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A Network Analysis Model for Disambiguation of Names in Lists 
 

Abstract 
 

In research and application, social networks are increasingly extracted from relationships 

inferred by name collocations in text-based documents.  Despite the fact that names represent 

real entities, names are not unique identifiers and it is often unclear when two name observations 

correspond to the same underlying entity.  One confounder stems from ambiguity, in which the 

same name correctly references multiple entities.  Prior name disambiguation methods measured 

similarity between two names as a function of their respective documents. In this paper, we 

propose an alternative similarity metric based on the probability of walking from one ambiguous 

name to another in a random walk of the social network constructed from all documents.  We 

experimentally validate our model on actor-actor relationships derived from the Internet Movie 

Database.  Using a global similarity threshold, we demonstrate random walks achieve a 

significant increase in disambiguation capability in comparison to prior models.  

 

Keywords: Disambiguation, Social Networks, Link Analysis, Random Walks, Clustering 
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1. Introduction 

Link analysis is increasingly performed on networks constructed from personal name 

relationships extracted from text-based documents (e.g. Coffman et al., 2004; Culotta et al., 

2004; Harada et al., 2004; Diesner and Carley, 2005, Thompson, 2005).  In such networks, a 

vertex corresponds to a particular name and an edge specifies the relationship between two 

names. Before such a network can be analyzed for centrality, grouping, or intelligence gathering 

purposes, the correctness of the network must be maximized. Specifically, it must be decided 

when two pieces of data correspond to the same entity or not.  Failure to ensure correctness can 

result in the inability to discover certain relationships or cause the learning of false knowledge. 

Names are not unique identifiers for specific entities and, as a result, there exist many 

confounders to the construction of correct networks.  Firstly, the data may consist of 

typographical error.  In this case, the name “John” may be accidentally represented as “Jon” or 

“Jhon”.  There exist a number of string comparator metrics (Winkler, 1995; Cohen et al., 2003; 

Wei, 2004) to account for typographical errors, many of which are in practice by various federal 

statistical agencies, such as the U.S. Census Bureau.  However, even when names are devoid of 

typographical errors, there are additional confounders to data correctness. For instance, there can 

exist name variation, where multiple names correctly reference the same entity.  Or, more 

pertinent to our research, there can exist name ambiguity, such that the same name correctly 

references multiple entities.  While both problems must be accounted for, this paper concentrates 

on the basic aspects, and how to resolve, ambiguity.  The basic question we ask is, “How can a 

computer resolve which particular entity is referred to, or disambiguate, various observations of 

the same name?” 
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Disambiguation is by no means a trivial feat, and the manner by which a human makes a 

decision is often contingent on contextual clues as well as prior background knowledge. For 

example, when a reader encounters the name “George Bush”, the reader must decide if the name 

represents “George H.W. Bush” - the 41st President of the United States of America, or “George 

W. Bush” - the 43rd president, or some other individual of lesser notoriety. When the name is 

situated in a traditional communiqué, such as a news story, humans tend to rely on linguistic and 

biographical cues. If the name was situated in the following sentence, “George Bush was 

President of the United States of America in 1989”, then, with basic knowledge of American 

history, it is clear the story refers to the elder “George H.W. Bush”. 

Though spoken conversations and written communications between entities are 

structured by known grammars there is no requirement for text-based documents to provide 

traditional semantic cues.  One such counter scenario occurs when documents are merely rosters 

that consist of nothing but names (Sweeney, 2004). To relate information corresponding to the 

same entity in this type of environment, disambiguation methods must be able to leverage list-

only information. Models developed for natural language processing (Vronis and Ide, 1999), 

such as those available in the sentence regarding the American President, are not designed to 

account for this new breed of semantics. 

Recently, the data mining community has focused on the design of less structure 

dependent disambiguation methods (Bhattacharya and Getoor, 2004; Jensen and Neville, 2000; 

Kalashnikov et al., 2005).  These methods are often tailored to assumptions and characteristics of 

the environments where the references reside. For example, some methods leverage the 

covariates of references (i.e. the observation of two references in the same source) or require that 

social groups function as cliques (Bhattacharya and Getoor, 2004). This model expects 
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environments in which strong correlations exist between pairs or sets of entities, such that they 

often co-occur in information sources. While closely knit groups of entities provide an ideal 

scenario, it is not clear if such social settings manifest in the real world. In contrast, it is feasible, 

and intuitive, to leverage less directly observed relationships. This is precisely the route explored 

in this paper. 

In this paper, we consider networks of the references in question, such that one can 

leverage “community” structures among entities (Girvan and Newman, 2002). By studying 

communities of entities, we exploit relationships between entities which have minimal, or no, 

observed interactions. This is extremely powerful, since it allows for disambiguation when 

covariates are weak or the social network of entities is less centralized. We investigate the degree 

to which disambiguation methods can be automated using relational information only. More 

specifically, given only a set of observations of names from information sources, such as 

webpages, can we construct an automated system to determine how many entities correspond to 

each particular name? Furthermore, can we determine which particular name observation 

corresponds to which underlying entity? 

The remainder of this paper is organized as follows. In the following section we review 

related research in disambiguation models from the natural language processing and data mining 

research communities. In Section 3, we introduce a formal model of our network analysis and 

evaluation methods.  Next, in Section 4, we report experiments on a dataset consisting of movie-

actor lists derived from the Internet Movie Database (IMDB). Findings from this analysis 

suggest that community similarity, which leverages network similarity are more reliable for 

disambiguation than document similarity. Then, in Section 5, we discuss limitations of network-

based similarity metrics and possible extensions to this research. 
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2. Background 

There exist a number of approaches that have been applied to disambiguation.  In this section, we 

briefly review previous disambiguation research and where the work presented in this paper 

differs. 

In general, disambiguation methods can be taxonomized on two features: 1) information 

type and 2) supervision. Information type specifies to whom data corresponds and there are two 

main types often used for disambiguation: a) personal and b) relational.  Personal information 

corresponds to static biographical (e.g. George H.W. Bush was the 41st President) and 

grammatical (e.g. fall used as a noun vs. as a verb) information. To leverage this information, 

disambiguation methods usually use sets of rules for discerning one meaning from another. In 

contrast, relational information specifies the interactions of multiple values or terms (e.g. George 

H.W. Bush tends to collocate with Ronald Reagan whereas George W. Bush tends to collocate 

with Dick Cheney). 

The second taxonomizing feature is the supervision of the disambiguation process. In 

supervised learning systems, each disambiguation method is trained on labeled sample data (e.g. 

first sample corresponds to first meaning, second sample corresponds to second meaning, etc.). 

In an unsupervised learning system, methods are not trained, but instead attempt to disambiguate 

based on observed patterns in the data. 

 

2.1. Personal Disambiguation 

Word sense disambiguation methods initially gained momentum in natural language processing. 

Early computational methods tagged sentences with parts of speech and disambiguated 
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words/phrases based on the tags (Brill and Resnick, 1994; Jensen and Binot, 1987).  With the 

incorporation of a database-backed model, IBM's “Nominator” system (Wacholder et al., 1997), 

used phrase context (e.g. punctuation, geographic position in sentence, and capitalization) in 

parallel with prior knowledge (e.g. known type of entity for names) for disambiguation. Names 

encountered by the system were matched to names whose context and knowledge were 

previously specified. 

Bagga and Baldwin (1998) introduced an unsupervised disambiguation model based on 

sentence comparison without prior knowledge. Sentences are parsed into vector-space 

summaries of words or concepts. Summary pairs are compared and similarity scores above a 

certain threshold are predicted as the same entity. Mann and Yarowsky (2003) extended 

summaries to parse for structured biographical data, such as birth day, birth year, occupation, and 

place of birth. The name observations were then clustered based on similarity of biographies. 

The aforementioned methods require prior specification of rules, grammars, and multiple 

attributes for comparison and, as a result, there is a lack of accountability for unstructured 

information.  An alternative approach for natural language disambiguation is based on 

probabilistic models of word usage. Lesk (1986) extended rule based models to account for the 

relationship of an ambiguous word with its surrounding words.  He demonstrated that overlap in 

the dictionary definitions' of surrounding text words can be used to disambiguate.  Gale et al. 

(1992) showed dictionary definitions were unnecessary, provided a representative sample of 

word covariation was available. They verified this claim in a supervised environment, in which a 

naïve Bayes classifier was trained for each ambiguous word based on the usage of surrounding 

words, or covariance. Over the years, additional statistical models for word and concept 
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covariates have been studied (Brown et al., 1991; Ginter et al., 2004; Hatzivassiloglou et al., 

2001; Ng 1997; Yarowsky 1992). 

 

2.2. Relational Disambiguation 

Networks provide a way to construct robust patterns from minimally structured information. 

Certain word disambiguation methods have employed semantic networks from corpora for more 

robust similarity measures (Chan and Franklin, 1998, Hiro et al., 1996; Veronis and Ide, 1999). 

Similarly, other models have considered belief propagation networks and Bayesian models for 

disambiguation (Chao and Dyer, 2000). 

Recent research has investigated link structure and social networks for disambiguation.  

Bekkerman and McCallum (2005) study disambiguation of names in a linked environment, such 

as the World Wide Web. Their model leverages hyperlinks and the distance between pages 

where ambiguous names are found.  For our research, we consider an environment in which 

there is no link structure between documents.  In contrast, Bhattacharya and Getoor (2004) 

investigate a specific case of social networks for disambiguation of names residing in documents 

representative of co-authorship.  In the latter’s research, both ambiguity and variation problems 

are tackled simultaneously using an iterative approach akin to expectation-maximization. The 

model measures distance between groups, where a group is a clique of entities representative of 

the document in which the reference resides, as predicted from a previous iteration.  Based on its 

design, the approach skews predictions towards groups which are not only equivalent, but 

function as cliques. This model is not necessarily representative of the space of social networks. 

It is unclear if this model generalizes to other types of networks (Albert and Barabási, 2002; 

Newman 2003), such as small-world, hierarchical, or cellular.   
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Clique detection requires what we informally term exact similarity, such that 

relationships between entities must be directly observed (e.g. Alice and Bob are related if they 

collocate in the same source).  As applied in this research, we make use of community similarity 

to relax the direct observation requirement and permit relationships to be established between 

entities indirectly.  For instance, Alice and Bob may never be observed together, but both Alice 

and Bob can collocate with Charlie, Dan, and Fran.  Though community similarity measures do 

not necessarily account for all types of networks, the goal of this research is to demonstrate their 

capability in comparison to exact similarity in a controlled environment. We suspect that in a less 

centralized system, similarity measures based on community provide more robust metrics. 

In the following section, we introduce several methods.  The first is dependent on exact 

similarity, while the latter is an alternative method which measures community similarity. 

 

3. Methods 

In this section, we introduce terminology, notation, and formally define the disambiguation 

problem. 

An entity is the basic element of the population of interest, e.g., a person.  However, in 

our problem, entities are not observed, thus we introduce the set of entities in our model by 

means of a set of latent variables H = {h1, h2, … , hk}. There is a latent variable for each entity in 

the model. Our methodology will estimate the number of underlying entities in a given dataset, 

hence we do not have to specify how many entities are in the model a priori. An observation 

corresponds to a set of measurable characteristics of an entity, e.g., a last name and initials of 

first and middle name. The observed full names manifest in a set of information sources S = {s1, 

s2, … , sm}, such that each source si consists of a set of extracted names Ni. For example, one can 
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consider a single webpage as a single source.  The set of distinct names observed in S is 

represented by E = {e1, e2, … , en} = N1 ∪ N2 ∪ … ∪ Nm. In our problem, an observation (e.g., a 

first name) may correspond to several underlying entities at face value although it correctly 

references a single entity only; in this case we say that such an observation is ambiguous to 

multiple entities. An observation that refers to k different entities is called k-ambiguous. This is 

the scenario depicted in Figure 1, where the name Alice correctly represents e1 in s1 and e3 in s3.  

Our data differs from the typical observations in social and link analysis in that edges 

correspond to relationships between measurable characteristics, rather than entities, whereas the 

goal of the analysis is to understand the relational structure among unobservable entities. That is, 

we want to investigate the relational structure among entities by investigating an ambiguous 

version of such structure.  The goal of this research is to propose techniques to resolve the 

ambiguity; one leverages directly observed relationships, another incorporates unobserved, 

though meaningful, relations. The first technique is a version of hierarchical clustering on 

sources with ambiguous names only.  The second constructs social networks from all sources, 

regardless of the existence of the ambiguous name of interest. The following sections explain 

these methods in detail. 

 

3.1. Hierarchical Clustering 

For the first method, each source is represented as a Boolean vector si = [ei1, …, ein], where eij = 

1 if name ej is in source si and 0 otherwise.  Hierarchical clustering is performed using an 

average linkage criterion, which has been applied in prior disambiguation research (Bhattacharya 

and Getoor, 2004; Bagga and Baldwin, 1998; Mann and Yarowsky, 2003), which is calculated as 
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follows (Duda et al., 2001). Each source to be clustered is initialized as a singleton cluster. Then, 

similarity between two clusters ci, cj, denoted csim(ci , cj), is measured as 
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where the similarity between two sources si, sj, denoted ssim(si, sj), can be measured using any 

distance or similarity function.  The similarity function of choice for this research is one minus 

the cosine distance of the vectors of the two source vector representations.  More specifically, 

cosine similarity between two sources is calculated as: 
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The most similar clusters are then merged into a new cluster.  This process proceeds until either a 

pre-specified stopping criterion is satisfied or all sources reside in one common cluster. 

 

3.2. Random Walks and Network Cuts 

An alternative method considered in this research is the analysis of social networks constructed 

via names with high certainty.  Mainly, we are interested in the partitions of networks as 

prescribed by random walks from nodes of ambiguous names.  One principle difference between 

the random walk method described in this section and the hierarchical clustering of the previous 

section is the walk is permitted to proceed over nodes (names) which occur in sources devoid of 
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ambiguous names.  By doing so, we exploit weak ties, which taken in combination, can lead to 

the discovery of community structures in the graph. 

From the set of sources S, a social network is constructed in the following manner. Every 

distinct name in S is set as a node in the network.  An edge exists between two nodes if the 

corresponding names collocate in a source at least one time. The weight of the edge between two 

nodes i, j is based on reasoning initially specified by Adamic and Adar (2003).  In their research, 

users of an email list were related based on the number of topics in common and the popularity 

of each topic.   In general, the likelihood two users were related was inversely proportional to the 

number of users mentioning the topic.  For our research, we calculated the weight between two 

names as wij = |s|-1Σs∈S θijs, where θijs is an indicator variable with value 1 if names for nodes i 

and j collocate in source s and 0 otherwise.  Our assumption is the fewer the number entities 

observed in a source, the greater the probability the entities have a strong social interaction. For 

instance, a website which depicts a list of all students, faculty, and staff of a university conveys 

less specific information than the class roster for a machine learning graduate course. 

In order to group names (i.e., observations) that correctly refer to the same entity into the 

same cluste,r we start by constructing a network where each name is a node.  Initially, we 

assume every name is a unique identifier for an entity, except for a single name to be 

disambiguated.  An example network is depicted in Figure 2 for the name Alice. In this network, 

Gil is indirectly connected to Alice through her acquaintances Dan and Fran. 

Given this initial social network, we then proceed with random walks over the graph. 

Each walk begins at a node which represents the name of interest. The probability a step is taken 

from node a to node b is the normalized weight of the edge with respect to all edges originating 
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from node a. This probability is calculated as P(a→b|a) = wab Σjwaj.  Note the probability 

P(a→b|a) = 0. 

The random walk proceeds until either 1) a name node with the name of interest is 

encountered or 2) a maximum number of steps are taken.  In our preliminary studies, we limited 

the maximum number of steps to 50. 

 

3.2.1. Posterior Probability Base Heuristic 

After a certain number of random steps, we approximate the posterior probability of reaching b 

given the walk originated at a and the observed network, which is represented as P(a ⇒ b). The 

posterior probabilities inform us about which sets of observations are intimately connected given 

observations about their local social interactions. If two observations are close in their observable 

social space it is reasonable to believe that they correspond to the same underlying entity. For 

example, Figure 3 represents the posterior network for the ambiguous names of interest.  The 

similarity between nodes a and b is set to the average of the probability of reaching a given b as a 

start node and vice versa, or [P(a ⇒ b) + P(b ⇒ a)] / 2. 

 The advantage of this heuristic with respect to hierarchical clustering is mainly practical, 

that is, it is more intuitive to set a threshold on the set of posterior probabilities that the random 

walk returns, rather than to define a stopping criterion to threshold similarities in any hierarchical 

clustering method. A limitation of this method, however, is that the information a random walk 

provides is much more substantial than the posterior probability of reaching one node from 

another, and yet our method clusters observations using only the latter probabilities. For example, 

the edge weights between name-pairs can inform about the size of the sources such name-pairs 
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were extracted but not about the number of sources each name appeared or the number of 

random walk failures1 that were neglected. 

 

3.2.2. Posterior Probability Full Normalization 

To normalize the results produced by the random walk procedure we utilize information that was 

neglected in the basic heuristic, namely, the number of times random walks failed to reach an 

ambiguous name node. This information is useful in estimating the probability that a node will 

reach any other node, according to the intuition that the higher the number of random walk 

failures which originate at a and are supposed to end in b, the lower P(a ⇒ b) should be. 

A related issue revolves around how much information failures should contribute to the 

similarity calculation.  The absence of an edge means P(a ⇒ b) = 0, but in our procedure this 

can happens because of either 1) the absence of a path between a and b, or 2) the random walk 

did not find a path within the maximum number of steps.  In the ideal case, the posterior 

probabilities would be dependent only on the first condition (i.e. the absence of a path).  When 

this holds true, prior research on social network partitioning (Neville et al., 2003) suggests equal 

weighting of presence and absence of edges.  To resolve this issue we modulate the weight of the 

number of failures with the parameter ε, so that the weight of non-failures is (1-ε). If ε reflects 

the expected number of failures than the cost function implicitly used by our fully normalized 

procedure will be consistent with spectral clustering and a normalized cut of the table of 

probabilities corresponding to a random walk without failures. 

The intuition behind our fully normalized procedure is that the structure of pair-wise 

relations in the table of probabilities is captured by its coefficients of constant association 

                                                
1 A failure occurs every time a random walk from a to b is terminated because it reaches the maximum number of 
steps, rather than because it reaches its target node, i.e., b in this case. 
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(Bishop et al., 1975) and we plan to maintain those constant, while normalizing the table to 

having row and column entries sum to one with an iterative proportional fitting procedure 

(henceforth IPFP) (Fienberg, 1970). Intuitively, in step a) we dampen the bias introduced by the 

failures; in step b) we create a proper posterior probability table (rowd/columnd sum to one) 

while maintaining the pair-wise (or local) correlation structure of the edge weights in the graph 

entailed by our random walks; in step c) we project the nodes in the graph into the space of 

names (by dropping the node corresponding to failures), or alternatively, we extract the sub-

graph that correspond to name observations from the larger graph that includes failures, while 

preserving the pair-wise (or local) correlation structure of the edge weights. 

In more detail, in a situation with n names, a) we first introduce information about 

failures, in terms of the frequency of random walks that failed starting from each name, in 

column n+1, and we multiply entries in column n+1 by ε, and entries in all other columns by (1-

ε); b) we then use IPFP to constrain the probability table to having rows and columns sum to on, 

while maintaining the pair-wise correlation structure; c) we then remove column n+1, and we use 

IPFP again to constrain row and column sums to one, while maintaining the pair-wise correlation 

sub-structure. Geometrically, IPFP keeps the normalized table of probabilities on the same 

hyper-surface as the initial one, as defined by the set of coefficients of constant association, thus 

maintaining its initial correlation structure (Airoldi et al., 2005). 

The similarity scores are then averaged and clustered as before, such that edges are 

removed if their similarity is below a threshold value. Each resulting component of the graph 

corresponds to a particular latent variable, or entity.  The set of names for each component 

correspond to the names for a particular entity. 
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3.3. F-scores for Multiclass Accuracy 

Given a clustering of names, we measure the accuracy of the predictions through the F-score 

(Larsen and Aone, 1999). This metric was initially introduced in the information retrieval 

community for testing the accuracy of clusters with greater than two predefined classes, such as 

the topics of webpages (e.g. baseball vs. football vs. tennis vs. etc.). As applied to 

disambiguation, the F-score is measured as follows.  Let He = {h1, h2, …, hm} be the set of 

entities referenced by a specific name. Let Se = {se1, se2, …, sem} be a set of sets of sources, such 

that sei corresponds to the set of sources that entity hi occurs in. For this research, we only 

consider sources which contain a single occurrence of an ambiguous name. Thus, for all sei, sej ∈ 

Se, sei ∩ sej = ∅. Now, let C = {c1, …, ck} be a set of clusters of the sources in Se. Furthermore, 

let T = {t1, …, tk} be the set of sources for each cluster in C. 

The F-score is a performance measure, which uses the harmonic mean of precision and 

recall statistics for a multi-class classification system. In information retrieval, recall R is defined 

as the fraction of known relevant documents which were retrieved by the system.  In contrast, 

precision P is defined as the fraction of the retrieved documents which are relevant.  For a 

specific class in the system, which is simply an entity, we define recall and precision for an 

arbitrary cluster as R(ei, cj) = |si ∩ tj| / |si| and P(ei, cj) = |si ∩ tj| / |tj|, respectively.  The F-score for 

an arbitrary entity-cluster pair, f(ei, cj), which is referred to as the local F-score, is taken as the 

harmonic mean of the recall and precision, or f(ei, cj) = 2 R(ei, cj) * P(ei, cj) / (R(ei, cj) + P(ei, cj)). 

While the local F-score provides correlation for a single entity class and a single cluster, 

it is the complete system partitioning which we are interested in.  To measure the accuracy of the 

complete system we compute a global F-score, which is basically the sum of the largest local F-

scores for each entity class. More specifically, the global F-score for an E, C pair is: 
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4. Experiments 

In this section, we report results of the disambiguation strategies on a real world dataset. The 

dataset chosen to evaluate the methods was the Internet Movie Database (IMDB). A publicly 

available dataset was downloaded from the IMDB's ftp site and was parsed into a relational 

database for processing purposes (Internet Movie Database, 2004).  The database contains 

approximately 115 years worth of actor lists for movies, television shows, straight to video and 

dvd.  A subset of the IMDB dataset was chosen for evaluation purposes.  This subset covered the 

ten year period 1994-2003 and consists of all movies with greater than 1 actor.  For completeness 

purposes, the following summary statistics were gathered. There are ~37,000 movies and 

~180,000 distinct entities. The distribution of number of movies per actor is depicted in Figure 4, 

and it can be validated that it follows a log-log linear model, or power law distribution.  The 

average number of entities per movie is 8 with a standard deviation of ~9.9. Furthermore, it can 

be validated in Figure 5 that the number of entities per movie follows a similar trend.  As noted 

by Barabási and Albert (1999), the degree distribution of the actor-to-actor network constructed 

from IMDB data follows a power law distribution as well. 

To construct a set of k-ambiguous names, entities were grouped by last name. There are 

~176,000 distinct last names. The distribution of number of entities per last name also follows a 

power law distribution, as shown in Figure 6.  For our experiments, we concentrated on 2-

ambiguous names only. To put these numbers in perspective, there are approximately 18,000 2-
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ambiguous names.  For resolution purposes, we the IMDB staff labels every entity uniquely, so 

even entities with ambiguous names are provided with unique primary IDs in the form of an 

appended roman numeral (i.e. John Doe (I) vs. John Doe (II)).  As a result, for each name 

subjected to disambiguation (e.g. Doe), we were able to guarantee that every other name was 

unambiguous.  After disambiguation predictions were made, we used the underlying truth to 

generate F-scores. 

 

4.1. Hierarchical Clustering Results 

The IMDB dataset was subject to hierarchical clustering using the average linkage criterion 

described above. For clustering raw sources, we considered a continuum of similarity thresholds 

for stopping the clustering procedure. Figures 7 through 9 depict the best global F-scores 

achieved for 2-ambiguous names from this dataset. The x-axis is ordered by best observed F-

score.  The predicted F-scores were compared against several baseline methods.  In Figures 7 

through 9 the upperline corresponds to the best observed F-score.  In Figures 7 and 8, the plot 

below the best score line corresponds to the difference between the best score and the baseline. 

The baseline method in Figure 7 assumes all ambiguous names are distinct entities. In contrast, 

the baseline in Figure 8 assumes all ambiguous names correspond to a single entity. These 

baselines are referred to as AllSingletons and OneClusterOnly, respectively. In Figure 7, the first 

70,000 points correspond to 1-ambiguous names, which explains is why the single cluster 

baseline predicts perfectly (i.e. F-score of 1). 

To consider a more specific case where the baseline is not guaranteed to score perfectly, 

Figure 10 depicts disambiguation results for 2-ambiguous names, where the number of sources is 

greater than 2. In contrast to Figures 7 and 8, the plot in Figure 9 presents the difference between 
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the best F-score from hierarchical clustering and the maximum score achievable from a baseline 

method. 

To an extent, the images of Figures 7 through 9 skew the clustering prediction results. 

Though the plots imply that clustering provides F-scores above baseline scores, it must be taken 

into account that these are the best F-scores possible.  The only way to discover the maximum F-

score is to check the accuracy of each disambiguation prediction against the underlying truthful 

values. It is unfair to compare the power of hierarchal clustering to maximum F-score of the 

baseline tests for similar reasons. Just as we cannot consider all partitions of the hierarchical 

clustering process simultaneously, we cannot simply take the max of both baselines - we must 

choose one or the other.  In reality, an automated method must be able to find a point at which 

clustering automatically stops. 

A simple method which was tested for automatic stopping was to average out the F-

scores at various similarity threshold values.  The resulting scores are demonstrated in Figure 10 

with the label “hc”. In contrast to the previous experiements, the average F-scores for all 

singletons and single cluster baselines are reported. The vertical line in the graph depicts one 

standard deviation around the average hierarchical clustering F-score. A threshold of 0 

corresponds to the OneClusterOnly baseline and a threshold of 1 corresponds to the 

AllSingletons baseline.  In Figure 10, as the threshold increases from 0 to 1, the F-score increases. 

The average F-score reaches a maximum value close to a similarity of 0.99, at which point the 

average F-score and all clusterings within 1 standard deviation achieve better than the best 

baseline of all singletons. This is encouraging, except with such a high similarity threshold it is 

implied that we should only merge clusters with extremely high structural equivalence in their 
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vectors. This is quite peculiar, and appears to be completely antithetical to the belief that 

community structures permit greater capability for disambiguation. 

 

4.2. Random Walk Results 

However, once we consider the results from the random walk clustering, the previous findings 

appears to be less counterintuitive than initially implied.  In Figure 11 we present average the F-

scores for random walk partitioning using similarity based on the raw affinity matrix.  There 

were 100 random walks initiated from each ambiguous node. Recall, similarity is actually the 

mean of the probability of walking between ambiguous name observations a and b within 50 

steps. The graph is then thresholded, such that probabilities below the threshold are removed, 

and the resulting network components are set as the predicted clusters.  From the plot in Figure 

11, it is apparent that a maximum F-score is achieved at a relatively low threshold, specifically a 

probability of ~0.12. Moreover, the average F-score maximum at this point is greater that the 

maximum for simple hierarchical clustering by approximately 0.1. This is a significant 

improvement and supports the community structure hypothesis. Nodes and edges which are not 

directly related to the ambiguous names provide a significant amount of power for 

disambiguation purposes. 

 Given the significant improvement over hierarchical clustering, we continued with a 

subset of names for comparison of disambiguation using the raw counts matrix versus the IPFP 

normalized matrix.  Specifically, we selected 500 names, such that each underlying entity 

occurred in at least 2 movies.  In general, these names permit more variation in the F-scores and 

neither baseline model can produce an F-score of value 1.  In Figure 12 we depict the average F-

score values over the continuum of threshold similarity scores.  Our results indicate that 
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clustering of the raw counts matrix outperforms the IPFP normalized matrix with failures on 

average.  In this figure, we smoothed failures with ε set to 0.1 before normalizing with IPFP, but 

the exact same findings were observed for values of the smoothing parameter ε = 0.01 and 0.001.  

The fact that raw probabilities outperform normalized probabilities suggests that failures 

are not very informative about the community structures which entities are engaged in. Moreover, 

normalization implies equally weighting presence and absence of a social tie in the (implicit) 

cost function can negatively impact performance. This intuition was confirmed by additional 

evaluations we attempted with spectral clustering with local scaling (Zelnik-Manor and Perona, 

2004), which  which ranked last in terms of disambiguation power (results not shown). 

The trend in Figure 12 seems to indicate normalization hinders the disambiguation 

procedure.  Upon closer inspection, however, we discover such a conclusion might be too hasty.  

To investigate, we consider the difference in the best possible F-score achievable by both 

disambiguation methods across all threshold levels.  In Figure 13, we plot the distribution of best 

F-score achieved by the normalized matrix minus best F-score achieved by the raw counts matrix.  

Based on this difference, scores less than 0 along the x-axis correspond to cases where the raw 

counts matrix outperformed the normalized matrix.  Similarly, scores greater than 0 along the x-

axis favor the normalized matrix.  For illustrative purposes, the y-axis is presented on a log scale. 

First, we note is that for approximately 320 cases (~64%) both methods display equivalent 

potential for disambiguation.  Next, we note the distribution is left skewed, such that 

approximately 40 cases (~8%) favor the raw counts matrix.   In comparison, the number of cases 

favored by the raw counts is about two times that of the normalized matrix (i.e. 20 cases).  

This difference is not significant, thus, the disambiguation performance of the raw counts 

matrix cannot be statistically distinguished from that of the normalized matrix.  Nonetheless, our 
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results point to the raw counts matrix as the stronger candidate for measuring similarity (p-value 

≈ 0.388), hence the simple heuristic should be preferred. 

 

5. Discussion 

The results of the previous section demonstrate community similarity provides an advantage over 

exact similarity for disambiguation.  Yet, while the datasets which these results are derived 

correspond to real world observations, the experiments and models of disambiguation are based 

on a highly controlled environment. Some of the limitations of this environment, and 

possibilities for extension are addressed in the following sections. 

 

5.1. Random walks: Raw counts, Failures and Normalization  

In our experiments, the simple heuristic based on raw counts yielded the best disambiguation 

performance. The simple heuristic seemingly outperformed a sounder procedure that integrated 

information about the number of random walk failures. 

The reason why failures are not informative to the disambiguation problem may be due in 

part to the IMDB’s representation of social phenomena.  Specifically, the inferred network is not 

necessarily indicative of personal relations because actors do not have complete control over 

whom they work with in a movie. Those decisions are made by external controllers of the cast, 

such as directors and producers, which are latent factors in the generative process for our 

observations not accounted for by our methodology. In addition, there may be other reasons, e.g., 

our model weights all actors in a movie equivalently.  In other words, if there are two leads in a 

movie, say “Tom Cruise” and “Catherine Zeta-Jones”, and one extra, “John Smith”, then all 

three will be allocated the same relational weight for this movie.  Clearly, not all actors in the 
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same movie have the same relationship.  For actors that are more prominent, accumulating 

weights over movies diminishes such relationships.  Yet, for less prominent actors, we suspect 

their transient nature across communities and genres make them much more difficult to 

disambiguate. It is possible to overcome this problem, for example, by weighting actors 

according to their order in the movie.  This information is difficult to derive from lists, and it 

may be more useful if our methods were evaluated on a dataset with more robust social and 

organization structures, such as those observed in the Enron dataset (Diesner and Carley, 2005; 

Klimt and Yang, 2004; Shetty and Adibi, 2004). 

 However, failures may provide more information about the underlying social network as 

we move away from a controlled setting. It appears that the extra variability in the F scores 

entailed by the raw probabilities lead to a better separation between names corresponding 

correctly to different entities.  However, this may be a downside in real-world scenarios, where 

the global threshold must be chosen from limited information.  In such a case the basic heuristic 

would entail more variable scores and thus a less robust threshold.  This argues for the IPFP 

normalization procedure for the raw probabilities. Unfortunately, the value of the information 

added by the failures in a real-world scenario is still unclear. In fact, the limited number of steps 

introduces bias in the posterior probability estimates, that is, by introducing confusion between 

those paths that are not possible at all, and those that happen with low probability and are thus 

likely not to be discovered by a short random walk. 

 

5.2. Building a Better Stopping Criteria 

One limitation of this work stems from its dependency on a global threshold as a stopping 

criteria of the clustering process.  This is an age old concern regarding hierarchical clustering and, 
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for the most part, all stopping criteria are based on heuristics which are tailored to a researcher's 

respective environment. Airoldi and Malin (2004) have recently proposed a statistical test for 

stopping the clustering process based on geometric intuition regarding the growth rates of 

clusters. In their research, clustering utilizes a single linkage criterion and thus has yet to be 

proven if such geometric insights hold for more complex clustering criteria such as the average 

linkage method employed for this paper's analysis. It is possible such tests could be adapted and 

in future research we hope to address this issue in more depth. 

Third, the random walks were arbitrary specified to time out after 50 steps.  By this 

construction, a walk completed successfully (i.e. reaches an ambiguous name node) in 2 steps is 

given equal weight in the similarity measure than a successful walk of 50 steps.  It is possible 

that a discounting model may be more appropriate, such that as the number of steps increases, 

the score provided to a successful completion tends toward zero. In future research we expect to 

design more formal probabilistic representations of community similarity. 

 

5.3. Disambiguation in Uncertainty 

Controlling for certainty is useful in the evaluation of the relative performance of disparate 

disambiguation procedures, but obviously this is an unrealistic assumption.  In the real world, it 

is not clear if any observed name ever has complete certainty.  This suggests probabilistic models 

of certainty may be useful for disambiguating names when many names are potentially 

ambiguous.  For instance, strategies akin to expectation-maximization (Jensen and Neville, 2000; 

Kalashnikov et al., 2005) models over the graph have been considered. 

With respect to this research, we propose a basic iterative algorithm, which can be used 

to cluster and classify relational data by leveraging names of high certainty, which can be fixed, 



 25 

or removed, during the learning process. By doing so, we can take advantage of high certainty 

knowledge to resolve lesser certain situations. 

 

6. Conclusion 

This paper evaluated several methods for disambiguating names in a relational environment 

(actor collaborations in the Internet Movie Database) were presented. First, we implemented a 

baseline method, modeled on prior research, which used hierarchical clustering of sources in 

which ambiguous names are observed.  We then introduced a novel alternative which leveraged 

social networks constructed from all sources, such that random walks originating from 

ambiguous name nodes were used to estimate posterior distributions of relations to partition the 

graph into components. We controlled social networks to study a single ambiguous name, and 

our findings suggest methods which leverage community, in contrast to exact, similarity provide 

more robust disambiguation capability. In the future we expect to evaluate our methods on data 

that is more indicative of real world social interactions and extend our methods to account for 

networks that consist of more than one ambiguous name.  We suspect the limited number of 

steps introduces bias into the posterior probability estimates, and intend to explicitly compute 

and control for the bias. 
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FIGURES 

 

 

 

Figure 1. An example of a 1-ambiguous name (Bob) and a 2-ambiguous name (Alice). 
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Figure 2. Social network with four ambiguous name observations. 
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Figure 3. Posterior network of ambiguous observations from Figure 2. 
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Figure 4. Log-log plot of movies per entity. 
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Figure 5. Log-log plot of entities per movie. 
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Figure 6. Log-log plot of k-ambiguous name frequency. 

 

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

log(k)

lo
g
(f
re
q
u
e
n
c
y
)



 38 

 

 

Figure 7.  F-score of hierarchical clustering of sources for 2-ambiguous names.  The topline 

corresponds to the best F-score achieved during clustering.  The plot below is the difference of 

the best F-score minus a baseline F-score of all sources classified as a single cluster. 
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Figure 8.  Same as figure 7, except the plot below corresponds to the difference of the best F-

score minus a baseline F-score of all sources classified as a singleton clusters. 
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Figure 9.   Same as figures 7 and 8, except the baseline is the difference between best F-score 

minus the maximum F-score of both single cluster and singleton baselines. 
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Figure 10. Average F-score of hierarchical clustering (hc), singletons, and single cluster 

baselines over continuum of global cosine similarity threshold values. The vertical lines 

correspond to 1 standard deviation. 
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Figure 11. Average F-score of random walk network partitioning, singletons, and single cluster 

baselines over continuum of global similarity threshold values. Vertical lines correspond to +/-1 

standard deviation. 
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Figure 12. Average F-scores of raw and IPFP normalized walk matrices for sample of 500 2-

ambiguous names. 
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Figure 13. Distribution of best F-scores achieved using raw and IPFP normalized walk matrix 

for sample of 500 2-ambiguous names.  Scores less than 0 favor raw matrix and scores greater 

than 0 favor IPFP matrix. 
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