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Philosophy of Mathematics 
Jeremy Avigad 

 

Final version will appear in Boundas, Constantin editor, The Edinburgh Companion to 
the 20th Century Philosophies, Edinburgh University Press. The annotations in the 
bibliography will not appear in the published version.  

1. Introduction 

The philosophy of mathematics plays an important role in analytic philosophy, both as a 
subject of inquiry in its own right, and as an important landmark in the broader 
philosophical landscape. Mathematical knowledge has long been regarded as a paradigm 
of human knowledge with truths that are both necessary and certain, so giving an account 
of mathematical knowledge is an important part of epistemology. Mathematical objects 
like numbers and sets are archetypical examples of abstracta, since we treat such objects 
in our discourse as though they are independent of time and space; finding a place for 
such objects in a broader framework of thought is a central task of ontology, or 
metaphysics.  The rigor and precision of mathematical language depends on the fact that 
it is based on a limited vocabulary and very structured grammar, and semantic accounts 
of mathematical discourse often serve as a starting point for the philosophy of language. 
Although mathematical thought has exhibited a strong degree of stability through history, 
the practice has also evolved over time, and some developments have evoked 
controversy and debate; clarifying the basic goals of the practice and the methods that are 
appropriate to it is therefore an important foundational and methodological task, locating 
the philosophy of mathematics within the broader philosophy of science.  

In this chapter, I will try to convey a modern philosophical understanding of the subject 
as it practiced today. Our contemporary understanding has been shaped by traditional 
questions and concerns about the nature of mathematics, and Section 2 provides a broad 
overview of the general array of philosophical positions in place by the turn of the 
twentieth century. On the other hand, the nineteenth century is generally taken to 
represent the birth of ‘modern’ mathematical thought, and many new issues arose with 
the dramatic conceptual shifts that took place. Sections 3 and 4 summarize some of these 
developments. Our contemporary philosophical understanding has also been informed by 
nineteenth and twentieth century developments in mathematical logic, which can be 
viewed as a reflective, mathematical study of the methods of mathematical reasoning 
itself. Section 5 tries to explain what we have learned from such a study, in philosophical 
terms. Finally, Sections 6 and 7 try to convey, in broad strokes, some of the central lines 
of thought in the philosophy of mathematics today.  
 



2. Traditional questions  

Traditionally, the two central questions for the philosophy of mathematics are: What are 
mathematical objects? How do we (or can we) have knowledge of them? Plato offers the 
following simple answers: abstract mathematical objects, like triangles and spheres, are 
forms, which have imperfect reflections in this world. Before we are born, our souls have 
direct interactions with these forms, though we forget most of what we know during the 
traumatic circumstances of our birth. Recapturing this knowledge is thus a process of 
recollection, which can be encouraged by the dialectical process. This position is 
illustrated by Plato's portrayal of Socrates in Meno, when Socrates calls over a slave boy 
and, through a sequence of questions, brings the boy to understand a simple geometric 
theorem.1 Socrates leads Meno to the conclusion that since Socrates did not tell the boy 
the theorem, the boy must have had knowledge of it all along. Although we today may 
have difficulty with the theory's reliance on otherworldly forms and our soul's prenatal 
activities, the account does have its advantages: it does justice to the mysterious abstract 
nature of mathematical objects, and explains why we do not have to appeal to our 
physical experiences to justify mathematical statements.  

In contrast, the Aristotelian account of mathematical knowledge holds that mathematical 
objects, like triangles and spheres, are abstractions from our experiences.2 That is, from 
our interactions with various roughly spherical objects, we form the concept of a perfect 
sphere. Reasoning about spheres in general boils down to reasoning about specific 
spheres we have encountered, qua their sphericity; that is, we deliberately ignore features 
like size, weight, and material in the discourse. It is this disciplined behaviour that 
ensures that our conclusions are appropriately general, and even though the spheres we 
encounter in our experience are not perfect spheres, our conclusions apply insofar as they 
approximate the latter.  

Thus the divide between Plato and Aristotle is an early example of tensions between 
philosophical theories that give primacy to abstract concepts, and those that give primacy 
to experience. This has formed the basis for the common distinction between rationalists 
and empiricists among the early modern philosophers, the former taking mathematics and 
‘innate ideas’ as the paradigm of knowledge, and the latter basing their accounts of 
knowledge on the empirical sciences. At times, it can be hard to tell exactly what is at 
stake. For example, John Locke, as distinctly an empiricist as they come, allows for 
innate faculties like comparing, compounding, and abstracting, and reflecting on the 
inner workings of our mind;3 and he agrees that mathematical knowledge consists of 
certain knowledge of ideas, although these ideas must ultimately spring from 
experience.4 René Descartes, the prototypical rationalist, maintains that mathematics is 
the paradigm of knowledge, since its truths can be obtained by a clear and unclouded 
mind reflecting on clear and distinct ideas. At the end of the Meditations, he allows that 

                                                 
1 Meno, 82-87. Translation by G. M. A. Grube in Cahn (2002).  
2 Metaphysics, Book M, 1077b-1078b. Translated by Julia Annas (1976), Aristotle’s Metaphysics: M and 
N. Oxford: Clarendon Press. 
3 Essay Concerning Human Understanding, Book II, Chapter XI. Excerpts in Cahn (2002). 
4 Ibid, Book IV, Chapter IV, §6. 



our physical models must have something to do with the world, since God is not a 
malicious deceiver. But what we have certain knowledge of are the mathematical 
concepts and relationships to each other, in contrast to the approximate knowledge that 
the world conforms, more or less, to our models.  

The distinctions between mathematical and scientific knowledge are expressed in 
different ways by the early modern philosophers, and such reformulations provide 
different insights. For example, Gottfried Leibniz distinguished between necessary and 
contingent truths: the former, including the truths of mathematics, are true in all possible 
worlds, and could not be otherwise; the latter, like the facts of scientific discovery, could 
have been different.5 Similarly, David Hume distinguished between relations of ideas 
and matters of fact. The truths of mathematics are grouped under relations of ideas, 
‘every affirmation of which is either intuitively or demonstratively certain.’ In contrast, 
any matter of fact could have been otherwise: ‘the contrary of every matter of fact is still 
possible, because it can never imply a contradiction and is conceived by the mind with 
the same facility and distinctness, as if every so conformable to reality.’6  

The work of Immanuel Kant went a long way to clarify and defuse some of the 
differences between rationalist and empiricist stances. For example, Kant helpfully 
underscored the difference between asserting that a concept arises from experience, and 
asserting that it arises with experience.7 According to Kant, the issue is not whether we 
are born with a concept of triangle or whether we develop this concept over time. Rather, 
the relevant fact is that an appropriate justification for assertions about triangles need not 
make reference to experience. Truths that have this character, like the truths of 
mathematics, Kant called a priori. The remaining truths, that is, those we justify by 
referring to our experiences, he called a posteriori.  

Kant went on to observe that one can separately distinguish between judgements that 
depend only on the definition of the concepts involved, and those that don't. In fact, Kant 
only considered assertions in subject-predicate form; he called a judgement ‘A is B’ 
analytic when ‘the predicate B belongs to the subject A as something that is (covertly) 
contained in this concept A.’8 For example, the statement that triangles have three sides 
relies only on the knowledge of the definition of triangle. This notion of analyticity 
requires clarification, and we will return to it in Section 4.  A judgement that is not 
analytic he called synthetic.  

According to Kant, any statement that is analytic is a priori; if the truth of a statement 
rests only on the definition of the concepts involved, then one need not appeal to 
experience to justify it. Conversely, any statement that is a posteriori has to be synthetic. 
But is there a middle ground, consisting of statements that are a priori but synthetic? 
Kant argued that nontrivial truths of mathematics fall exactly into this category. For 
example, the justification for the fact that 5 + 7 = 12 cannot be found in the definition of 

                                                 
5 Discourse on Metaphysics, §13. Translation by Roger Ariew and Daniel Garber in Cahn (2002). 
6 An Enquiry Concerning Human Understanding, Section IV, Part I. Excerpts in Cahn (2002). 
7 Critique of Pure Reason, B1. Translation by Werner S. Pluhar in Cahn (2002). 
8 This quote and the views that follow can be found in Critique of Pure Reason, B10-B21. 



the concept of 5, or that of 7, or that of 12, or that of ‘+’, or that of ‘=‘. But, on the other 
hand, we don't appeal to experimentation to justify the assertion. Thus, this statement is a 
priori but synthetic.  

Given that there are a priori synthetic truths, the central question for Kant is to explain 
how this is possible. Posing the question in this way forms the basis for his 
transcendental philosophy, which is a form of ‘reverse engineering’: given that 
something works, we want to figure out the mechanisms by which it functions. In 
particular, by reflecting on our mathematical knowledge, Kant aimed to uncover the 
basic cognitive faculties that made such knowledge possible. Later followers of Kant 
faced the challenge of clarifying the line between the analytic and the synthetic, and 
determining what, concretely, could be classified as a priori synthetic.   

A common feature of all the views just described is that they both take mathematics to 
deal with abstract objects, whether one takes these to have an independent existence in 
their own right, or to be abstracted from our experience. An alternative is simply to deny 
such objects ontological status in the first place, and think of mathematics, instead, as a 
science governing the use of (relatively concrete) signs. The challenge then is to give an 
account of mathematical knowledge that explains what it is that gives certain 
manipulations of signs normative force, and also explains the applicability of 
mathematics to the sciences. Positions that adopt such an approach fall under the rubric 
of nominalism, of which Bishop Berkeley's writings provide an early example.9  

Though the sketch I have just given is rough, it does provide a sense of the lay of the 
land. One can take mathematical objects to be independent and abstract, but then one is 
challenged to account for our knowledge of them; one can take them to be abstractions 
from experience, but then one has to account for (or deny) the apparent certainty of 
mathematical truths; or one can take mathematics to be a set of essentially linguistic 
conventions, in which case one needs to explain why their use is worthy of the term 
‘knowledge.’ This vexing trichotomy plagues contemporary thought about mathematics 
even today.  

Thus the philosophy of mathematics lies at a treacherous frontier, where theorizing about 
the nature of thought, language, and the world must come together. Almost everyone 
agrees, however, that whatever the nature of mathematical knowledge, mathematical 
proofs are central to its acquisition. This, at least, poses one useful constraint: any 
reasonable theory of mathematical knowledge has to square with that fact.   

3. Nineteenth century developments in mathematics  

Historians of mathematics usually take the nineteenth century to be the birth of the 
‘modern’ style of mathematical thought that is practiced today. Since much of the 
philosophy of mathematics in the twentieth century was focused on coming to terms with 

                                                 
9 For example, Principles of Human Knowledge, §121-122. These sections are among those excerpted in 
Ewald (1996). 



some of the dramatic changes that occurred in the previous century, it will be helpful to 
survey some of these developments.  

One important trend was a gradual increase in abstraction. In particular, modern 
algebraic concepts began to emerge, and served to unify methods from a number of 
branches of mathematics. For example, a ‘group’ is a system of objects with an 
associative binary operation, an identity element, and inverses. By the middle of the 
nineteenth century, mathematicians had noticed that a number of important arguments in 
number theory, geometry, and the theory of equations could be understood as making use 
of general properties of groups, instances of which were found in these particular 
domains. So, just as numbers and triangles could be viewed as abstractions from 
experience, groups could be viewed as abstractions from various number systems and 
geometric configurations that arose in mathematical practice.  

Algebraic reasoning of this sort relies, in part, on a style of reasoning that has come to be 
called the axiomatic method: one characterizes systems, or ‘structures,’ of interest by 
their defining properties. Reasoning solely on the basis of these axioms grants the 
conclusions that one draws full generality, in the sense that any resulting theorems will 
then hold of any particular system that satisfies the axioms.  

Developments in geometry illustrate such an axiomatic point of view. By the middle of 
the century, it had become clear that one could consistently study systems of points and 
lines satisfying axioms different from Euclid's. So, instead of viewing geometry as the 
‘true’ science of space, one could take geometry to be the study of properties of various 
geometries, that is, systems of points and lines satisfying various sets of axioms. This 
view of geometry as nothing more than the study of systems satisfying certain axioms is 
illustrated by David Hilbert's landmark Foundations of Geometry, which begins as 
follows:  

Definition. Consider three distinct sets of objects. Let the objects of the first set 
be called points and be denoted by A, B, C, …; let the objects of the second set be 
called lines and be denoted by a, b, c, …; let the objects of the third set be called 
planes and be denoted α, β, γ, …. The points, lines, and planes are considered to 
have certain mutual relations and these relations are denoted by words like ‘lie,’ 
‘between,’ ‘congruent.’ The precise and mathematically complete description of 
these relations follows from the axioms of geometry.10  

This passage illustrates a modern structuralist point of view, in which the objects of 
mathematical study are taken to be nothing more than elements of structures satisfying 
various axiomatic requirements.  

To support the general study of ‘systems’ of objects, mathematicians began to develop a 
language and methods to reason about such systems. Thus, Bernhard Riemann's theory of 
complex functions, which made use of what we now call Riemann surfaces, led him to 
                                                 
10 Hilbert, David (1899), Grundlagen der Geometrie. Teubner: Leipzig. Tenth edition translated by Leo 
Unger (1971) as Foundations of Geomety. La Salle, Illinois: Open Court. 



the general notion of a manifold of points; Richard Dedekind based his development of 
algebraic number theory on properties of systems of objects, and mappings between 
them; and Georg Cantor's work in analysis led him to develop a general theory of infinite 
sets.  

These incipient uses of ‘set-theoretic’ methods came at a cost. At the beginning of the 
nineteenth century, mathematics was viewed as a science of calculation and construction. 
For example, existence theorems in Euclid assert that it is possible to construct various 
geometric objects; in algebra and analysis, one sought algorithms for computing 
solutions to equations. Now the growing emphasis on abstract characterization of 
mathematical structures began to draw mathematical practice away from algorithmic 
concerns. Indeed, thinking about mathematical objects in terms of abstract systems gave 
rise to the possibility of proving existence statements in the absence of explicit 
calculations, and such ‘conceptual’ methods were often preferred to explicitly 
computational ones. One finds, for example, instances of proofs that deliberately 
suppress algorithmic information in Dedekind's work on algebraic number theory. David 
Hilbert put such methods to even more striking use in the late 1880s with his famous 
Basissatz, which provided nonconstructive solutions to a broad family of questions of 
central importance to algebra. What is so striking about Hilbert's work is that he 
employed the use of mathematical assertions that are computationally false; for example, 
the fact that in any sequence of polynomials there is an element with minimal degree, 
even though we may not be able to determine which element it is from an explicit 
description of the sequence.  

More general notions of a function or mapping arrived hand-in-hand with the more 
general notions of a set (or system) of objects. For the eighteenth century mathematician 
Leonhard Euler, a ‘function’ was implicitly assumed to have a certain type of 
representation (that is, piecewise as a convergent sum of elementary functions). 
Riemann's work in complex analysis showed that there are other ways of characterizing 
functions, say, by their algebraic, geometric, or topological properties. Thus a function 
became viewed as something more abstract, and independent of the various means of 
description.   

The focus on ‘arbitrary’ sets and mappings (rather than on their means of representation 
or description) led to a newfound boldness in dealing with infinitary mathematical 
objects. It is important to note that these new developments were not uniformly 
welcomed, and there were mathematicians who felt that mathematical practice was in 
danger of wandering astray from its proper concerns.  These attitudes fed into the 
‘foundational crisis’ of the early twentieth century, and even though such foundational 
debates have largely subsided, tensions between ‘abstract’ and ‘concrete’ views of 
mathematics remain with us to this day.  

4. Nineteenth century developments in the foundations of mathematics  

Work in the foundations of mathematics aims to identify and clarify the subject's 
fundamental concepts and methods. This task invariably involves presuppositions as to 



the nature of mathematics, and so foundational work provides a bridge between 
philosophical reflection and mathematical practice. The nineteenth century developments 
we have just discussed, including the cross-fertilization of ideas from different branches 
of mathematics and the extensions to mathematical terminology and methods, led 
naturally to reflective and foundational concerns.   

Certainly the mathematical developments had bearing on philosophical views. For 
example, the introduction of infinitary mathematical objects and structures seems to 
challenge empiricist attempts to account for knowledge in terms of abstractions from 
experience, since it is not clear how we can have direct experience of the infinite. For 
another example, recall the Kantian program of accounting for a priori synthetic 
mathematical knowledge in terms of the nature of cognition. In particular, Kant famously 
(or notoriously) took Euclidean geometry to be a necessary component of our pure 
intuition of space. But the nineteenth century brought the gradual realization that one can 
consistently study a range of alternative geometries, and the modern view that 
mathematicians are free to study any of these systems, leaving the question as to which 
of these is most appropriate to modeling the physical world to the sciences. Thus the 
nineteenth century shift towards abstraction seemed to speak against the claim that 
certain forms of cognition are necessary to mathematical thought.  

While raising some new concerns, work in foundations served to allay others. For 
instance, from its origins in the seventeenth century, mathematicians had been concerned 
with the foundations of the calculus, with its references to infinitesimal quantities and 
limiting processes. Berkeley's eighteenth century critique of calculus, The Analyst, lay 
bare the contradiction inherent in treating infinitesimals as nonzero quantities that are 
nonetheless smaller than any positive magnitude: ‘May we not call them the ghosts of 
departed quantities’?11 (Berkeley's goal was not to demean the calculus, but, rather, to 
buttress the relative rationality of belief in God. In the work, Berkeley mocked apostate 
scientists who ‘who strain at a gnat and swallow a camel.’12) In the nineteenth century, 
however, work by Bernard Bolzano, Augustin Cauchy, Riemann, Karl Weierstrass, and 
others showed how one could interpret notions of limit, integral, and derivative in terms 
of ordinary quantificational statements about the real numbers. This is sometimes 
referred to today as the rigorization of analysis, that is, the reduction of discourse 
involving infinitesimals to talk of ordinary real numbers.  

But what, exactly, is a real number? Towards the end of the nineteenth century, further 
work (by Weierstrass, Cantor, Dedekind, and others) showed how one could make sense 
of real numbers in terms of sequences or sets of rational numbers, and it was well-known 
that the rationals could be understood in terms of pairs of natural numbers. But what 
about the natural numbers? One option is to take these as fundamental, as suggested by 
Kronecker's oft-quoted remark, ‘God created the whole numbers; everything else is the 
work of man.’13 Even here, however, some foundational thinkers sought further 
reduction. For example, Richard Dedekind showed how one could characterize the 
                                                 
11 Berkeley, George (1734), The Analyst, §35. Reprinted in Ewald (1996). 
12 Ibid, §34. 
13 See the footnote on page 942 of Ewald (1996) for the sources that attribute this quote to Kronecker. 



natural numbers uniquely up to isomorphism (that is, state exactly the properties of a 
system of objects that make it fit to stand duty as a system of natural numbers); and using 
his methods for reasoning about systems and mappings, he was able to establish the 
existence of at least one such system, from the assumption that there exists any infinite 
set at all.14  

Dedekind's analysis amounts to a reduction of the natural numbers to an incipient theory 
of sets and functions. Gottlob Frege aimed for a similar reduction of the natural numbers 
to an appropriate system of logic. Recall that Kant had classified mathematical truths as 
being a priori synthetic. Challenging this, Frege argued that, in fact, the truths of 
arithmetic should be considered analytic, where now the term ‘analytic’ was enlarged to 
include truths that are obtained from definitions of the concepts involved by purely 
logical reasoning. The claim that substantial portions (or all) of mathematics can be 
reduced to logic has come to be called logicism.  

There are two components to any logicist program: identify a system of logic, and show 
how it can support the relevant mathematics. To be sure, there was no clear and 
universally accepted definition of ‘logic’ then, nor is there now. But starting with his 
Begriffsschrift of 1879, Frege began to describe systems of reasoning that, he argued, 
represent the necessary laws of thought.15 His achievement was impressive, and his 
systems include a fairly modern form of higher-order relational and quantificational 
reasoning. Frege then began to develop the theory of the natural numbers on such a basis.  

5. Twentieth century developments in mathematical logic  

Where do we stand? We have considered some of the questions regarding the nature of 
mathematical objects and our knowledge of them that have, traditionally, been of central 
concern to the philosophy of mathematics. We have also considered nineteenth century 
developments in mathematics that accentuated these issues or cast them in a new light. 
We have at least hinted at an interplay between philosophical views and methodological 
issues that had deep and lasting effects on the practice of the subject itself. Finally, we 
have touched on early foundational and logical developments, representing important 
attempts to come to terms with these issues.  

The study of logic and the foundations of mathematics enjoyed explosive growth after 
the turn of the twentieth century, and most philosophical theorizing about mathematics 
since then has been strongly influenced by these developments. The results of this 
inquiry provide informative clarifications and analyses of notions like proof, truth, and 
computation, and modern philosophical discussions often rely on these, at least 
implicitly. Thus, it will be helpful to consider this current logical understanding, before 
(finally) describing some twentieth century philosophical views in the next section.  

                                                 
14 Dedekind, Richard (1888), Was sind und was sollen die Zahlen. Vieweg: Braunschweig. Translation by 
W. W. Beman in Ewald (1996). 
15 Frege, Gottlob (1879), ‘Begriffschrift, eine der arithmetischen nachgebildete Formelsprache des reinen 
Denkens.’ Halle: Nebert. Translation by Stefan Bauer-Mengelberg in van Heijenoort (1967). 



To begin with, developments in the early twentieth century led to the recognition that one 
can distinguish between two informal notions of ‘logical consequence,’ based on a 
corresponding distinction between syntactic and semantic aspects of mathematical 
language. Roughly, the syntax of a language consists of the formal grammatical rules that 
govern the construction of terms and assertions; a semantics is an account of what these 
syntactic elements mean. The fact that ‘Between any two elements, there is another 
element’ is a grammatically correct assertion and is a syntactic one; the fact that this 
assertion is true when interpreted as a statement about real numbers or points on a line, 
but false when interpreted as a statement about whole numbers, is a semantic one.  

Now we can identify a syntactic notion of logical consequence: an assertion is a 
deductive consequence of some assumptions if it can be established by a sequence of 
steps, each representing a permitted inference according to the rules governing the 
appropriate use of logical connectives, that is, terms like ‘and,’ ‘if … then,’ ‘every,’ and 
‘some.’ The early twentieth century saw the identification and analysis of such logical 
frameworks, in the form of formal axiomatic bases for logical reasoning.  

There is also a semantic notion of logical consequence: a statement is a semantic 
consequence of some hypotheses if, no matter how the non-logical terms are interpreted, 
whenever the hypotheses are true under the interpretation, so is the conclusion. For 
example, the conclusion ‘Every X is a Z’ is a logical consequence of the assumptions 
‘Every X is a Y’ and ‘Every Y is a Z,’ since no matter how we interpret X, Y, and Z, if 
the hypotheses are true, so is the conclusion. Developing a mathematical theory of 
semantic consequence required not just an analysis of mathematical language, but also a 
notion of ‘true under an interpretation.’ Alfred Tarski's theory of ‘truth in a model’ 
provides us with just that.  

For first-order logic, Kurt Gödel's completeness theorem of 1929 shows that these two 
notions coincide: a statement is a deductive consequence of some hypotheses just in case 
it is a semantic consequence of these hypotheses. In contrast, second-order logic extends 
first-order logic with variables ranging over predicates and relations, and it is a 
consequence of Gödel's incompleteness theorem that there is no sound, effective 
deductive system for second-order logic that is complete for the standard semantics, in 
which variables are taken to range over all predicates on the first-order domain. (Here, 
the term ‘effective’ denotes the reasonable requirement that the axioms and rules be 
expressed in such a way that there is an algorithmic procedure to determine whether a 
given text constitutes a valid proof.) Some take this to be an argument against 
considering second-order (and higher-order) logic to be properly called ‘logic.’ (See the 
discussion of this in Section 6.)  

With a notion of deductive consequence in hand, one can take a mathematical theory to 
be the set of deductive logical consequences of a set of axioms describing a particular 
mathematical domain. The question naturally arises as to where to draw the line between 
logic and mathematics. For example, recall that Frege aimed to show that the truths of 
arithmetic could be reduced to logical truths, with the term ‘logic’ suitably construed. In 
1902, however, Bertrand Russell observed that Frege's logical system was inconsistent. 



Roughly speaking, Russell's paradox is that if one is allowed to form the set S of all sets 
that are not members of themselves, then S is a member of itself if and only if it isn't, 
yielding a contradiction. (More precisely, Frege's logical framework allowed one to 
consider the concept of being the extension of a concept which does not hold of its own 
extension, but the net effect is the same.) Henri Poincaré, Russell, and others diagnosed 
the problem as lying in the impredicativity of the definitions; for example, Russell's 
definition of the set S involves a variable ranging over the collection of all sets, of which 
S itself is a member. Russell responded to the problem by introducing a ‘ramified’ theory 
of types, which bars this type of circularity by stratifying the language so that a definition 
can only quantify over concepts whose definitions are logically prior. Such a system was 
to form the basis of Russell and Alfred North Whitehead's Principia Mathematica, in 
which portions of mathematics were developed on that basis. The system's ramification, 
however, made it impossible to handle a number of ordinary mathematical developments, 
leading Russell to add an additional ‘axiom of reducibility.’ This addition drew criticism, 
since it is hard to justify its status as a ‘logical’ axiom.  

Within a few years, Leon Chwistek and Frank Plumpton Ramsey had argued that, on a 
logicist conception, one could justifiably dispense with Russell's ramification.16 Indeed, 
formal axiomatic frameworks for ‘simple type theory,’ developed by Rudolf Carnap, 
Kurt Gödel, and Alonzo Church, provide a more workable framework for mathematics 
while still avoiding the obvious paradoxes. Another axiomatic framework, Zermelo-
Fraenkel set theory, was given its modern formulation as a theory based on first-order 
logic, and was shown to provide a remarkably robust foundation for mathematics.   

In 1931, Gödel proved his famous incompleteness theorems. The first incompleteness 
theorem states that no effective deductive system for mathematics strong enough to prove 
some basic facts about the natural numbers can be complete; in other words, assuming 
the system is consistent, there will be statements that are neither provable nor refutable in 
the system. The second incompleteness theorem shows that no such system can prove its 
own consistency; a fortiori, it is not possible to demonstrate the consistency of a formal 
system using any weaker fragment. The second incompleteness theorem dealt a serious 
blow to Hilbert's program, which will be discussed in the next section.  

The 1930s gave rise to the modern theory of computability. We have already discussed 
nineteenth century shifts from algorithmic to set-theoretic reasoning, and the expanded 
notion of a function that came with it. With the new methods that had been introduced, 
set-theoretic language and methodology could be brought to bear on the characterization 
of functions, without a direct computational interpretation. A precise definition of what it 
means for a function, say, from natural numbers to natural numbers to be computable 
was required, however, before one could give explicit examples of functions that are not 
computable. This was provided by models of computability given by Alan Turing, 
Church, Jacques Herbrand, Gödel, and Emile Post. Even though the definitions they 
provided were, on the surface, quite different, it was soon shown that the definitions 
agree as to which functions are computable. This, combined with a conceptual analysis 
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of the notion of computability given by Turing, has given weight to the Church-Turing 
thesis, namely, that these definitions in fact capture the informal notion of 
‘computability.’ With this analysis, Turing was able to show that there are specific 
classes of mathematical problems that do not posses algorithmic solutions. The halting 
problem—that is, the question as to whether a given algorithm ultimately comes to a 
final state when presented with a given input—is one such class of problems.   

In 1963, Paul Cohen, building on work by Gödel, showed that the ‘axiom of choice’ and 
Cantor's ‘continuum hypothesis’ are independent of the Zermelo-Fraenkel axioms of set 
theory. In other words, these two fundamental assertions about sets cannot be derived or 
refuted from the conception of set given by the Zermelo-Fraenkel axioms. These provide 
two striking and important instances of the first incompleteness theorem.  

Thus early twentieth century research helped clarify mathematical language, the rules of 
mathematical inference, fundamental mathematical assumptions, and the notion of 
computability; as well as the limits of formal provability, computability, and 
definability.   

6. Early twentieth century philosophical views  

The advances in mathematical logic just described developed in tandem with inquiry into 
the nature of mathematics, and we are finally in a position to consider some of the 
philosophical stances that emerged. Recall that Russell and Whitehead, with the 
Principia, aimed to revive Frege's logicist project. The common view today is that 
logicism has failed, since the various foundations that have been proposed for 
mathematics seem to rely on axioms that do not have a purely ‘logical’ character, like the 
assertion that there is an infinite set. W. V. O. Quine was further critical of viewing 
higher-order reasoning itself as properly ‘logical’ reasoning, arguing that since it is a 
mistake to admit predicates as logical objects, higher-order logic is really ‘set theory in 
sheep's clothing.’17 Thus a general picture emerges in which one views mathematics as 
consisting of the logical consequences of appropriate mathematical axioms. This has the 
effect of distinguishing the foundations of mathematics from the foundations of logic; the 
philosophy of mathematics can then focus on the status of mathematical objects and 
axioms, consigning the task of accounting for logic and its normative status to a separate 
office.  

In the 1910s, the mathematician L. E. J. Brouwer spearheaded a new movement in 
mathematics known as intuitionism. This movement had both philosophical and 
methodological components. On the philosophical side, Brouwer gave a somewhat 
solipsistic account of mathematical knowledge in terms of intuitive constructions; 
roughly, one's assertion that a mathematical statement is true is tantamount to the 
assertion that one has effected a mental construction that allows one to recognize that this 
is the case. Basic properties of the natural numbers, say, were to be rooted in our 
intuitions of time. Logical connectives, however, were also given interpretations in terms 
of intuitive constructions; for example, an assertion that ‘A or B’ is true is understood to 
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mean that either one has a construction that enables one to see that A is true, or one has a 
construction that enables one to see that B is true (and one knows which is the case). 
Asserting the truth of an implication ‘A implies B’ amounts to asserting that one is in 
possession of a construction that transforms sufficient evidence that A is true into 
sufficient evidence that B is true. These views have strong implications for the practice 
of mathematics; for example, on this view, the assertion ‘A or not A’ is not justified until 
one knows which is the case. Thus Brouwer rejected tertium non datur, or the law of the 
excluded middle, as a generally valid principle of reasoning. This placed serious 
restrictions on the type of mathematics that one could practice, and, in particular, ruled 
out the kind of nonconstructive arguments discussed in Section 3. On the other hand, as 
noted by many logicians over the next two decades, the Brouwerian principles of 
reasoning could be given a direct computational interpretation. As a result, intuitionistic 
philosophy was closely allied with a ‘constructive,’ or algorithmic, mathematical 
orientation.   

In light of Russell's paradoxes and similar concerns, some felt a philosophical 
retrenchment, like Brouwer's, was called for. But although he was sensitive to questions 
of consistency, Hilbert felt that rejecting modern set-theoretic methods was tantamount to 
throwing out the baby with the bathwater, and he strongly resisted any restrictions on 
these newfound mathematical freedoms. In 1922, he launched his program of 
Beweistheorie, or Proof Theory, which was to ‘settle the question of foundations once 
and for all.’ Hilbert's program involved (1) representing modern mathematical reasoning 
using formal axiomatic systems, and then (2) proving that these systems are consistent 
(that is, will never yield a contradiction) using only incontrovertible, ‘finitary’ methods. 
This would guarantee, in particular, that every concrete (and, in fact, universal) assertion 
proved using the new methods is in fact true; thus from one point of view one could 
interpret references to infinite sets and structures as ‘ideal’ instruments to facilitate the 
derivation of finitary, concrete results.   

The term ‘formalism’ is usually associated to the claim that consistency of a formal 
system alone is sufficient to justify the use of the associated mathematical methods.  It is 
easy to criticize such a view, as did Brouwer: taking the viewpoint to the extreme, 
mathematics becomes nothing more than a game of manipulating symbols, with nothing 
to distinguish any one consistent symbol game from another. As a criticism of Hilbert's 
program, this is partially unfair. Hilbert's program did not commit him to the strong 
claim that mathematical assertions can have no meaning beyond the strict formalist 
reading above; rather, only the claim that having a finitary guarantee of consistency 
provides a certain degree of justification. But, of course, we can reasonably expect the 
philosophy of mathematics to tell us why certain mathematical practices are better than 
others, and so it is clear that formalism does not tell the whole story.  

By the late 1920s, the divisive and often bitter debates over the justification and 
methodology of mathematics led to what has been called the ‘crisis of foundations,’ with 
formalism, intuitionism, and (to a lesser extent) logicism taken to be the central positions. 
None of these seemed capable of shouldering the burden on its own. Logic in and of 
itself did not seem sufficient to account for mathematical practice. Appealing to intuition 



as the final arbiter of mathematical knowledge made it hard to account for the objectivity 
of mathematical knowledge, and most mathematicians found Brouwer's intuitionistic 
practice too constraining. Finally, formalism, while offering some insight into the notion 
of objectivity and rigor, failed to explain how the conventions of mathematics obtain 
their normative force. Once again, the problem boils down to that of giving a unified 
account of language, thought, and knowledge of objective mathematical facts.  

One might hope to make progress by fitting an account of mathematics into a broader 
theory of scientific practice. The logical empiricist (or logical positivist) movement, for 
example, aimed to divide scientific knowledge into analytic and synthetic components. 
Roughly, the analytic component was to consist of those truths whose justification rests 
on commonly accepted conventions of scientific practice. This notion of analyticity was 
borrowed from Ludwig Wittgenstein, who used it to characterize logical tautologies as 
truths that simply reflect the proper use of language.18 Logical empiricists extended the 
notion, however, to include mathematics, as well as scientific definitions and 
conventions. Viewing mathematics as a product of linguistic convention renders it, in a 
sense, epistemologically empty. Logical empiricists therefore took the nontrivial part of 
scientific knowledge to be contained in the synthetic component, which consists of 
assertions whose justification requires some form of appeal to empirical observation.   

In his famous attack, ‘Two dogmas of empiricism,’ Quine rejected the possibility of 
drawing a sharp distinction between the analytic and synthetic components.19 Instead, he 
offered a form of empiricism in which the status of any particular claim has to be judged 
in the context of the entire theory, a position known as holism. On this view, mathematics 
loses much of its privileged status as a priori, necessary knowledge. Fundamental 
mathematical assertions are statements whose truth we assent to and may be very 
reluctant to give up, but like any other aspect of our scientific theorizing, may ultimately 
be revised to accommodate experience and theoretical developments in the future.  

Quine also rejected any attempts to justify science on ‘first principles,’ that is, prior 
metaphysical preconceptions. Instead, he saw the philosopher as working within the 
framework of contemporary scientific knowledge, engaged in a task of methodological 
hygiene. That is, the philosopher's task is to survey contemporary science and tidy up the 
language and conceptual underpinnings. Quine saw this view as a refinement of a 
naturalist philosophy found in nineteenth century writings of J. S. Mill. Quine’s 
landmark work, Word and Object, opens with a quote from a more recent essay by Otto 
Neurath, in which the philosopher's task is compared to that of a shipbuilder forced to 
repair a ship at sea, gradually replacing and reshaping old beams rather than starting 
afresh.20  

As far as mathematics is concerned, on Quine's view, one should grant ontological status 
to those mathematical objects that are needed to make sense of the best scientific theories 
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we have today. As Hilary Putnam colourfully put it, it would be strange to accept the law 
of universal gravitation, which asserts that the ratio of the force exerted by one object 
upon another is proportional to the ratio of the product of their masses and the square of 
the distance between them, without believing in the existence of ‘ratios.’21 Thus 
mathematical ontological claims are justified by, and only by, their indispensability to the 
sciences, modulo some allowances for abstractions that serve to round out the theory and 
support more general empirical values of economy and simplicity.  

7. The philosophy of mathematics today  

To the present day, there have been ongoing attempts to adapt and strengthen early 
twentieth century attempts to ground mathematical knowledge. For example, the ‘Neo-
Fregean’ program, developed by Crispin Wright and Bob Hale out of a proposal by 
George Boolos, is a modern form of logicism. First, neo-Fregeans replace the axiom of 
infinity by a ‘number of’ operator and a formal axiom, ‘Hume's principle.’ The latter 
asserts that for any predicate, S, the notion ‘the number of S’ has an expected behaviour. 
Next, they show that against the backdrop of second-order logic, Hume's principle 
suffices to derive the axiom of infinity, and hence a substantial portion of ordinary 
mathematics. On appeal to linguistic considerations, they argue that Hume's principle (as 
well as second-order logic) can be considered analytic. The analyticity of the relevant 
portion of mathematics then follows.  

Others have pursued different metaphysical strategies. Philosophers like Hartry Field 
have presented nominalistic, or ‘irrealist,’ accounts of mathematical objects, which aim 
to explain away references to abstract objects via various reinterpretations of 
mathematical language. Following a suggestion by Putnam, Geoffrey Hellmann has 
instead tried to account for a portion of mathematical reasoning in terms of an ontology 
of possible worlds.  

A number of philosophers have used logical analyses to help clarify ontological and 
epistemological stances. For example, William Tait has tried to characterize the notion of 
finitism implicit in Hilbert's work; Solomon Feferman has clarified the reach of a 
predicative mathematical ontology, which does not presuppose the totality of all subsets 
of an infinite set; Wilfried Sieg has clarified the assumptions needed to support the 
Church-Turing analysis of computability; and Michael Detelfsen has explored the 
philosophical presuppositions behind Hilbert's program.  

The latter half of the twentieth century brought alternative attempts to ground 
mathematical knowledge in historical terms. Philosophers like Imre Lakatos and Philip 
Kitcher argued that the appropriate justification for mathematical axioms and methods of 
proof is that they are the result of a rational historical process of mathematical invention 
and discovery. This shifts the philosophical burden to the task of developing a theory of 
rationality. Many are uncomfortable with such an approach, since, for one thing, it 
relativises mathematical knowledge to particular historical contexts. Furthermore, it 
seems to make mathematical knowledge contingent on haphazard historical 
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developments, since it is conceivable that other ‘rational’ processes could have brought 
us to accept different axioms and methods. At issue is not so much the question as to 
whether this is in fact the case, but, rather, whether the types of philosophical explanation 
we seek should be cast in terms of such historical contingencies. Some have gone further 
to suggest that a proper account of mathematical knowledge should take even more into 
consideration, such as biological, social, political, and institutional factors.  

In recent years there have also been efforts to expand, modify, or clarify the Quinean 
naturalistic framework. Recall that on the Quinean view, the acceptance of basic 
mathematical assumptions is justified, holistically, by their role in the physical sciences; 
on that view, parts of mathematics that are not currently required by these sciences are as 
yet unjustified. Penelope Maddy has recently proposed a variant of this view which she 
calls mathematical naturalism. Once one accepts that mathematics, as a whole, is useful 
to the sciences, she argues, one should evaluate mathematical developments by the 
internal standards of the community. For example, one may appeal to internal measures 
of simplicity and generality that may not always line up exactly with broader scientific 
values, but have proved to be useful for the development of mathematical practice. Thus, 
in a sense, mathematicians can enjoy a collective bargaining agreement with respect to 
the broader scientific community.  

Attention to the actual practice of mathematics has raised additional philosophical issues. 
In a foundational essay first published in 1888, Dedekind observed that the question of 
what natural numbers like 2 and 17 are is largely unimportant to mathematics.22 What is 
important is that one is dealing with a structure equipped with a starting element, 0, and 
an injective function, which, given any number, returns its ‘successor’; so long as the 
resulting structure satisfies the principle of induction. Furthermore, Dedekind showed 
that any two structures meeting these criteria are isomorphic, so that references to one 
can be translated to references to the other without any further effects to the theory. This 
simple observation was revived by Paul Benacerraf in an essay ‘What numbers could not 
be’: Benacerraf tells a parable of two children who seem to have the same understanding 
of the natural numbers, but are shocked to find, one day, that their set-theoretic 
definitions of the natural numbers turn out to be different.23 The point, again, is that the 
particular choice of definition is irrelevant; what is important is only the structural 
properties. Such an emphasis on structures has played a central role in twentieth century 
mathematics, supported by early algebraic work of Hilbert, Emmy Noether, and others, 
and the associated body of tools, viewpoints, and methods is usually gathered under the 
banner of ‘structuralism.’  

From a foundational point of view, this suggests that one should aim for a 
characterization of mathematical practice that explains the independence just described. 
Category theory provides just such an account, analyzing mathematical language in 
terms of talk of structures and mappings between them, without concern for the nature of 
the particular elements of those structures. Philosophers like Steve Awodey and Colin 
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McLarty have tried to spell out this philosophical understanding of mathematics. Stewart 
Shapiro, Michael Resnik, and Charles Parsons have, instead, explored the possibility of 
using structuralist ideas to fashion a metaphysics for mathematics, in which basic 
mathematical objects are understood as nothing more than ‘places’ in structures. There 
have been ongoing efforts to dissolve the knotty problems that come up when one tries to 
fill in the details.  

Some of the most interesting work in recent years has been the result of a retreat from the 
‘big’ questions of ontology and metaphysics, in favour of analyses of more particular, 
local features of mathematical practice. Some have tried to make sense of the way we 
carry out diagrammatic reasoning, which is not well characterized by deductive 
formalisms. Standard formalizations of geometry do not seem to explain how it is we 
understand an argument that makes reference to diagrams, or why it is that such 
diagrams can confer a better understanding than a purely textual proof. Marcus 
Giaquinto has therefore tried to find a place for visualization in the epistemology of 
mathematics. Other inquiries have tried to explain features of mathematics that become 
salient when one considers the subject's history. For example, a recent collection of 
essays tries to make sense of the historical classification of mathematical arguments as 
‘analytic’ or ‘synthetic’, terms that one finds already in the fourth century writings of 
Pappus.  

Others have tried to make sense of various value judgements that are found in informal 
mathematical discourse. We have discussed nineteenth century emphases on ‘conceptual’ 
over algorithmic reasoning, and the phrase ‘conceptual’ is often used today as a term of 
accolade. Philosophers like Ken Manders and Jamie Tappenden have begun to try to 
understand these judgements. Aristotle distinguished between scientific demonstrations 
that show that something is true, and those that explain why something is true, and a good 
deal of work in the philosophy of science aims to provide accounts of scientific 
explanation. Philosophers like Mark Steiner and Paolo Mancosu have begun to develop 
theories of mathematical explanation along similar lines. Branches of mathematics that 
are designed for scientific applications tend to have features that are distinct from their 
‘purer’ cousins; philosophers like Mark Wilson have tried to understand some of these 
features.  

Such approaches share a number of common features. First, they explore issues that seem 
to have foundational, epistemological, or methodological interest, but extend beyond the 
narrow confines of a theory of truth and justification.  Second, they support the view that 
one must pay attention to both modern and historical mathematical practice to get a sense 
of the issues involved, even if one's ultimate goal is a general theory that is independent 
of historical terms. Finally, they share a ‘bottom up’ approach to the philosophy of 
mathematics, which focuses on specific case studies and more restricted questions, in the 
hopes that over time a more global and unified theory will emerge. Such approaches do 
not represent so much a retreat from the traditional questions as the belief that such 
questions can best be answered in the context of a more robust theory of mathematical 
understanding.  
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