
Carnegie Mellon University
Research Showcase

Computer Science Department School of Computer Science

5-1-2001

Typed MSR: Syntax and Examples
Iliano Cervesato
ITT Industries

Follow this and additional works at: http://repository.cmu.edu/compsci

This Book Chapter is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted for
inclusion in Computer Science Department by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Cervesato, Iliano, "Typed MSR: Syntax and Examples" (2001). Computer Science Department. Paper 36.
http://repository.cmu.edu/compsci/36

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci/36?utm_source=repository.cmu.edu%2Fcompsci%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu


Typed MSR: Syntax and Examples?

Iliano Cervesato

Advanced Engineering and Sciences Division, ITT Industries, Inc.,
2560 Huntington Avenue, Alexandria, VA 22303 — USA

iliano@itd.nrl.navy.mil

Abstract. Many design flaws and incorrect analyses of cryptographic proto-

Appeared in theProceedings of the First International Workshop on Mathematical Meth-
ods, Models and Architectures for Computer Network Security — MMM’01(V.I. Gorodetski,
V.A. Skormin and L.J. Popyack, editors), pp. 159–176,c©Springer-Verlag LNCS 2052, St. Pe-
tersburg, Russia, 21–23 May 2001

cols can be traced to inadequate specification languages for message components,
environment assumptions, and goals. In this paper, we presentMSR, a strongly
typed specification language for security protocols, which is intended to address
the first two issues. Its typing infrastructure, based on the theory of dependent
types with subsorting, yields elegant and precise formalizations, and supports a
useful array of static check that include type-checking and access control valida-
tion. It uses multiset rewriting rules to express the actions of the protocol. The
availability of memory predicates enable it to faithfully encode systems consist-
ing of a collection of coordinated subprotocols, and constraints allow tackling
objects belonging to complex interpretation domains,e.g.time stamps, in an ab-
stract and modular way. We applyMSRto the specification of several examples.

1 Introduction

The design and analysis of cryptographic protocols are notoriously complex and error-
prone activities. Part of the difficulty derives from subtleties of the cryptographic prim-
itives. Another portion is due to their deployment in distributed environments plagued
by powerful and opportunistic attackers. We claim that a third major source of problems
arises from the use of ambiguous, complex or inexpressive languages for the specifica-
tion of protocols, of the assumptions on their operating environment, and of their goals.

The Dolev-Yao model of security [19, 14] tackles the first problem by promoting
an abstraction that has the effect of separating the analysis of the message flow from
the validation of the underlying cryptographic operations. It assumes that elementary
data such as principal names, keys and nonces are atomic rather than bit strings, and
views the message formation operations (e.g.concatenation and encryption) as sym-
bolic combinators. The cryptographic operations are therefore assumed to be flawless.
This model is generally reasonable for authentication protocols and underlies most sys-
tems designed for protocol analysis,e.g. [5, 18, 16, 1, 13]. Within the Dolev-Yao model,
the capabilities of the intruder are circumscribed. They can be in many respects neu-
tralized by relying on appropriate message formats [2, 22]. However, practical reasons,
such as limited bandwidth, sometimes make such architectures inviable.

We claim that a significant source of faulty designs and contradictory analyses can
be traced to shortcomings in the languages used to specify protocols. The popular “usual

? Partially supported by NRL under contract N00173-00-C-2086.



notation” relies on the Dolev-Yao model and describes a protocol as the sequence of the
messages transmitted during an expected run. Besides distracting the attention from the
more dangerous unexpected runs, this description expresses fundamental assumptions
and requirements about message components, the operating environment and the pro-
tocol’s goals as side remarks in natural language. This is clearly ambiguous and error-
prone. Strand formalizations [16], like most modern languages, represent protocols as
a collection of independent roles that communicate by exchanging message. Their re-
liance on a fair amount of natural language still makes it potentially ambiguous.

In [9, 15], we proposedMSR, a language based on multiset rewriting, as a formal-
ism for unambiguously representing authentication protocols, with the aim of studying
properties such as the decidability of attack detection. The actions within a role were
formulated as multiset rewrite rules, threaded together by dedicatedrole state predi-
cates. The nature and properties of message components was expressed in a relational
manner by means ofpersistent information predicatesand to a minor extent by typ-
ing declarations. In particular, variables that ought to be instantiated to “fresh” objects
during execution were marked with an existential quantifier. In [11, 10], we proved the
substantial equivalence betweenMSRand extensions of popular formalisms such as
strand spaces. Nonetheless, the resulting specifications were not completely satisfac-
tory for two reasons: persistent information proved difficult to reason about, and the
rigid structure ofMSRrules limited its applicability to basic authentication protocols.

This paper proposes a thorough redesign ofMSRand establishes this formalism as
a usable specification language for security protocols. The major innovations include
the adoption of a flexible yet powerful typing methodology that subsumes persistent
information predicates, and the introduction of memory predicates and of constraints on
interpreted domains that significantly widen the range of applicability of this language.

The type annotations of our new language, drawn from the theory of dependent
types with subsorting, enable precise object classifications for example by distinguish-
ing keys on the basis of the principals they belong to, or in function of their intended
use. Therefore, the public key of any two principals can be assigned a different type,
in turn distinct from their digital signature keys. Protocol specifications, called proto-
col theories inMSR, are strongly typed, and we have devised algorithms for statically
catching type violations,e.g. the use of a shared key to perform public-key encryp-
tion [7]. Our typing infrastructure can point to more subtle access control errors, such
as a principal trying to encrypt a message with a key that does not belong to him [6].

Memory predicates allow a principal to remember information across role execu-
tions. Their presence opens the doors to the specification of protocols structured as a
collection of coordinated subprotocols. In this paper, we exemplify this possibility by
formalizing the Neuman-Stubblebine repeated authentication protocol [20], which lies
outside the reaches of our previous version ofMSR. In [8], we use this technique to give
a specification of the Dolev-Yao intruder that lies fully within the syntax ofMSRroles.

Constraints are another novelty of the language presented in this paper. They per-
mit referring to objects belonging to complex interpretation domains in an abstract and
modular way. Our specification of the Neuman-Stubblebine protocol [20] relies on con-
straints to verify the validity of timestamps: how these objects and their operations are
implemented is invisible (and irrelevant) to the resulting protocol theory.

160



This presentation is organized as follow. In Section 2, we introduce the syntax of
MSR. The next three sections formalize as many popular case studies: Section 3 imple-
ments the abridged version of the Needham-Schroeder public-key authentication pro-
tocol; Section 4 extends this specification to the full protocol, inclusive of the server
activity; and Section 5 formalizes the Neuman-Stubblebine protocol. Section 6 summa-
rizes the ideas discussed in this paper and hints at directions of future work.

2 Typed MSR

In the past, cryptoprotocols have often been presented as the temporal sequence of
messages being transmitted during a “normal” run. Recent proposals champion a view
that places the involved parties in the foreground. A protocol is then a collection of
independentroles that communicate by exchanging messages, without any reference
to runs of any kind. A role has an owner, the principal that executes it, and specifies
the sequence of messages that he/she will send, possibly in response to receiving mes-
sages of some expected form.MSRadopts and formalizes this perspective. A role is
given as a parameterized collection of multiset rewrite rules that encode the expected
message receptions and the corresponding transmissions. Rule firing emulates receiving
(and accepting) a message and/or sending a message, the smallest execution steps. The
messages in transit, the actions and information available to the roles, and other data
constitute the state of execution of a protocol. Rules implement partial transformations
between states. Their applicability is constrained by the contents of the current state
and by the satisfaction of guards. Execution is preceded by static type-checking [7] and
access control validation [6] which limits the number of run-time checks and allows
catching common specification errors early.

This section describes the form of anMSRspecification. More specifically, in Sec-
tion 2.1, we define our notion of messages. In Section 2.2, we present the predicates that
appear in a state, in turn defined in Section 2.3. In Section 2.4, we introduce the typing
infrastructure that allows us to make sense of these objects. In Section 2.5, we discuss
rules and their constituents. Roles and protocol theories are defined in Section 2.6.

2.1 Messages

Messages are obtained by applying a number of message forming constructs, discussed
below, to a variety ofatomic messages. The atomic messages we will consider in this
paper are principal identifiersA, keysk, noncesn, timestampsT, and raw datam (i.e.
pieces of data that have no other function in a protocol than to be transmitted). We
formalize our notion of atomic message in the following grammatical productions:

a ::= A | k | n | T | m

We will also useB to denote a principal while we reserve the letterS for servers. Al-
though we limit the discussion in this paper to these kinds of atomic messages, it should
be noted that others can be accommodated by extending the appropriate definitions.

Themessage constructorswe will consider consist of concatenation(t1 t2), shared-
key encryption{t}k, public-key encryption{{t}}k, and digital signature[t]k. Altogether,
they give rise to the following definition of amessage, or more properly aterm.

161



t ::= a | x | t1 t2 | {t}k | {{t}}k | [t]k

Observe that we use a different syntax for shared-key and public-key encryption. We
could have identified them, as done in many approaches. We choose instead to distin-
guish them to show the flexibility and precision of our technique. Similarly, we define
digital signatures as an independent primitive operation rather than as asymmetric key
encryption with a private key. As usual,[t]k denotes the termt being signed, together
with the signer’s certificate cryptographically constructed fromt using the keyk.

Again, other constructors, for example hash functions, can easily be accommodated
by extending the appropriate definitions. We refrain from doing so since their inclusion
would lengthen the discussion without introducing substantially new concepts.

A parametric messageallows variablesx wherever terms could appear. We use a
sans-seriffed font to denote possibly parametric principalsA (or B), keysk, noncesn,
timestampsT and raw datam. Constants and variables constituted the class ofelemen-
tary terms, denoted with the lettere.

2.2 Message Predicates

Message predicates are the basic ingredient of states, defined in Section 2.3. They are
atomic first-order formulas with zero or more terms as their arguments. More precisely,
they are applied to ordered sequences of terms calledmessage tuplesand denoted̄t.

The predicates that can enter a state or a rewrite rule are of three kinds:
– First, the predicateN( ) implements the contents of thepublic networkin a dis-

tributed fashion: for each (ground) messaget currently in transit, the state will
contain a component of the formN(t).

– Second, active roles rely on a number ofrole state predicates, generally one for
each rule in them, of the formLl( , . . . , ), wherel is a unique identifying label. The
arguments of this predicate record the value of known parameters of the execution
of the role up to the current point.

– Third, a principalA can store data in private memory predicates of the form
MA( , . . . , ) that survives role termination and can be used across the execution
of different roles, as long as the principal stays the same.

The reader familiar with our previous work onMSRwill have noticed a number of dif-
ferences with respect to the definitions given in [9, 10]. Memory predicates are indeed
new. They are intended to model situations that need to maintain data private across
role executions: for example, this allows a principal to remember his Kerberos ticket, or
the trusted-third-party of a fair exchange protocol to avoid fraudulent recoveries from
aborted transactions. Memory predicates can further be used to represent such entities
as local clocks, as we will see in Section 5. Another difference with respect to our ear-
lier work is the absence of a dedicated predicate retaining the intruder’s knowledge.
This can however be easily implemented using memory predicates, as described in [8].

2.3 States

States are a fundamental concept inMSR. They are the objects transformed by rewrite
rules to simulate message exchange and information update and, together with execu-
tion traces, they are the hypothetical scenarios on which protocol analysis is based. A

162



stateS is a finite collection of ground state predicates:

S ::= · | S, N(t) | S, Ll(t̄ ) | S, MA(t̄ )

Protocol rules transform states. They do so by identifying a number of predicates,
removing them from the state, and adding other, usually related, state elements. The
antecedent and consequent of a rewrite rule embed therefore substates. However, in
order to be applicable to a wide array of states, rules usually contain variables that
are instantiated at application time. This calls for a parametric notion of states. For
the most part, this reduces to admitting variables in embedded terms. However, role
state predicates need to be created on the spot in order to avoid interferences between
concurrently executing role instances. We achieve this by introducing variables, denoted
L, that are instantiated to actual role state predicates during execution.

2.4 Types

While types played a very modest role in the original definition ofMSR[9, 10], they
stand at the core of the extension presented in this paper. Through typing, we can en-
force basic well-formedness conditions (e.g. that only keys be used for encrypting a
message), as described in detail in [7]. Types also provide a statically checkable way
to ascertain complex desiderata such as, for example, that no principal may grab a key
he/she is not entitled to access. This aspect is thoroughly analyzed in [6]. The central
role of types in our present approach is witnessed by the fact that they subsume and
integrally replace the “persistent information” of the originalMSR[10].

The typing machinery that best fits our goals is based on the type-theoretic notion
of dependent product types with subsorting[3, 21]. Rather than delving into the depth
of the definitions and properties of this formalism, we introduce only the facets that we
will use, and only to the extent we will need them.

Types are syntactic constructions that are used to classify other syntactic expression,
such as terms. By doing so, they give them ameaning, saying for example that an object
we interpret as a key is not a nonce. Whenever a key is used where a nonce is expected,
something has gone wrong since the meaning of this term has been violated. The types
we will use in this paper are summarized in the following grammar:

τ ::= principal | nonce | shKAB | pubKA | privKk | sigKA | verKk | time | msg

Needless to say, the types “principal” and “nonce” are used to classify principals and
nonces respectively. The next three productions allow distinguishing between shared
keys, public keys and private keys. Dependent types offer a simple and flexible way
to express the relations that hold between keys and their owner or other keys. Given
principals “A” and “B”, a shared key “k” between “A” and “B” will have type “shKAB”.
Here, the type of the keydependson the specific principals “A” and “B”. Similarly, a
constant “k” is given type “pubK A” to indicate that it is a public key belonging to
“A”. We use dependent types again to express the relation between a public key and its
inverse. Continuing with the last example, the inverse of “k” will have type “privK k”,
from which it is easy to establish that it belongs to principal “A”. A similar design
principle applies in the case of digital signatures: the signature key “k” of principal

163



“A” has type “sigK A” while its inverse, the verification key “k′”, has type “verK k”.
Timestamps are assigned type “time”.

We use the typemsg to classify generic messages. Clearly raw data have typemsg.
This is however not sufficient since nonce, keys, timestamps, and principal identifiers
are routinely part of messages. We solve this problem by imposing asubsortingrelation
between types. In this paper, each of the types discussed above, with the exception of
signature keys and their inverses, will be a subtype ofmsg. With the appropriate array of
typing rules (see [7]), not defining signature and signature verification keys as subsorts
of “msg” has the effect of banning these keys from well-typed messages, except as the
unrecoverable indices of signed messages: any attempt at transmitting a signature key
will be statically marked as violating the typing policy.

Again, the types and the subsorting rules above should be thought of as a reasonable
instance of our approach rather than the approach itself. Other schemas can be speci-
fied by defining appropriate types and how they relate to each other. For example, an
application may find it convenient to see each of the above types related to encryption
or decryption as a subtype of a universal key type, say,key, in turn a subsort ofmsg.
Alternatively, we may want to define distinct types for long-term keys and have them
not be a subsort ofmsg, prohibiting in this way the transmission of long-term secrets as
parts of messages. We are already handling signature keys in this way.

Predicate symbols are assigned a type by listing the type of their arguments. It is
tempting to define the type of a tuple as the sequence of the types of its components.
Therefore, ifA is a principal name andkA is a public key forA, the tuple(A, kA) would
have type “principal × pubK A” (the Cartesian productsymbol “×” is the standard
constructor for type tuples). This construction allows us to associate a generic principal
with A’s public key: if B is another principal, then(B, kA) will have this type as well.
We will often need stricter associations, such as between a principal and hisownpublic
key. In order to achieve this, we will rely on the notion ofdependent type tuple. In this
example, the tuple(A, kA) will be attributed type “principal(A) × pubK A”, where the
variableA in “principal(A)” records the name of the principal at hands and forces the
type of the key to be “pubK A” for this particularA: therefore(A, kA) is a valid object
of this type, but(B, kA) is now ill-typed sincekA has type “pubK A” rather than the
expected “pubK B”.1

We attribute a type to a term tuple by collecting the type of each constituent mes-
sage, but we label these objects with variables to be used in later types that may depend
on them. Thus, adependent type tupleis an ordered sequence of parameterized types:

τ̄ ::= · | τ (x) × τ̄

Given a dependent tuple typeτ (x) × τ̄ , we will drop the label(x) whenever the variable
x does not occur (free) in̄τ . The resulting simplified notation,τ × τ̄ , will help writing
more legible specifications when possible. As for term tuples, we will omit the leading
“ ·” whenever convenient.

1 Our dependent type tuples are usually called strong dependent sums in the type theoretic
community, and the standard notation for the dependent type tuple we have written as
“principal(A)× pubK A” is “ ΣA : principal. pubK A”. We believe that our syntax is likely to
be more clear to the target audience of this paper.

164



2.5 Rules

The core of arule has the form “lhs → rhs”. Rules are the basic mechanism that en-
ables the transformation of a state into another, and therefore the simulation of protocol
execution: whenever the antecedent “lhs” matches part of the current state, this portion
may be substituted with the consequent “rhs” (after some processing).

It is convenient to make protocol rules parametric so that the same rule can be used
in a number of slightly different scenarios (e.g.without fixing interlocutors or nonces).
A typical rule will therefore mention variables that will be instantiated to actual terms
during execution. Typed universal quantifiers can conveniently express this fact. This
idea is captured by the following grammar:

r ::= lhs → rhs | ∀x : τ. r

Both the right-hand side and the left-hand side of a rule embed a finite collection of
parametric message predicates, some ground instance of which execution will respec-
tively add to and retract from the current state when the rule is applied:

P̄ ::= · | P̄ , N(t) | P̄ , L(ē) | P̄ , MA(t̄ )

Observe that predicate sequences differ from states (see Section 2.3) mainly by the
limited instantiation of role state predicates: in a rule, these objects consist of a role
state predicate variable applied to as many elementary terms as dictated by its type (this
is enforced by the typing rules in [7]). Recall that elementary terms are either variables
or atomic message constants. Network and memory predicates will in general contain
parametric terms, although not necessarily raw variables as arguments.

The Dolev-Yao model [14] champions a symbolic interpretation of cryptographic
primitives that reduces messages to expressions in an initial algebra. Some of the com-
ponents of a message, such as timestamps, are however subject to operations or tests that
are not conveniently expressed in this way. We reconcile the simplicity of the Dolev-Yao
model and the necessity to accommodate objects drawn from complex interpretation
domains by treating the latter as atomic constants when embedded in messages, but by
relying on dedicatedconstraint handlersto perform operations and resolve tests. These
invocations enter the syntax ofMSRasconstraintsin the left-hand side of a rule. We
use the letterχ to denote them. Constraints are not part of the state, but should rather
be thought of as guards to the applicability of a rule.

In this paper, the only message constituents that require a constraint handler are
timestamps. We need to check their validity against the current time, which is modeled
by arithmetic constraints involving the usual ordering relations; a possible such con-
straint could be(T < Tnow) whereT andTnow are respectively the timestamp and the
current time. We will also need to set alarmsTalarm by adding predetermined temporal
values, sayTval, to the current timeTnow. This operation is expressed as the constraint
(Talarm = Tnow+Tval). The domain of timestamps will correspond to the real numbers
or any sufficiently precise approximation supported by the implementation at hand.

The use of constraints allows for an abstract architecture since it isolates the speci-
fication of interpretation domains away from the formalization of the security protocols
that use them. The interface is limited to a few type declarations and a syntax for the

165



operations and tests that can enter a constraint. Constraint handlers are then external and
interchangeable modules that can be plugged to the protocol specification on demand.

The left-hand side, or antecedent, of a rule is a finite collection of parametric mes-
sage predicates guarded by finitely many constraints on interpreted data:

lhs ::= P̄ | lhs, χ

The right-hand side, or consequent, of a rule consists of a predicate sequence pos-
sibly prefixed by a finite string of fresh data declarations such as nonces or short-term
keys. We rely on the existential quantification symbol to express data generation:

rhs ::= P̄ | ∃x : τ. rhs

2.6 Roles and Protocol Theories

Role state predicates record the information accessed by a rule. They are also the mech-
anism by which a rule can enable the execution of another rule in the same role. Relying
on a fixed protocol-wide set of role state predicates is dangerous since it could cause
unexpected interferences between different instances of a role executing at the same
time. Instead, we make role state predicates local to a role by requiring that fresh names
be used each time a new instance of a role is executed. As in the case of rule conse-
quents, we achieve this effect by using existential quantifiers: we prefix a collection of
rulesρ that should share the same role state predicateL by a declaration of the form
“∃L : τ̄ ”, where the typed existential quantifier indicates thatL should be instantiated
with a fresh role state predicate name of typeτ̄ .

With this insight, the following grammar defines the notion ofrule collection:

ρ ::= · | ∃L : τ̄ . ρ | r, ρ

It should be observed that this definition allows for role state predicate parameters dec-
larations and rules to be interleaved in a rule collection. We will however generally
divide a collection in apreamblewhere all roles state parameters are declared, and a
bodythat lists the rules that constitute a role.

A role is given as the association between arole ownerA and a collection of rulesρ.
Some roles, such as those implementing a server or an intruder, are intrinsically bound
to a few specific principals, often just one. We call themanchored rolesand denote
them asρA. Here, the role ownerA is an actual principal name, a constant. Other roles
can be executed by any principal. In these casesA must be kept as a parameter bound
to the role. Thesegeneric rolesare denotedρ∀A, where the implicitly typed universal
quantification symbol implies thatA should be instantiated to a principal before any
rule inρ is executed, and sets the scope of the binding toρ. Observe that in this caseA
is a variable.

We require that the owner of a roleρ be the first argument of all the role state
predicates in the rules that constitute it. This object shall also be the subscript of ev-
ery memory predicate inρ. These constraints are formally expressed in the typing and
access control policy ofMSR[7, 6].

166



A protocol theory, writtenP, is a finite collection of roles:

P ::= · | P, ρ∀A | P, ρA

It should be observed that we do not make any special provision for the intruder. The
adversary is expressed as one or more roles in the same way as proper protocols. We
have illustrated in [8, 6] how this is achieved for the standard Dolev-Yao intruder.

3 Simplified Needham-Schroeder Authentication Protocol

As our first example usingMSRas a specification language, we will formalize the
Needham-Schroeder public-key authentication protocol [19]. We familiarize the reader
with MSRby first considering the two-party nucleus of this protocol. We will tackle the
full protocol, which relies on a server to generate session keys in Section 4.

1. A → B: {{nA A}}kB

2. B → A: {{nA nB}}kA

3. A → B: {{nB}}kB

The server-less variant of the Needham-Schroeder
public-key protocol [19] is a two-party crypto-
protocol aimed at authenticating the initiatorA to the
responderB (but not necessarily vice versa). It is ex-
pressed as the expected run on the right in the “usual notation” (where we have used
our syntax for messages). In the first line, the initiatorA encrypts a message consisting
of a noncenA and her own identity with the public keykB of the responderB, and
sends it (ideally toB). The second line describes the action thatB undertakes upon
receiving and interpreting this message: he creates a noncenB , combines it withA’s
noncenA, encrypts the outcome withA’s public keykA, and sends the resulting mes-
sage out. Upon receiving this message in the third line,A accessesnB and sends it back
encrypted withkB . The run is completed whenB receives this message.

MSRand most modern security protocol specification languages focus on the se-
quence of actions that each principal involved in a protocol executes. We called such
sequences roles. Strand spaces [16] are a simple and intuitive notation that emphasize
this notion. The strand representation of this protocol is given by the following picture:

Initiator: {{nA A}}kB −→ww­
−→ {{nA nB}}kAww­

{{nB}}kB −→

Responder: −→ {{nA A}}kBww­
{{nA nB}}kA −→ww­

−→ {{nB}}kB

Here incoming and outgoing single arrows respectively denote the reception and trans-
mission of a message. The double arrows assign a temporal ordering on these actions.

We will now express each role in turn in the syntax ofMSR. For space reasons, we
will typeset homogeneous constituents, namely the universal variable declarations and
the predicate sequences in the antecedent and consequent, in columns within each rule;
we will also rely on some minor abbreviation. We mark types that can be reconstructed
from the other information present in a rule by denoting them in ashadedfont.

167



The initiator’s actions are represented by the following two-rule role:

0BBBBBBBBBB@

∃L : principal× principal(B) × pubK B × nonce.

∀B : principal.
∀kB : pubK B.

· → ∃nA: nonce.
N({{nA A}}kB )
L(A, B, kB , nA)

∀ . . .
∀kA : pubK A.
∀k′

A : privK kA.
∀nA,nB : nonce.

N({{nA nB}}kA)
L(A, B, kB , nA)

→ N({{nB}}kB )

1CCCCCCCCCCA

∀A

Clearly, any principal can engage in this protocol as an initiator (or a responder). Our
encoding is therefore structured as a generic role. LetA be its postulated owner. The first
rule formalizes of the first line of the “usual notation” description of this protocol from
A’s point of view. It has an empty antecedent since initiation is unconditional in this pro-
tocol fragment. Its right-hand side uses an existential quantifier to mark the noncenA

as fresh. The consequent contains the transmitted message and the role state predicate
L(A,B, kB , nA), necessary to enable the second rule of this protocol: it corresponds to
the topmost double arrow in the strand specification on the left. The arguments of this
predicate record variables used in the second rule.

The second rule encodes the last two lines of the “usual notation” and strand de-
scription. It is applicable only if the initiator has executed the first rule (enforced by the
presence of the role state predicate) and she receives a message of the appropriate form.
Its consequent sends the last message of the protocol. The presence of both a message
receptions and transmission in the same rule corresponds to the second double arrow in
the strand specification of the initiator of this role.

Our notation provides a specific type for each variable appearing in these rules. The
equivalent “usual notation” specification relies instead on natural language and conven-
tions to convey this same information, with clear potential for ambiguity. Observe that
most declarations are grayed out, meaning that they can be reconstructed automatically:
this simplifies the task of the author of the specification by enabling him or her to con-
centrate on the message flow rather than on typing details, and of course it limits the
size of the specification. Algorithmic rules for this form of type reconstruction are the
subject of a forthcoming paper.

The rationale behind the reconstructible types in this rule are as follows. The uni-
versal declarations forB, kB , andnA and the type of the existential declaration fornA

in the first rule can be deduced from the declaration of the role state predicateL. The
declarations forkA andk′

A can be omitted sincekA must be the public key ofA, andk′
A

be the corresponding private key. The possibility of reconstructing this information is
intimately linked to the access control policy ofMSR, formally defined in [6]. The only
universal declaration that cannot be reconstructed is “∀nB : nonce”: nB is clearly a
universally quantified variable in this rule, but there is no hint that it should be a nonce.
Let us now examine the declaration forL: the first argument is always the rule owner,
which is a principal. The third argument must be the public key of some principalB
because of the waykB is used. Therefore, we only need to indicate thatB is bound in
the second argument ofL.

168



The responder is encoded as the generic role below, whose owner we have mnemon-
ically calledB. The first rule of this role collapses the two topmost lines of the “usual
notation” specification of this protocol fragment from the receiver’s point of view. The
second rule captures the reception and successful interpretation of the last message in
the protocol byB: this step is often overlooked. This rule has no consequent.0BBBBBBBBBBBB@

∃L : principal(B) × principal× pubK B(kB) × privK kB × nonce.

∀kB : pubK B.
∀k′

B : privK kB .
∀A : principal.
∀nA : nonce.
∀kA : pubK A

N({{nA A}}kB ) → ∃nB : nonce.
N({{nA nB}}kA)
L(B, A, kB , k′

B , nB)

∀ . . .
∀nB : nonce.

N({{nB}}kB )
L(B, A, kB , k′

B , nB)
→ ·

1CCCCCCCCCCCCA

∀B

Again, observe that most typing information has been grayed out since it can be recon-
structed from the way variables are used and the few types left.

4 Full Needham-Schroeder Authentication Protocol

1. A → S : A B
2. S → A: [kB B]kS

3. A → B: {{nA A}}kB

4. B → S : B A
5. S → B: [kA A]kS

6. B → A: {{nA nB}}kA

7. A → B: {{nB}}kB

We will now specify the full version of the Needham-
Schroeder public-key authentication protocol [19],
which relies on a serverS to generate the keyskA and
kB used in the fragment discussed in the previous sec-
tion. This protocol is written in the “usual notation” to
the right of this text. The simplified version discussed
in Section 3 corresponds to lines(3), (6) and (7) of
this protocol. In line(1), A asks the server for a key to
communicate withB, which is obtained in the signed message on line(2). The respon-
der issues and is granted a similar request in lines(4) and(5), respectively.

The actions of the initiator are expressed inMSRby the following generic role,
which consists of three rules that have to fire in sequence, and consequently mentions
two role state predicate declarations. The first rule corresponds to line(1) in the “usual
notation”, the second to lines(2) and(3), and the third to lines(6) and(7).0BBBBBBBBBBBBBBBBBBBBB@

∃L : principal× principal.

∃L′ : principal× principal(B) × pubK B × nonce.

∀B : principal. · → N(A B)
L(A, B)

∀ . . .
∀kS : sigK S.
∀k′

S : verK kS.
∀kB : pubK B.

N([kB B]kS
)

L(A, B)
→ ∃nA: nonce.

N({{nA A}}kB )
L′(A, B, kB , nA)

∀ . . .
∀kA : pubK A.
∀k′

A : privK kA.
∀nA,nB : nonce.

N({{nA nB}}kA)
L′(A, B, kB , nA)

→ N({{nB}}kB )

1CCCCCCCCCCCCCCCCCCCCCA

∀A

169



Observe again that most declarations and types can be reconstructed. Notice in particu-
lar that, since in the second rule the arguments ofL form a prefix of the arguments of
L′, the entire declaration forL can be synthesized from the type ofL′.

The responder’s actions are expressed in the following generic role. The first rule
corresponds to lines(3) and (4) in the “usual notation”, the second to lines(5) and
(6), and the third to line(7). Observe again that most declarations can be automatically
reconstructed.0BBBBBBBBBBBBBBBBBBBBBBBB@

∃L : principal(B) × principal× pubK B(kB) × privK kB × nonce.

∃L′ : principal(B) × principal× pubK B(kB) × privK kB × nonce.

∀kB : pubK B.
∀k′

B : privK kB .
∀A : principal.
∀nA : nonce.

N({{nA A}}kB ) → N(B A)
L(B, A, kB , k′

B , nA)

∀ . . .
∀kS : sigK S.
∀k′

S : verK kS.
∀kA : pubK A.

N([kA A]kS
)

L(B, A, kB , k′
B , nA)

→ ∃nB : nonce.
N({{nA nB}}kA)
L′(B, A, kB , k′

B , nB)

∀ . . .
∀k′

A : privK kA.
∀nB : nonce.

N({{nB}}kB )
L′(B, A, kB , k′

B , nB)
→ ·

1CCCCCCCCCCCCCCCCCCCCCCCCA

∀B

The last role in this protocol encompasses the actions of the server. Assuming that
there is a single server,S, they can conveniently be expressed by the following anchored
role, which consists of a single rule. The “usual notation” specification of this protocol
makes use of this role twice: in lines(1) and(2) to createB’s keys forA, and then in
lines(4) and(5) for the dual operation.„

∀A, B : principal.
∀kS : sigK S.

N(A B) → ∃kB : pubK B.
∃k′

B : privK kB .
N([kB B]kS

)

«S

Upon receiving a message of the formN(A B), the server constructs a public/private
key pair for principalB and notifiesA by sending the signed messageN([kB B]kS

).
It should be observed how key generation is specified as existential quantification. The
use of dependent types makes this process particularly elegant.

5 Neuman-Stubblebine Repeated Authentication Protocol

In this section, we devise anMSRspecification of the Neuman-Stubblebine repeated
authentication protocol [20]. Similarly to Kerberos, this protocol consists of two phases.
In a first phases, a principalA negotiates a “ticket” with a server in order to use services
provided by another principalB. In the second phases,A can reuse the ticket over and
over to request this same service fromB until the ticket expires.

5.1 Initialization Subprotocol

The Neuman-Stubblebine protocol [20] is intended to enable a principalA to repeatedly
authenticate herself to another principalB. Typically, B provides a service thatA is

170



interested in using repeatedly. Each timeA intends to use this service, she authenticates
herself toB by presenting a ticket he is expected to honor. The responderB marks the
ticket with a timestamp and will accept it within some expiration period.

1. A → B: A nA

2. B → S : B {A nA TB}kBS
nB

3. S → A: {B nA kAB TB}kAS
{A kAB TB}kBS

nB

4. A → B: {A kAB TB}kBS
{nB}kAB

The initialization phase
of this protocol involves an
interaction with a serverS
to obtain the ticket, as well
as its first use to request the
service provided byB. The expected trace in the “usual notation” is given to the right
of this text. In the first line,A manifests her intention to useB’s service by sending
him her identity and a noncenA. In the second line,B forwards this information to the
serverS together with his identity, a nonce of his ownnB , and a timestampTB . In the
third line, the server constructs the ticket{A kAB TB}kBS

by combiningA’s name, a
freshly generated key for communication betweenA andB, andB’s time stamp. It is
encrypted with the keykBS thatB shares withS so thatA cannot modify it. The server
also informsA of the extremes of the ticket in the message{B nA kAB TB}kAS

and
forwardsB’s nonce to her. In the last line,A identifies herself toB by sending him the
ticket and his noncenB encrypted with the newly createdkAB . Although part of no
messages, this protocol assumes thatB assigns a validity period to the ticket and will
honor it until it expires. Therefore, upon receiving any message fromA, B will verify
if the timestamp is still valid.

This initialization subprotocol is encoded inMSRby means of three roles, one for
A, one forB, and one forS. We start by giving a specification ofA’s actions, reported
in the following role:0BBBBBBBBBBBB@

∃L : principal× nonce.

· → ∃nA: nonce.
N(A nA)
L(A, nA)

∀B: principal.
∀nA,nB : nonce.
∀kAB : shK A B.
∀kAS : shK A S.
∀X : msg.

N({B nA kAB}kAS X nB)
L(A, nA)

→ N(X {nB}kAB )
TicketA(B, kAB , X)

1CCCCCCCCCCCCA

∀A

The first rule is a straightforward encoding of line(1) of the “usual notation” description
of this subprotocol. The more interesting second rule corresponds to lines(3) and(4).
Notice thatA is not entitled to observe the inner structure of the ticket. We express
this fact by placing the variableX in the second component of the received message.
Expanding this object as{AkABTB}kBS

to expose its structure would violate the access
control policy [6]. In the consequent of this same rule,A sends the message on line(4)
of the informal presentation toB. She also needs to memorize some information to be
able to reuse the ticket in the future, namely the ticket itself, the associated keykAB ,
andB’s identity. This is achieved by means of the memory predicateTicketA( , , ).
The type of this predicate is “principal(A) × principal(B) × shK A B ×msg” where the
last argument corresponds to the ticket.

The responder’s actions in this subprotocol are specified by the following role. Its
two rules correspond to lines(1) and(2), and line(4) of the “usual notation” specifica-

171



tion above.0BBBBBBBBBBBBBBBBB@

∃L : principal(B) × principal× nonce× shK B S× nonce× time.

∀A : principal.
∀nA : nonce.
∀kBS : shK B S.
∀TB : time.

N(A nA)
ClockB(TB)

→

∃nB : nonce.

N(B {A nA TB}kBS nB)
ClockB(TB)
L(B, A, nA, kBS, nB , TB)

∀ . . .
∀kAB : shK A B
∀nB : nonce.
∀TB , Tnow : time.
∀TV , Texp : time.

N({A kAB TB}kBS {nB}kAB )
L(B, A, nA, kBS, nB , TB)
ValidB(A, TB , TV )
(Texp = TB + TV )

→ AuthB(A, kAB , TB , Texp)
ValidB(A, TB , TV )

1CCCCCCCCCCCCCCCCCA

∀B

Upon receiving the messageN(A nA), the responderB reads the timestampTB off
his local clock, which we model by means of the memory predicateClockB( ), of type
“principal × time”. A specification of how local clocks are updated is outside of the
scope of this paper. A technique akin to the handling of time in [17] is particularly ap-
pealing for the elegant form of automated reasoning about temporal entities it supports.

In the second rule of this role,B receives the ticket{A kAB TB}kBS
and the re-

sponse{nB}kAB
to the challenge he issued in the first rule by creating a nonce. He can

clearly access the contents of the ticket and therefore verify this latter message. The
timestamp must have the same valueTB memorized in the last argument of the role
state predicateL in the first rule. The responder now assigns an expiration date to the
ticket: he consults the memory predicateValidB(A, TB , TV ) to decide on the length
of time TV it should be valid for (possibly on the basis of the initiator’s identityA
and the time of the dayTB it was requested), and then uses the arithmetic constraint
(Texp = TB + TV ) to compute its expiration dateTexp. The components of the ticket
together with its expiration date are stored in the memory predicateAuthB( , , , ), of
type “principal(B) × principal(A) × shK A B × time× time”.

Finally, we have a single rule that formalizes the actions of the server. Upon receiv-
ing a request fromB, the server generates the shared keykAB , constructs the ticket and
the notification message forA, and transmits this information.0BBBB@

∀A, B : principal.
∀kAS : shK A S.
∀kBS : shK B S.
∀nA, nB : nonce.
∀TB : time.

N(B {A nA TB}kBS nB) →

∃kAB : shK A B.

N({B nA kAB TB}kAS

{A kAB TB}kBS

nB)

1CCCCA
S

5.2 Repeated Authentication Subprotocol

1. A → B: n′
A {A kAB TB}kBS

2. B → A: n′
B {n′

A}kAB

3. A → B: {n′
B}kAB

The second phase of the Neuman-Stubblebine
protocol allows the initiatorA to repeatedly use
the ticket she has acquired in the first phase to
access the service provided byB, as long as the
ticket has not expired. It is expressed in the “usual notation” by the three-step subpro-
tocol displayed to to the right of this text. In the first line,A generates a new nonce

172



n′
A and sends it toB together with the ticket{A kAB TB}kBS

she has acquired in the
initial phase of the protocol. Upon receiving this message,B checks that the ticket is
still valid, creates a nonce of his ownn′

B , and transmits it toA in line (2) together with
the encryption ofn′

A with the keykAB embedded in the ticket. In the last line,A sends
B’s nonce back after encrypting it with their shared keykAB .

This subprotocol is formalized inMSRby means of the three roles below. The initia-
tor’s actions are expressed by the following generic role. In its first rule, corresponding
to line (1) of the informal specification,A accesses the ticket she has stored in the
memory predicateTicket during the initialization phase. The second rule corresponds
to the remaining lines of the “usual notation” specification.0BBBBBBBB@

∃L : principal(A) × principal(B) × shK A B × nonce.

∀B : principal.
∀X : msg.
∀kAB : shK A B.

TicketA(B, kAB , X) → ∃n′
A: nonce.

N(n′
A X)

TicketA(B, kAB , X)
L(A, B, kAB , n′

A)

∀ . . .
∀n′

A,n′
B : nonce.

N(n′
B {n′

A}kAB )
L(A, B, kAB , n′

A)
→ N({n′

B}kAB )

1CCCCCCCCA

∀A

The actions of the service providerB are given by the following two generic roles.
The first rule of the first of them captures lines(1) and(2) of the informal specification,
while the second rule formalizes the remaining line.0BBBBBBBBBBBBB@

∃L : principal(B) × principal(A) × shK A B × nonce.

∀n′
A : nonce.

∀kBS : shK B S.
∀A : principal.
∀kAB : shK A B.
∀TB , Texp, Tnow : time.

N(n′
A {A kAB TB}kBS)

AuthB(A, kAB , TB , Texp)
ClockB(Tnow)
(Tnow < Texp)

→

∃n′
B : nonce.

N(n′
B {n′

A}kAB )
AuthB(A, kAB , TB , Texp)
ClockB(Tnow)
L(B, A, kAB , n′

B)

∀ . . .
∀n′

B : nonce.
N({n′

B}kAB )
L(B, A, kAB , n′

B)
→ ·

1CCCCCCCCCCCCCA

∀B

Upon receiving each new request,B checks that the ticket has not expired yet. This is
achieved by means of the constraint(Tnow < Texp) that verifies whether the current
timeTnow (read from his “Clock ” memory predicate) is less than the ticket’s expiration
timeTexp.

Although there is no arm in keeping stale tickets, it is easy to write anMSRrule that
removes expired tickets: wheneverB notices that a ticket has expired (by means of the
constraint(Tnow ≥ Texp)), he simply retracts the corresponding “Auth ” predicate.0@∀A : principal.

∀kAB : shK A B.
∀TB , Texp, Tnow : time.

AuthB(A, kAB , TB , Texp)
ClockB(Tnow)
(Tnow ≥ Texp)

→ ClockB(Tnow)

1A∀B

This concludes ourMSRspecification of the Neuman-Stubblebine repeated authen-
tication protocol. The two phases that constitute it have been modeled by providing two
sets of roles. The connection between them is given by a number of memory predicates
used by both the clientA and the service providerB. It should be noted that this pro-
tocol lies outside of the scope of the previous version ofMSR[9, 10], which did not
provide any secure means to share data across different roles.

173



6 Conclusions and Future Work

In this paper, we have presented the syntax ofMSR, a strongly typed specification lan-
guage for security protocol. The typing infrastructure, based on the theory of depen-
dent types with subsorting, yields elegant and precise formalizations. The underlying
methodology does not prescribe a fixed set of types to be used for every protocol, but
rather allows defining the objects (both types and term constructors) needed in each
individual circumstance. This typing information is mostly used statically to discover
simple but potentially harmful mistakes in a specification: for example, assuming appro-
priate declarations, type-checking would catch the unduly transmission of a long-term
key in a network message. On the other hand, access control verification will point at
attempts to use keys that do not belong to a principal. These two applications are pre-
sented in detail in [7] and [6], respectively. Static checks of this kind are particularly
useful when modeling complex crypto-protocols.

Previous versions ofMSRwere mostly aimed at investigating decidability problems
for crypto-protocols [9, 15] and at establishing the relative expressive power of different
formalisms [11, 10]. The present work makesMSRusable as a specification language
for a large class of security protocols thanks to the introduction of a few key constructs
and a flexible typing infrastructure. Memory predicates, in particular, allow a principal
to share data and control among different role instances. This makes our formalism
applicable to protocols structured as a collection of subprotocols. Constraints allow
instead factoring recurrent operations on complex domain as external modules, keeping
in this way protocol specifications simple.

We have undertaken a formal study of various aspects ofMSR. Besides the general
discussion and case studies presented in this paper, its type-checking rules and their
properties are analyzed in [7], access control is the subject of [6], while [8] starts ex-
amining parallel executions and implements different formulations of the Dolev-Yao
intruder. A number of problems are however still open and subject of current investi-
gation. First, a number of issues need to be solved in order to makeMSRpractical. In
particular, a reliable type reconstruction algorithm is necessary to shelter users from the
often tedious process of providing all the type declarations, and also to make formaliza-
tions reasonably sized. We are also extending our current collection of case studies to
encompass not only the most common authentication protocols [12], but also complex
schemes such as key management protocols for group multicast [4] and fair exchange
protocols. Among other results, the formalization of these examples will allow us to
experiment with numerous constructs and type layouts. We hope that this activity will
enable us to extract useful specification techniques for the constructions needed in the
formalization of a protocol. For example, we would like to be able to give a specifi-
cation of hash functions from which the appropriate typing and access control rules
can be automatically generated together with arguments that extend the validity of their
various properties to these objects.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus.Infor-
mation and Computation, 148(1):1–70, 1999.

174



[2] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. Re-
search Report 125, Digital Equipment Corp., System Research Center, 1994.

[3] D. Aspinall and A. Compagnoni. Subtyping dependent types. In E. Clarke, editor,Proc.
LICS’96, pages 86–97, New Brunswick, NJ, 1996. IEEE Computer Society Press.

[4] D. Balenson, D. McGrew, and A. Sherman. Key management for large dynamic groups:
One-way function trees and amortized initialization. Internet Draft (work in progres), draft-
irtf-smug-groupkeymgmt-oft-00.txt, Internet Engineering Task Force (August 25, 2000).

[5] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.Proceedings of the
Royal Society, Series A, 426(1871):233–271, 1989.

[6] I. Cervesato.MSR, access control, and the most powerful attacker. Submitted to LICS’01,
Boston, MA, 2001.http://www.cs.stanford.edu/˜iliano .

[7] I. Cervesato. A specification language for crypto-protocol based on multiset rewriting,
dependent types and subsorting.http://www.cs.stanford.edu/˜iliano .

[8] I. Cervesato. Typed multiset rewriting specifications of security protocols. Submitted to
Proc. MFCSIT’00, ENTCS.http://www.cs.stanford.edu/˜iliano .

[9] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-notation for pro-
tocol analysis. InProc. CSFW’99, pages 55–69, Mordano, Italy, 1999. IEEE/CS Press.

[10] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Relating strands and
multiset rewriting for security protocol analysis. InProc. CSFW’00, pages 35–51, 2000.

[11] I. Cervesato, N. A. Durgin, M. Kanovich, and A. Scedrov. Interpreting strands in linear
logic. In Proc. FMCS’00, Chigaco, IL, 2000.

[12] J. Clark and J. Jacob. A survey of authentication protocol literature. Technical report, De-
partment of Computer Science, University of York, 1997. Web Draft Version 1.0 available
from http://www.cs.york.ac.uk/˜jac/ .

[13] G. Denker and J. K. Millen. CAPSL Intermediate Language. In N. Heintze and E. Clarke,
editors,Proc. FMSP’99, Trento, Italy, 1999.

[14] D. Dolev and A. C. Yao. On the security of public-key protocols.IEEE Transactions on
Information Theory, 2(29):198–208, 1983.

[15] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In N. Heintze and E. Clarke, editors,Proc. FMSP’99, Trento, Italy, 1999.

[16] F. J. T. F́abrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security protocol
correct? InProc. SSP’98, pages 160–171, Oakland, CA, 1998. IEEE/CS Press.

[17] M. I. Kanovich, M. Okada, and A. Scedrov. Specifying real-time finite-state systems in
linear logic. InProc. COTIC’98, Nice, France, 1998. ENTCS 16(1).

[18] C. Meadows. The NRL protocol analyzer: an overview.J. Logic Programming, 26(2):113–
131, 1996.

[19] R. Needham and M. Schroeder. Using encryption for authentication in large networks of
computers.Communications of the ACM, 21(12):993–999, 1978.

[20] B. C. Neuman and S. G. Stubblebine. A note on the use of timestamps as nonces.Operating
Systems Review, 27(2):10–14, 1993.

[21] F. Pfenning. Refinement types for logical frameworks. In H. Geuvers, editor,Proc.
TYPES’93, pages 285–299, Nijmegen, The Netherlands, 1993.

[22] P. F. Syverson. A different look at secure distributed computation. InProc. CSFW-10,
pages 109–115. IEEE Computer Society Press, 1997.

175


	Carnegie Mellon University
	Research Showcase
	5-1-2001

	Typed MSR: Syntax and Examples
	Iliano Cervesato
	Recommended Citation



