What Are They Thinking? Decomposing a Complex Task

Yvonne Kao (ykao@andrew.cmu.edu)
Department of Psychology, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 USA

John Anderson (ja+@cmu.edu)
Department of Psychology, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 USA

Introduction
In this research, we use neuroimaging data to better understand the cognitive processes underlying geometry problem-solving. Our ultimate goal is to design instructional interventions that will improve students’ ability to do proofs in geometry. In order to properly address the educational questions surrounding geometry problem-solving, we feel that it is important to understand the underlying cognitive processes that take place during the task. There has been some success (e.g., Qin et al., 2003) in using brain imaging and the theory of ACT-R to identify brain regions—posterior parietal, prefrontal, caudate, anterior cingulate, and motor cortex—and understand the processes—imaginal, retrieval, procedural, goal, and motor, respectively—that support algebra problem solving. This research draws from those methods.

Method
We trained 15 adult participants to proficiency at a geometry proof task and then scanned them as they performed the task in an fMRI machine. Proof problems had three levels of difficulty: proofs that could be completed with one logical inference, three logical inferences, or proofs that could not be completed.

Imaging Results
In our five regions of interest we found three distinct patterns of activity. The parietal, prefrontal, and anterior cingulate regions differed significantly from the caudate and motor regions, which differed significantly from each other. This is illustrated in Figure 2. All regions except the caudate showed significant effects of problem difficulty.

Model Details
We developed a simple cognitive model based on the theory of ACT-R (Anderson et al., 2003). This model is shown in Figure 1. If we estimate that each step of the model requires 2.1 seconds to complete, the model produces a relatively good fit to the latency data.

This model provides a simple all-or-none demand function that we can use to predict the BOLD response in the corresponding brain regions by convolving the demand function with an empirically-derived estimate of the hemodynamic response function.

Acknowledgments
This research was supported by a Research on Learning and Education grant from the National Science Foundation.

References