Real-Time Forecasting with a Large, Mixed Frequency, Bayesian VAR

Michael W. McCracken, Michael T. Owyang
Federal Reserve Bank of Saint Louis

Tatevik Sekhposyan
Texas A&M University

Society of Economic Measurement’s Second Conference
June 24, 2015

The views expressed here do not reflect the official positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.
Problem

Key issues to forecasting in practice

• many variables released
• at varying frequencies
• with publication lags
• at different times during the quarter
Problem

Key issues to forecasting in practice

- many variables released
- at varying frequencies
- with publication lags
- at different times during the quarter

How to postulate a model that combines the information in the data in the best way given the restrictions?
Problem

Key issues to forecasting in practice

- many variables released
- at varying frequencies
- with publication lags
- at different times during the quarter

How to postulate a model that combines the information in the data in the best way given the restrictions?

Yet, in addition, allows for a general framework, that enables us

- to construct forecasts conditional on “appropriate monetary policy” (i.e. condition on the path of the funds rate)
- to construct impulse response functions and density forecasts
- to explain “why” the forecasts changed since ...
Problem: it is Hard!

From econometric point of view

- parsimonious models usually perform better: tradeoff between over-fitting and out-of-sample performance
- included variables should be “worth” the estimation risk
Problem: it is Hard!

From econometric point of view

• parsimonious models usually perform better: tradeoff between over-fitting and out-of-sample performance
• included variables should be “worth” the estimation risk

Resolutions

• autoregressive models
• VARs in common low (quarterly) frequency
• factor models: Stock & Watson (2002), Giannone, Reichlin & Small (2008), Aruoba, Diebold & Scotti (2009), etc.
• MIDAS models: Ghysels, Santa Clara & Volkanov (2004), etc.
• VARs: Bańbura, Giannone & Reichlin (2010), Schorfheide & Song (in press), Foroni, Guérin & Marcellino (in press), etc.
Our Resolution

Take the VAR route

- Define a VAR that allows for monthly and quarterly data

- Monthly variables are treated at a quarterly frequency - blocking, stacking (Chen, Anderson, Deistler, Filler, 2011)

- Impose certain restrictions on the VAR consistent with the timing of data releases
Our Resolution

Take the VAR route

- Define a VAR that allows for monthly and quarterly data

- Monthly variables are treated at a quarterly frequency - *blocking, stacking* (Chen, Anderson, Deistler, Filler, 2011)

- Impose certain restrictions on the VAR consistent with the timing of data releases

Similar to Ghysels (in press), but in out-of-sample, large VAR and used in real-time environment while relying on shrinkage
What is Blocking? An Example 1

- Suppose 2 series: quarterly GDP growth \(\{y_t\} \) and monthly UR \(\{x_{t-2/3}, x_{t-1/3}, x_t\} \)
What is Blocking? An Example 1

- Suppose 2 series: quarterly GDP growth \(\{y_t\} \) and monthly UR \(\{x_{t-2/3}, x_{t-1/3}, x_t\} \)
- Let \(W_t = [x_{t-2/3}, x_{t-1/3}, x_t, y_t]' \)
What is Blocking? An Example 1

- Suppose 2 series: quarterly GDP growth \(\{y_t\} \) and monthly UR \(\{x_{t-2/3}, x_{t-1/3}, x_t\} \)
- Let \(W_t = [x_{t-2/3}, x_{t-1/3}, x_t, y_t]' \)
- Specify the VAR

\[
A_0 W_t = C + \sum_{\ell=1}^{4} A_{\ell} W_{t-\ell} + e_t
\]

- \(E(e_t|W_1, ..., W_{t-1}) = 0 \)
- \(E(e_t e'_t|W_1, ..., W_{t-1}) = I \)
- \(A_{\ell} \) is unrestricted
- consider restrictions on \(A_0 \) motivated by the temporal ordering
What is Blocking? An Example 1

• Suppose 2 series: quarterly GDP growth \(\{y_t\} \) and monthly UR \(\{x_{t-2/3}, x_{t-1/3}, x_t\} \)

• Let \(W_t = [x_{t-2/3}, x_{t-1/3}, x_t, y_t]' \)

• Specify the VAR

\[
A_0 W_t = C + \sum_{\ell=1}^4 A_\ell W_{t-\ell} + e_t
\]

• \(E(e_t|W_1, ..., W_{t-1}) = 0 \)
• \(E(e_t e_t'|W_1, ..., W_{t-1}) = I \)
• \(A_\ell \) is unrestricted
• consider restrictions on \(A_0 \) motivated by the temporal ordering

• At time \(t \) UR is released before GDP (1st week vs. last week)

\[
A_0 = \begin{pmatrix}
a_{11} & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}
\]
What is Blocking? An Example 2

• Suppose 3 series: quarterly GDP growth \(\{y_t\} \), monthly UR \(\{x_{t-2/3}, x_{t-1/3}, x_t\} \) and monthly EMP \(\{z_{t-2/3}, z_{t-1/3}, z_t\} \)
What is Blocking? An Example 2

- Suppose 3 series: quarterly GDP growth \(\{y_t\} \), monthly UR \(\{x_{t-2/3}, x_{t-1/3}, x_t\} \) and monthly EMP \(\{z_{t-2/3}, z_{t-1/3}, z_t\} \)
- Let \(W_t = [x_{t-2/3}, z_{t-2/3}, x_{t-1/3}, z_{t-1/3}, x_t, z_t, y_t]' \)
What is Blocking? An Example 2

- Suppose 3 series: quarterly GDP growth \(\{y_t\} \), monthly UR \(\{x_{t-2/3}, x_{t-1/3}, x_t\} \) and monthly EMP \(\{z_{t-2/3}, z_{t-1/3}, z_t\} \)
- Let \(W_t = [x_{t-2/3}, z_{t-2/3}, x_{t-1/3}, z_{t-1/3}, x_t, z_t, y_t]' \)
- EMP, UR are released on the first Friday

\[
A_0 = \begin{pmatrix}
a_{11} & a_{12} & 0 & 0 & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 & 0 & 0 & 0 \\
a_{31} & a_{32} & a_{33} & a_{34} & 0 & 0 & 0 \\
a_{41} & a_{42} & a_{43} & a_{44} & 0 & 0 & 0 \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} & 0 \\
a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} & 0 \\
a_{71} & a_{72} & a_{73} & a_{74} & a_{75} & a_{76} & a_{77}
\end{pmatrix}
\]
Real-time Data

- Compiled from ALFRED (Archival Federal Reserve Economic Data) and Haver Analytics

- We have monthly vintages from 1980:1 to 2013:7 (using the one staring at 1985:1)
Real-time Data

- Compiled from ALFRED (Archival Federal Reserve Economic Data) and Haver Analytics

- We have monthly vintages from 1980:1 to 2013:7 (using the one staring at 1985:1)

- Coverage for 1971:1-2013:6, monthly and quarterly

- Some series start later, e.g., PCE headline and core in 2000:7 which implies a changing model structure
Real-time Data

- Compiled from ALFRED (Archival Federal Reserve Economic Data) and Haver Analytics

- We have monthly vintages from 1980:1 to 2013:7 (using the one staring at 1985:1)

- Coverage for 1971:1-2013:6, monthly and quarterly

- Some series start later, e.g., PCE headline and core in 2000:7 which implies a changing model structure

- We have 24 data series: only one is quarterly

- Weekly and daily data aggregated to monthly - end of period, average
Real-time Data

• Compiled from ALFRED (Archival Federal Reserve Economic Data) and Haver Analytics

• We have monthly vintages from 1980:1 to 2013:7 (using the one starting at 1985:1)

• Coverage for 1971:1-2013:6, monthly and quarterly

• Some series start later, e.g., PCE headline and core in 2000:7 which implies a changing model structure

• We have 24 data series: only one is quarterly

• Weekly and daily data aggregated to monthly - end of period, average

• Data has been transformed to stationarity
Real-time Data (Cont.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Release Date</th>
<th>Publ. Lag</th>
<th>Vintage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Manufacturing PMI (s.a.)</td>
<td>1st business day</td>
<td>one month</td>
<td>1997:03</td>
</tr>
<tr>
<td>ISM Supplier Deliveries Index (s.a.)</td>
<td>1st business day</td>
<td>one month</td>
<td>2009:11</td>
</tr>
<tr>
<td>ISM New Orders Index (s.a)</td>
<td>1st business day</td>
<td>one month</td>
<td>2009:11</td>
</tr>
<tr>
<td>Civilian Unempl. Rate, 16+ (s.a.)</td>
<td>1st Friday</td>
<td>one month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Empl. on Nonfarm Payrolls: Total (s.a.)</td>
<td>1st Friday</td>
<td>one month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Avg Weekly Manufacturing Hours</td>
<td>1st Friday</td>
<td>one month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Production</td>
<td>after 2 weeks</td>
<td>one month</td>
<td>1980:01</td>
</tr>
<tr>
<td>New Res. Constr./Housing Starts (s.a)</td>
<td>12th workday</td>
<td>one month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Phily Fed Bus. Outlook Survey (s.a.) *</td>
<td>3rd Thurs</td>
<td>curr. month</td>
<td>1980:01</td>
</tr>
<tr>
<td>CPI Headline (s.a.)</td>
<td>varying, mid-month</td>
<td>one month</td>
<td>1980:01</td>
</tr>
<tr>
<td>CPI Core (s.a.)</td>
<td>varying, mid-month</td>
<td>one month</td>
<td>1996:12</td>
</tr>
</tbody>
</table>
Real-time Data (Cont.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Release Date</th>
<th>Publ. Lag</th>
<th>Vintage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New (1-Family) Houses Sold (s.a.)</td>
<td>17th workday</td>
<td>one month</td>
<td>1999:07</td>
</tr>
<tr>
<td>Consumer Sentiment Index (n.s.a) *</td>
<td>last Friday</td>
<td>curr. month</td>
<td>1980:01</td>
</tr>
<tr>
<td>GDP Advance Estimate (s.a.)</td>
<td>last week of month</td>
<td>one month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Group 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCE Headline (s.a.)</td>
<td>day after GDP</td>
<td>one month</td>
<td>2000:07</td>
</tr>
<tr>
<td>PCE Core (s.a.)</td>
<td>day after GDP</td>
<td>one month</td>
<td>2000:07</td>
</tr>
<tr>
<td>Personal Income (s.a)</td>
<td>day after GDP</td>
<td>one month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Group 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Unempl Insurance Claims (s.a.)</td>
<td>last Thursday</td>
<td>one week</td>
<td>2009:06</td>
</tr>
<tr>
<td>Federal Funds (Effective) Rate *</td>
<td>last day</td>
<td>curr. month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Term Spread (10-Year - 3-Month) *</td>
<td>last day</td>
<td>curr. month</td>
<td>1980:01</td>
</tr>
<tr>
<td>WTI Oil Price *</td>
<td>last day</td>
<td>curr. month</td>
<td>1980:01</td>
</tr>
<tr>
<td>S&P 500 Stock Index *</td>
<td>last day</td>
<td>curr. month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Credit Spread (Baa - Aaa) *</td>
<td>last day</td>
<td>curr. month</td>
<td>1980:01</td>
</tr>
<tr>
<td>Trade Weighted Exch. Rate*</td>
<td>last day</td>
<td>curr. month</td>
<td>1980:01</td>
</tr>
</tbody>
</table>
Timing assumptions

- The goal is to take the timing assumptions of data releases (information flow) seriously

- Order the data based on release date not by reference date

<table>
<thead>
<tr>
<th>January, 2013 GDP Advance Release</th>
<th>g_1^1 g_2^1 g_3^1 g_4^1 g_5^1</th>
</tr>
</thead>
</table>

v

part of the information set in January, 2013 - balanced panel
Timing assumptions

- Variables in each group are contemporaneously correlated.
- Variables in each group respond contemporaneously to the group before (if exists), but not to the ones after.
Good luck! How Many Parameters are there to Estimate?

- More than one would want

Good luck! How Many Parameters are there to Estimate?

- More than one would want
- Particularly for data spanning 1971:1-2013:4 ~ 42 years of monthly/quarterly data
Good luck! How Many Parameters are there to Estimate?

- More than one would want

- Particularly for data spanning 1971:1-2013:4 \(\sim 42\) years of monthly/quarterly data

- The hope is that with enough shrinkage we can control the excessive estimation risk
Estimation: Sims-Zha Shrinkage Prior

Re-write the system as

\[w'_{t+h}B = x'_t G + \epsilon'_t \]

Consider a prior of a following form:

\[b_i \sim N(0, \bar{S}_i) \quad \text{and} \quad g_i|b_i \sim N(\bar{P}_i b_i, \bar{H}_i), \]

such that \(\bar{H}_{ij} = \frac{\lambda_0^2 \lambda_1^2}{\sigma_j^2 p^2 \lambda_3} \) and \(\bar{S}_{ij} \) are defined by \(\frac{\lambda_0^2}{\sigma_j^2} \)

- prior hierarchical in nature

\(\lambda_0 \)	?	controls the overall tightness of the beliefs
\(\lambda_1 \)	?	tightens the prior around the mean
\(\lambda_3 \)	1	rate of contraction with an increase in lag length
\(\lambda_4 \)	1	controls the tightness of the constant
Estimation: Algorithm

Waggoner and Zha (2003):

\[w'_{t+h} B = x'_t G + \epsilon'_t \]

Given the model and the restrictions

\[Q_i b_i = 0 \]
\[R_i g_i = 0 \]

one can find \(U_i \) and \(V_i \) such that

\[\psi_i = U_i b_i \]
\[\phi_i = V_i g_i \]

The posterior distributions take the form

\[
p(\psi_1, \ldots, \psi_n | x_t) \propto |\text{det}[U_1 \psi_1 | \ldots | U_n \psi_n]|^T \exp \left(-\frac{T}{2} \sum_{i=1}^{n} \psi'_i S_i^{-1} \psi_i \right)
\]

\[
p(\phi_i | \psi_i, x_t) = \varphi(P_i \psi_i, H_i).
\]
On the Prior

• How to pick the hyperparameters?
 • Use values from the literature - have not been optimized for the monthly/quarterly structure that we have in our setup.
 • Consider hyperparameter selection mechanism - grid search

• Derive the marginal data density for our VAR (similar to Giannone, Lenza and Primiceri, 2015)
Unconditional Forecasting

- Three states of our world: end of first, second, and third month of quarter

- In the second (third) month of the quarter we have one complete set of month one (and two) variables

- At the end of the first month of each quarter - January, April, July, October vintages - our quarterly information set is complete

- We estimate the VAR only when we have a full set of data, i.e. once a quarter

- We evaluate the forecasts using quarterly vintages, i.e. forecasts produced in January, February and March are all evaluated against the April vintage
Unconditional Forecasting

The system is

\[w'_{t+h} B = x'_t G + \epsilon'_t \]

Forecasts and forecast errors are

- At the end of the first month of quarter

\[\hat{w}'_{t+1} | t = x'_t GB^{-1} \]

- At the end of the second month of each quarter

\[\hat{\epsilon}_{t+1/3} = B'i_{1/3}(w_{t+1/3} - i'_{1/3} \hat{w}_{t+1}) \]
\[\hat{w}'_{t+1} | t+1/3 = \hat{w}'_{t+1} | t + [\hat{\epsilon}_{t+1/3}; 0]'B^{-1} \]

- At the end of the third month of each quarter

\[\hat{\epsilon}_{t+2/3} = B'i_{2/3}(w_{t+2/3} - i'_{2/3} \hat{w}_{t+1}|t+1/3) \]
\[\hat{w}'_{t+1} | t+2/3 = \hat{w}'_{t+1} | t+1/3 + [0; \hat{\epsilon}_{t+2/3}; 0]'B^{-1} \]
Performance: the Alternatives

Quarterly models:

• “AR-Quarterly”
 • Estimate monthly and quarterly ARs with January, April, July, October vintages
 • For monthly variables construct up to three-step-ahead forecasts (with no new information)
 • Compare the average monthly forecast to the average monthly realization

• “VAR-Quarterly”
 • Average the monthly variables to a quarterly frequency

• “BVAR-Quarterly” - similar to “AR-Quarterly”
 • No need for multi-step-ahead forecasting since the set-up generates it by construction
Performance: Results

Mixed models:

- “AR-Mixed”
 - Estimate monthly and quarterly ARs with January, April, July, October vintages
 - For monthly variables construct three one-step-ahead forecasts with inter-quarter vintages
 - Compare forecasts to the realizations in next quarterly vintage

- “BVAR-Mixed”
 - Estimate the VARs with January, April, July, October vintages
 - Construct forecasts with inter-quarter vintages
 - Compare forecasts to the realizations in next quarterly vintage

- SPF (Survey of Professional Forecasters)
Evaluation is based on the mean of the forecast distribution which is consistent with quadratic loss (Gneiting, 2012)

Quarterly Models

<table>
<thead>
<tr>
<th>Model</th>
<th>EMP</th>
<th>CPI</th>
<th>FFR</th>
<th>GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-Quarterly</td>
<td>0.24</td>
<td>0.70</td>
<td>0.58</td>
<td>1.78</td>
</tr>
<tr>
<td>VAR-Quarterly</td>
<td>1.71</td>
<td>1.50</td>
<td>1.46</td>
<td>1.23</td>
</tr>
<tr>
<td>BVAR-Quarterly</td>
<td>1.91</td>
<td>1.53</td>
<td>1.26</td>
<td>0.99</td>
</tr>
<tr>
<td>SPF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Performance: the Alternatives

Mixed Models

<table>
<thead>
<tr>
<th></th>
<th>AR-Mixed</th>
<th>BVAR - M1</th>
<th>BVAR - M2</th>
<th>BVAR - M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP-M1</td>
<td>0.46</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPI-M1</td>
<td>1.08</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFR-M1</td>
<td>0.86</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMP-M2</td>
<td>0.49</td>
<td>1.26</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>CPI-M2</td>
<td>1.15</td>
<td>1.21</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>FFR-M2</td>
<td>0.84</td>
<td>1.17</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>EMP-M3</td>
<td>0.45</td>
<td>1.28</td>
<td>1.15</td>
<td>1.13</td>
</tr>
<tr>
<td>CPI-M3</td>
<td>1.04</td>
<td>1.27</td>
<td>1.22</td>
<td>1.04</td>
</tr>
<tr>
<td>FFR-M3</td>
<td>0.71</td>
<td>1.22</td>
<td>1.34</td>
<td>1.33</td>
</tr>
<tr>
<td>GDP</td>
<td>1.78</td>
<td>0.99</td>
<td>0.85</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Performance: Forecasts
Performance: Forecasts

GDP Growth Nowcast

M1
M2
GDP growth
Performance: Forecasts

GDP Growth Nowcast

- M1
- M2
- M3
- GDP growth
Performance: Forecasts

GDP Growth Nowcast

- Model-mid Month 2
- SPF
- GDP growth

Performance: Rolling RMSE

Smoothed Forecast Errors for the GDP Nowcast

- M1
- M2
- M3
- SPF

Time Period: 1992 - 2008
Performance: Rolling RMSE
Performance: Rolling RMSE
Performance: Rolling Root Median Squared Error

Smoothed Forecast Errors for the GDP Nowcast

- M1
- M2
- M3
- SPF

Years: 1992 to 2008
Performance: Rolling Root Median Squared Error

Smoothed Forecast Errors for the GDP Nowcast
Performance: Rolling Root Median Squared Error

Smoothed Forecast Errors for the GDP Nowcast
Some Structural Analysis: Monetary Policy Shocks

GDP response to 25 basis point FFR shock

- Shock in Month 2
- Shock in Month 4
Some Structural Analysis: Monetary Policy Shocks

GDP growth response to 25 basis point FFR shock

- Shock in Month 3
- Shock in Month 4
Conclusions

• We have an easy way to mix monthly and quarterly variables into a meaningful forecasting framework.

• Can be a viable alternative for providing high frequency updates.

• Can consider for “structural” analysis with interesting interpretations.

• Comments? Thank you!