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Abstract 

Instructions represented as lists of steps lead to inflexible and 
brittle behavior in cognitive models, suggesting that list-style 
instructions lead to poor learning in people as well. On the ba-
sis of this assumption we designed an alternative operator-
style instruction that produces better learning in models. In an 
experiment and model of interacting with a simulated Flight 
Management System, a system that is notoriously hard to 
learn on the basis of list-style instructions, we show that alter-
native instructions produce significantly better and more ro-
bust learning. 

Introduction 
Most cognitive architectures incorporate learning mecha-
nisms, allowing them to learn new knowledge in the same 
way that humans learn new knowledge. Assuming the theo-
ries of learning the architectures propose are reasonably 
accurate, they can be applied to instruction: given a particu-
lar set of instructions, architectures should be able to predict 
how much practice it takes to reach expert behavior, what 
the quality of expert behavior is, and how well the skill gen-
eralizes to other situations.  

We started our work on learning from instructions with 
models that assumed that instructions were memorized as 
lists of steps that had to be carried out, and that were orga-
nized in a hierarchical goal structure (Taatgen & Lee, 2003; 
Anderson et al., 2004). This assumption was based on many 
methods of task analysis that employ such a structure (for 
example GOMS, Card, Moran and Newell, 1983). Although 
these models managed to match the learning characteristics 
of the participants fairly well, they did have problems in 
getting the details right.  

For example, in the Kanfer-Ackerman Air Traffic Con-
troller task (KA-ATC, Ackerman, 1988) participants had to 
land airplanes on runways while observing certain con-
straints related to the weather. In order to land a plane, a 
plane-runway combination had to be found that satisfied all 
the constraints, after which a series of key presses had to be 
executed to enter this information into the system. The 
model we constructed of the task (Taatgen & Lee, 2003) 
matched both the global learning and the learning of the 
individual unit tasks very well, but consistently mispre-
dicted the timing of the individual keystrokes. Consistent 
with the task analysis, the model would determine the run-
way-plane combination and then execute the keystroke se-
ries. However, the data showed a completely different pat-
tern: the time before the first keystroke was so short that it 
was impossible for participants to already have finished the 
planning. Instead they were parallelizing planning and exe-

cution, something that was impossible to account for given 
the way that we represented instructions in the model.  

There are two possible solutions to explain the apparent 
flexibility that humans show in parallelizing parts of a task. 
A first solution is to add more control to the model and de-
sign a process that overviews the scheduling of the various 
steps: a top-down controller that determines when a particu-
lar step can be done. We tried this solution for the KA-ATC 
task with mixed success (Lee & Taatgen, 2002). It is also 
the type of solution put forward by EPIC, where specific 
control knowledge is used to interleave multiple tasks 
(Kieras, Meyer, Ballas & Lauber, 2000). A second solution 
is to not increase the amount of control, but rather to de-
crease it and let the environment or current problem state 
help determine the next step, basically a bottom-up control 
strategy (Taatgen, 2005; Taatgen, in press). In that solution 
instructions are not organized in a tight hierarchy, but in-
stead form a loose collection of operators that have condi-
tions attached to them that specify when they can be carried 
out. 

An example of a top-down solution in the KA-ATC task 
would be a look-ahead process that scans the task hierarchy 
for future motor tasks that can already be carried out during 
the planning stage of landing a plane. A bottom-up strategy 
on the other hand wouldn’t employ a task hierarchy in the 
first place, but would rather have a set of instructions keyed 
to particular conditions, and would carry out instructions as 
soon as their conditions are satisfied. Once the planning 
instructions for the task have selected a particular plane to 
land, even if it is not the final choice, motor processes al-
ready start moving the cursor to the desired plane.  

Although the top-down solution can work very well in an 
architecture like EPIC where central processes can be exe-
cuted in parallel, it is problematic for ACT-R, because cen-
tral processing is serial. The look-ahead processes needed 
and the book-keeping of which steps are already done con-
sume so much extra time that this only makes performance 
worse instead of better. The bottom-up solution is much 
more attractive because it leads to more simple and more 
flexible models (Taatgen, 2005; Taatgen, in press). How-
ever, in order for any solution to work, the model needs 
more knowledge than a linear list of instructions, otherwise 
it cannot determine whether a future step in the list can al-
ready be carried out ahead of time (this would of course also 
be true for a top-down solution). 

In order to illustrate the need for an augmented instruc-
tion, take the example of making tea. Represented as a list, 
the instruction for making tea might look like: 



 
1. Put water in kettle 
2. Put kettle on stove 
3. Put leaves in teapot 
4. Wait until water boils 
5. Pour water in tea pot 

 
Now suppose you are a Martian and know nothing about 
making tea, but were taught the elementary steps in the 
above instructions. In that case you would be able to make 
tea in ideal circumstances, but you wouldn’t know what to 
do with a kettle already full of water. You also wouldn’t 
know that putting the leaves in the teapot is something that 
you can do, say, before you put the kettle on the stove. Al-
though this may seem like a far-fetched example, more 
complicated recipes do have steps that seem arbitrary. 
Moreover, it mirrors instructions in many situations in 
which users have to operate some novel device or piece of 
software. Instructions in these cases are also often written as 
lists of steps to carry out without explanation of what these 
steps are for. Now consider the following version of the tea 
instructions, in which we specify pre- and postconditions of 
each step: 

 
[empty kettle] put water in kettle [kettle with cold water] 
[kettle with cold water] put kettle on stove [water boils] 
[empty teapot] put leaves in teapot [leaves in teapot] 

[water boils and leaves in teapot] pour 
water in teapot [have tea] 

 
In this representation the instructions 

tell you when they should be applied and 
what they accomplish. They also allow 
more flexible behavior. For example, 
these instructions specify what to do 
when the kettle is already full of water, 
and they also allow putting the leaves in 
the teapot before anything else. Another 
useful aspect of these instructions is that 
if one of the steps is forgotten, it is much 
easier to reconstruct or guess the missing 
step on the basis of the pre- and postcon-
ditions. So if “put kettle on stove” is for-
gotten, the system can infer that it needs 
to find a step to get from “kettle with 
cold water” to “water boils” (and can 
even try to find alternatives if the stove is 
broken).  

The fact that these extended instruc-
tions work so much better for a model 
led us to the hypothesis that extended 
instructions would also work much better 
for people, especially in domains where 
it is unclear what the function of individ-
ual steps is. 

The FMS Task 
Many modern passenger airplanes use Flight Management 
Systems (FMS) to help control the airplane. On a routine 
flight, the FMS can perform almost the whole flight with the 
exception of take-off and landing. The task of the pilot is to 
supply the FMS with the right information and parameters 
to do its job, for example the load of the plane, but, most 
importantly, the route that it has to fly. This route consists of 
a list of waypoints that the plane has to follow from the 
source to the destination airport. Waypoints are sometimes 
specific radio beacons, but often are just points on the map 
with particular coordinates. Although the route in the FMS 
has both a vertical and a lateral component, the experiment 
focuses on the lateral part of the task, which is not unlike a 
route planned by programs like Mapquest.  

Interacting with the FMS is typically learned as part of the 
pilot’s supplementary training when they first start flying a 
plane that has an FMS. Training consists of a phase in 
which procedures on the FMS are learned in the classroom, 
followed by a phase in which they are applied in a simula-
tor. Procedures are specified as lists of steps to carry out, 
very much like the list representation of the tea example. 
Although 102 different procedures have been identified for 
the Boeing 777 FMS, the system we used for our experi-
ment, knowledge of only around 25 procedures is needed 
for FAA certification, and therefore the training focuses on 
those procedures. The idea behind this is that the pilots can 
study and/or discover the remaining procedures on their 

Figure 1. The FMS experiment. The left of the display shows the keyboard and 
display contents of the actual FMS unit, together with a button to give up or indi-
cate that the task is completed. The top right of the display shows the naviga-
tional display that can be used to verify the route. The bottom right of the display 
shows the current problem, and will display feedback after the participant has 
pressed “finish”. 



own. Experience from training itself shows, however, that it 
is very hard for pilots to learn the required procedures, let 
alone discover any new procedures (Sherry, Polson, Fennell 
& Feary, 2002). Memorizing the procedures during the 
classroom phase of training turns out to be so hard that it is 
virtually useless for the second phase of training in the 
simulator. Pilot’s troubles include problems with forgetting 
particular steps in a procedure, not knowing how to pick up 
a partially completed procedure, and poor generalization. 
For example, the procedure to fly towards a waypoint at a 
certain heading is identical to the procedure needed to land 
the plane (which is approaching the end of the runway at a 
certain heading), but pilots have great trouble executing the 
former while having no problems with the latter.  

The problems outlined above are very similar to the prob-
lems that we had with models that used a linear representa-
tion of instructions. Improving the representation of instruc-
tions paid off for the model, so if our models are correct, 
changing instructions from a linear style to a more extended 
style should produce significant improvements in learning 
and eventual performance in humans as well.  

Experiment 
Task 
Participants had to do a lateral navigation task, in which 
they had to change the route programmed in the FMS as 
directed by Air Traffic Control. They were first given some 
general background about the FMS and airplane routes, and 
were then taught two procedures: the direct-to procedure 
and the resolve-discontinuity procedure. The direct-to pro-
cedure specifies how to change the waypoint the plane is 
currently flying to, so the first waypoint on the list that 
specifies the whole route. Sometimes changing this way-
point required the specification of how the new waypoint 
connects to the rest of the route, for which the resolve-
discontinuity procedure had to be used. Participants had to 
perform the task using a simulated FMS and navigational 
(NAV) display (Figure 1). For the instruction of the proce-
dures there were two conditions, the list-style procedure and 
the operator-style procedure.  
The list-style procedure was taken directly from the United 
Airlines training program: 

 
The operator-style procedure not only told participants the 
steps that they had to take, but also their purpose: 

 

 
In addition to the direct-to procedure participants were 
given instructions to resolve discontinuities. 

 
Participants 
Thirty-one students from the Carnegie Mellon University 
volunteered to participate in the experiment (15 in the list-
style condition and 16 in the operator-style condition). Vol-
unteers were paid for their participation. 
Procedure 
Participants first read through the general background in-
formation of the FMS task, and then studied the direct-to 
and resolve-discontinuity procedures for the condition that 
they were in. They then started with a series of warm-up 
trials that taught them how to operate the FMS interface, 
making sure that they had mastered the elementary steps in 
the procedures (e.g., entering waypoints into the scratch-
pad). The experiment proper consisted of three main blocks 
of trials, each consisting of 12 problems. The first three 
problems in each block were problems for which the direct-
to procedure could literally be applied. The second set of 
three problems consisted of direct-to problems with a dis-
continuity, so both the direct-to and the resolve-
discontinuity procedure have to be applied. Each of the final 
six problems in a block contained some complication, mak-
ing it impossible to literally apply the procedures. These 
complications were one, or a combination of: 
- One of the waypoints referred to in the problem would 

not be on the page visible in the FMS. Participants had 
to use the page-up/down keys to find them. Although 
the function of these keys was explained in the general 
background, they were not part of the procedures. 

- The waypoint to be modified was not the waypoint that 
the airplane was currently flying towards, but one later 
in the flight plan. This was not covered by the proce-
dures, and required some generalization. 

Getting to the LEGS page 
You can see what page you are on by looking at the top 
line of the window. If the word “LEGS” is on that line 
then you are on a LEGS page 

If you want to change the route and you are not yet on 
the LEGS page, then press the LEGS key in order to go 
to the LEGS page. 
How to modify a waypoint 
The item in line 1 on the first LEGS page, displayed in 
magenta, is the waypoint you are currently flying to. 

You can change this item, or any other waypoint, 
through the Line Keys next to them. 

If you want to modify a waypoint, you enter the way-
point to replace it with into the scratchpad, and then press 
the line key corresponding to the waypoint you want to 
modify. 
How to confirm your results 
Use the NAV display to view the results of your modifi-
cation. When you are satisfied with a modification, you 
can press the EXEC key to make it permanent. 
 
 

Direct-to: 
1. Press the LEGS key 
2. Enter the desired waypoint in the scratchpad 
3. Push the 1L key 
4. If the word “discontinuity” appears on the 

screen, follow the procedure to remove disconti-
nuities. 

5. Verify the route on the Navigational Display 
6. Press EXEC 



The Model 
Before we will proceed to discuss the results of the experi-
ment, we will first describe the ACT-R model. A key aspect 
of the model is that it assumes that not all instructions have 
been successfully memorized. For any step in a procedure 
there is a 25% probability that it has been forgotten. This is 
a somewhat crude approximation of forgetting that could 
have been handled by decay in base-level activation. We 
took an explicit percentage to have some more control over 
this aspect of the model. Steps are represented with a pre-
condition, an action, and a postcondition. The list-style in-
structions are represented with dummy pre- and postcondi-
tions that are just used to link them together, while the op-
erator-style instructions have pre- and postconditions that 
can be matched to the state of the interface. This allows the 
use of the same model for both types of instructions. For 
example, the first steps of the instruction would be 

 
[start] Press LEGS key [state1] 
[state1] Enter destination in scratchpad [state2] 
[state2] Press 1L [state3] 
 

in the list-style instruction, where start indicates the start of 
a problem, and state1 is a meaningless label, but 

 
[not on legs page] Press LEGS key [on legs page] 
[on legs page] Enter destination in scratchpad [destination 

in scratchpad] 
[destination in scratchpad] Press 1L [route is modified] 
 

in the operator-style instruction, where both the pre- and 
postcondition can be matched against the environment. 

 
Figure 2. Outline of the model’s operation. 
 
The general operation of the model is summarized in Fig-

ure 2. On each step, the environment produces a perceived 
state of the world. In addition to the perceived state of the 
world there is an expectation of what the state should be. 
Initially this expectation is just “start”, but afterwards it is 
set to the postcondition of the last operator. Both the ex-
pected and the perceived state now serve as sources of acti-
vation for the next step, operator retrieval, in which some 
operator is retrieved from declarative memory for the cur-
rent task. The spreading activation from both states makes it 
likely that a relevant operator will be retrieved, especially if 
both states are in agreement with each other (which is only 
true for operator-style instructions). After an operator has 

been retrieved, productions check whether it is applicable in 
the current state. If it is applicable, the operator will be car-
ried out, and the cycle restarts. If the operator is not applica-
ble, a new operator is retrieved. If the operator retrieval 
process produces a retrieval failure (because it has ended up 
in an unfamiliar state, or when part of the instructions have 
been forgotten), a new operator will be generated. This op-
erator will use the current perceived state as its precondition 
and carry out a randomly generated but currently applicable 
action. This operator will then be applied, after which the 
resulting state is added as a postcondition.  

 
Figure 3. Proportion correct for the list condition. Data 

(solid line) and model (dashed line). 

 
Figure 4. Proportion correct for the operator condition. 

Data (solid line) and model (dashed line). 
 

Two processes will improve behavior with experience. 
First, there is the generation of new operators that fill in the 
gaps between forgotten steps of the instruction. Second, 
production compilation, ACT-R’s rule learning mechanism, 
will learn new, task-specific production rules that will di-
rectly implement the relevant action for a particular state, 



bypassing the slow operator retrieval-and-test procedure. 
For example, a rule is learned that checks whether the cur-
rent page is not the LEGS page, and immediately issues the 
motor commands needed to press the LEGS key, instead of 
going through the cycle of three production rules: (1) re-
trieve an appropriate operator, hopefully retrieving the op-
erator to push the LEGS key, (2) check whether pushing the 
LEGS key is applicable, and (3) executing the manual 
command to press the LEGS key.  

Two aspects of the model are not yet completely realistic 
and have to be fleshed out in future work: it can currently 
perfectly derive the perceived state from the environment, 
and can perfectly recognize how close a state is to achieving 
the goal. 

Results 
Figure 3 and 4 show the accuracies of respectively the list- 
and the operator-style instructions, with the data in solid 
lines and the model results in dashed lines. The vertical lines 
in the graphs indicate boundaries between the difficulty lev-
els of the problems: problems 1-3 are easy problems, prob-
lems 4-6 have a discontinuity, problems 7-12 are hard prob-
lems, 13-15 are easy again, etc.  

Operator-style instructions lead to a significantly higher 
accuracy (F(1,29)=7.086, p=.013), especially for the harder 
problems, leading to a significant interaction between condi-
tion and problem difficulty (F(1,29)=4.422, p=.044). The 
model reproduces the main effects in the data. The list 
model is somewhat capable of overcoming the problems of 
the list-style instruction. The reason for this is that as soon 
as the model starts running into problems, exploratory 
strategies enable it to learn operator-style instructions. 
Eventually the list-style model ends with a mixture of 
learned list-style instructions and self-discovered operator-
style instructions. The self-discovered instructions are often 
less general than the instructions given in the operator-style 
condition, making the model less flexible when it faces the 
hard problems. 

 
Figure 5. Solution time for the list condition. Data (solid 

line) and model (dashed line). 

 
Figure 6. Solution time for the operator condition. Data 

(solid line) and model (dashed line). 
 

Figure 5 and 6 show the average solution times for both 
conditions (for correct solutions). Mirroring the accuracy 
data, participants are significantly slower in the list-style 
condition (F(1,29)=4.560, p=.041). So, even when partici-
pants in the list condition find the solution, they need more 
time to do so. 

During the initial stages of the experiment the model 
looses most of its time on retrieving operators that it cannot 
apply yet. This is particularly true for the list-style instruc-
tions, because the expected and perceived state are not in 
agreement (Figure 2). Time is also lost in trying to construct 
forgotten operators and getting out of error states produced 
by exploratory behavior. Eventually it will learn productions 
that directly implement the operators, leading to the fast 
performance that participants also exhibit. 

 
Figure 7. Average number of presses on the LEGS key 

per problem 
 
We can also look at performance at a more detailed level. 

One of the problems of the list-style instructions is that it is 
often unclear what the purpose of a certain step is. For ex-



ample, the first instruction is to push the LEGS key. If the 
FMS is already on the LEGS page, this step is unnecessary. 
In 32 of the 36 problems, the FMS already displayed the 
LEGS page at the start of the problem. This means that op-
timal performance entails pressing the LEGS key 0.11 times 
per problem on average. Figure 7 show the model and data 
for both conditions. Participants in the list-style condition 
press the LEGS key much more often than needed, while 
participants in the operator-style condition are close to the 
optimal level. 

A second example is the use of the EXEC key. This key is 
normally used as the last step in a route-change procedure, 
because it commits the FMS to the change route. The List 
instructions (as taken from United Airlines) not only specify 
that the EXEC key has to be pressed at the end of the direct-
to procedure, but also at the end of the procedure to resolve 
a discontinuity. As Figure 8 shows, this leads to extraneous 
presses of the EXEC key in problems with a discontinuity. 
Neither the participants nor the model follow the instruc-
tions to the letter, because the average number of key 
presses on the EXEC key is around 1.3 eventually, instead 
of the 2 that the instructions prescribe. As expected these 
extra presses on the EXEC key are virtually absent in the 
operator-style condition (Figure 9). 

 
Figure 8. Average number of presses on the EXEC key in 

the list condition for problems with and without a disconti-
nuity. 

 

 
Figure 9. Average number of presses on the EXEC key in 

the operator condition for problems with and without a dis-
continuity. 

Conclusions 
The model and experiment presented here show that instruc-
tions designed on the basis of a cognitive model can indeed 
produce significant improvements in performance, and that 
the improvements are what the model predicts. Although the 
model is not completely accurate for every single problem 
instance, it is sufficiently accurate to capture the differences 
between the two conditions. The newly designed instruc-
tions not only lead to faster learning, but also help the 
learner to go beyond the direct scope of the instructions and 
help generalization to different problems. 

The components of this model find their roots in various 
other modeling projects in addition to the previous work we 
mentioned in the introduction, like impasse-based learning 
in Soar, classical AI planning and situated cognition. All 
these approaches combined, however, produce a model that 
learns to do a complex task from instructions that involves 
the simulation of a real device (and not a simplification).  
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