cauchy sequence with an explicit rate of convergence. Since
it lies entirely in the subspace spanned by the orthonormal basis e1, e2, . . . its
limit has a representation of the form

∑
k≥1 αkek, whence

x = lim
n

cn = α0f +
∑

k≥1

αkek.

To show uniqueness, it suffices to show that if α0f +
∑

k≥1 αkek = 0, then
αk = 0 for every k. An argument similar to the one above shows first that
the assumption implies α0 = 0, and then taking inner products with each ek

shows that each αk = 0.

Next, we define the transformation T . We do this by defining its behavior on
the basis vectors: let Ten = βnen for n ≥ 1, where

βn =
1 + i/2n

|1 + i/2n| ,

and let

Tf = f +
∑

(βn − 1)anen.

The sum in the definition of Tf is convergent because for each n, ‖(βn −
1)anen‖ ≤ 2−n. We then extend T linearly to the entire space. To show that
T is an isometry, it suffices to show that T preserves inner products on the
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basis elements. This can be done by straightforward calculation; for example,

〈Tf, Tf〉 = 〈f +
∑

(βk − 1)akek, f +
∑

(βk − 1)akek〉
= 〈f, f〉+

∑
(βk − 1)a2

k +
∑

(βk − 1)a2
k +

∑
(βk − 1)(βk − 1)a2

k

= 〈f, f〉+
∑

2(Re(βk)− 1)a2
k +

∑
2(1− Re(βk))a

2
k

= 〈f, f〉.

By induction on n we have

T nf = f +
∑

k

(βn
k − 1)akek

and

Snf = f +
∑

k

γk,nakek,

where γk,n = (1−βn
k )/(n(1−βk))−1. We have limn γk,n = −1. So, if limn Snf

exists, it has to be f −∑
k akek; in particular, by the assumption on 〈an〉, we

know

‖f −∑

k

akek‖ ≥ ‖f‖ −∑

k

a2
k > 0,

so limn Snf 6= 0.

Assuming 4, then, PMf 6= 0. In particular, there is a y such that 〈f, y〉 is not
zero and Ty = y. Let y = α0f +

∑
k αkek. Then, from the definition of T ,

Ty = α0(f +
∑

k

(βk − 1)akek) +
∑

k

αkβkek.

Ty = y means that for all k,

α0βkak − α0ak + αkβk − αk = (βk − 1)(α0ak − αk) = 0,

so αk = −α0ak for every k. Then

y = α0(f −
∑

k

akek).

Since y is nonzero we know that α0 is nonzero, so we can define the element
y′ by

y′ = f − y

α0

=
∑

k

akek.

But then
∑

a2
k = ‖y′‖2 exists, as required. 2

Corollary 15.4 (RCA0) Each of the following is equivalent to (ACA):

(1) If S is any closed subspace of a Hilbert space and x is any point, then the
distance from x to S exists.
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(2) If S is any closed subspace of a Hilbert space and x is any point, then the
projection of x on S exists.

(3) If T is any nonexpansive mapping on a Hilbert space H, x is any point,
and N is the closure of {Tx− x | x ∈ H}, then PNx exists.

(4) If T is any isometry on a Hilbert space and x is any point, then PNx
exists.

Proof. By Theorem 12.3 statements 1 and 2 are equivalent, and by Theo-
rem 12.5 they are provable from (ACA). Clearly 2 implies 3 and 3 implies 4.
The fact that 4 implies (ACA) follows from the previous theorem, noting that,
by Theorem 14.2, the existence of PNx implies the the existence of lim Snx. 2

The first two equivalences provide an alternative proof of two of the reversals
in Theorem 12.5.

16 Final remarks

We hope the explorations here contribute to the growing body of literature on
analysis in subsystems of second-order arithmetic, and help show that this is
a fertile topic of study. There is much more that can be done; analyses of the
spectral theory of Hilbert spaces, as well as properties of more general classes
of Banach spaces, would form a natural continuation of the work carried out
here.

We have left some loose ends. Most of the open questions have to do with the
strength of statements regarding closed linear subsets of a Banach or Hilbert
space. Consider the following list:

(1) Every closed linear subset of a Banach space is located.
(2) Every closed linear subset of a Hilbert space is located.
(3) Every closed linear subset of a Banach space is a closed subspace.
(4) Every closed linear subset of a Hilbert space is a closed subspace.
(5) For any bounded linear operator from a Banach space to itself and any

λ, {x | Tx = λx} is a closed subspace.
(6) For any bounded linear operator from a Banach space to itself, {x | Tx =

x} is a closed subspace.
(7) For any bounded linear operator from a Hilbert space to itself, {x | Tx =

x} is a closed subspace.

In RCA0, all of these are implied by (Π 1
1 -CA), and all, in turn, apply (ACA).

In addition, 1 implies all the statements below it; 2 implies 4 and 7; 3 implies
all the statements below it; 4 implies 7; 5 is equivalent to 6 (since if λ 6= 0,
we can define T ′x = 1

λ
Tx), and these in turn imply 7. It is possible, however,
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that all the statements are equivalent to (Π 1
1 -CA), and it is also possible that

they are all equivalent to (ACA). It would be nice, therefore, to have a better
sense of their logical strength.

Also left wide open is the strength of the statement:

• If M is any closed linear subset of a Hilbert space, and x is any point, and
the distance from x to M exists, then the projection of x on M exists.

Finally, we showed that in RCA0 each of (WKL) or Σ2 induction implies
that every finite dimensional Banach space has an independent generating
sequence. Can one show that this is not provable in RCA0 outright?
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