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Abstract: Given the increasing threat of terrorism and spread of terrorist organizations, it is of 
vital importance to understand the properties of such organizations and to devise successful 
strategies for destabilizing them or decreasing their efficiency. However, intelligence 
information on these organizations is often incomplete, inaccurate or simply not available. This 
makes the study of terrorist networks and the evaluation of destabilization strategies difficult. In 
this paper, we propose a computational methodology for realistically simulating terrorist 
networks and evaluating alternative destabilization strategies. We proceed to use this 
methodology to evaluate and conduct a sensitivity analysis of the impact of various 
destabilization strategies under varying information surveillance regimes. We find that 
destabilization strategies that focus on the isolation of individuals who are highly central are 
ineffective in the long run as the network will heal itself as individuals who are nearly 
structurally equivalent to the isolated individuals "move in" and fill the communication gaps.  

Introduction  
For reasons of national security it is important to understand the properties of terrorist 
organizations that make such organizations efficient and flexible, and based on this 
understanding devise successful strategies to destabilize such organizations or curtail their 
efficiency, adaptability, and ability to move knowledge and resources. The assessment of 
destabilization strategies poses a number of key challenges. What does the underlying 
organization look like? Does it evolve? What strategies inhibit or effect the evolutiuon so that the 
organization is destabilized? In this paper, we provide an approach to assessing destabilization 



strategies that draws on work in organization science, knowledge management and computer 
science.  

Terrorist organizations are often characterized as cellular organizations composed of quasi-
independent cells and distributed command. In a sense, this is a non-traditional organizational 
configuration; hence, much of the knowledge in traditional organizational theory, particularly 
that focused on hierarchies or markets, does not apply. To be sure, lessons can be learned from 
the work on distributed and decentralized organizations that provides some guidance. This work 
demonstrates that such structures are often adaptive, useful in a volatile environment, and 
capable of rapid response [1] [2]. In other words, we should expect terrorist organization to 
adapt, and adapt rapidly. This suggests, that in general, they should be difficult to destabilize; 
however, the traditional organizational literature provides little guidance on how to destabilize 
the organization.  

In general, the organization's form or design profoundly influences its performance, adaptability, 
and ability to move information [3]. It follows that organizations can be destabilized by altering 
their design. The one caveat here, is that organizations, particularly more distributed and 
decentralized ones, are continually evolving [4]. Terrorist organizations are often characterized 
as dynamic networks in which the connections among personnel define the nature of that 
evolution. This suggests that social network analysis will be useful in characterizing the 
underlying structure and in locating vulnerabilities in terms of key actors.  

In general, organizations evolve as they face unanticipated changes in their environment, rapidly 
evolving technologies, and intelligent and adaptive opponents. Over the past decade, progress 
has been made in understanding the set of factors that enable adaptation and partially validated 
models of adaptive networks now exist [5]. A key result is that, in the short run, there appears to 
be a tradeoff between adaptivity and extremely high performance in organizations [6]. This 
suggests that forcing an organization to adapt should reduce its performance. Thus, even if an 
actor is no longer key, the mere isolation of that actor may be sufficient to be disruptive. 
However, to assess this a model of organizational change and network healing is needed.  

Since the destabilization of terrorist networks could inhibit their ability to effect harm, there is a 
profound need for an approach that would allow researchers to reason about dynamic cellular 
networks and evaluate the potential effect of destabilization strategies. To be useful, such an 
approach must account for the natural evolution of cellular networks. This situation is further 
complicated by the fact that the information available on the terrorist network is liable to be 
incomplete and possibly erroneous. Hence, destabilization strategies need to be compared and 
contrasted in terms of their robustness under varying levels and types of information error. In 
other words, it would be misleading to judge destabilization strategies in terms of their impact on 
a static an unchanging network [7].  

These problems suggest the need for a new methodological approach. In this paper, we provide 
an approach based on the use of a multi-agent network model of the co-evolution of the network 
of "observers" (the blue network) and the "terrorists" (the red network) in which the observers 
can capture only partial data on the underlying covert network and the covert network evolves 
both naturally and in response to attacks by the observers. This approach builds off of 



organization theory and social network theory, as well as machine learning and dynamic network 
analysis. Specifically, we have developed a computational model of dynamic cellular 
organizations and used it to evaluate a number of alternative strategies for destabilization of 
cellular networks.  

It is important at the outset to note that this examination of destabilization strategies is highly 
exploratory. We make no claims that the examination of destabilization strategies is 
comprehensive, nor that the types of "error" in the data that intelligence agencies can collect is 
completely described. Further, our estimate of the structure of the covert network is based on 
publicly available data much of which is qualitative and requires interpretation. Thus, this work 
should be read as a study in the power of an empirically grounded simulation approach and a call 
for future research. Further, we restrict our analysis to a structural or network analysis and focus 
on what does the covert network look like, how does its structure influence its performance and 
ability to pass information, how does it evolve, how can its evolution be altered (its behavior 
destabilized) through interventions focused on the nodes, and what interventions should be taken 
given the level of fidelity in the information that we have. Admittedly, in this complex arena 
there are many other factors that are critical, but they are beyond the scope of this study. Thus, 
from a straight social network perspective, this study suggests the types of methodological issues 
that will emerge when working with dynamic large scale networks under uncertainty.  

To ground this paper, a short case description is provided of Al Qaeda with the focus on the 
network structure. In these two descriptions we draw on both military and organizational theory. 
This is followed by a discussion of the intelligence agencies engaged in anti-terrorist activity and 
the possible data and errors in said data. Our intent is to demonstrate, at a fairly high level, the 
context and the resultant information and modelling problems, not to provide a full analysis for 
intelligence or military operations. As good science often emerges from attacking hard real world 
problems, we are trying to provide sufficient detail to understand the basis for the problems that 
research must address, rather than simply provide a high theoretical description of general data 
problems. This is followed by a brief discussion of the applicability of traditional social network 
analysis and the need to take a dynamic network perspective. We then describe a computational 
model of terrorist organizations as dynamic evolving networks, and anti-terrorist bodies with 
emphasis on their information collection and destabilization strategies. A virtual experiment is 
used to examine destabilization strategies and the results are then discussed.  

Covert Terrorist Networks - Al Qaeda  
Extra-national terrorist groups generally serve to advance the interests of their leaders or direct 
backers (whether political, religious or commercial) and span multiple nations in their search for 
operatives and resources. Extra-national terrorist networks may enjoy support of one or several 
states whose political agendas coincide with the goals of the organization - but ultimately are not 
dependent on state support due to their ability to find independent financial backing from 
wealthy sympathizers. Commonly such groups are structured in a way similar to organized crime 
syndicates and employ networks of quasi-independent cells scattered through the region of 
operation of the organization as well as other countries that could be used as resource bases, 
recruiting and training centers.  



Al Qaeda, arabic for "The Base," is the largest known extra-national terrorist organization. It is a 
large dynamic network, estimated to have the support of six to seven million radical Muslims 
worldwide, of which 120,000 are willing to take up arms [8]. Its reach is global, with outposts 
reported in Europe, Middle East, East Asia and both Americas. In the Islamic world, its task is to 
purify societies and governments according to a strict interpretation of the Koran and to use 
religion as a unification force for creation of an Islamic superpower state.  

As Goolsby [9] stated, Al Qaeda extends its reach and recruits new member cells via adoption 
and of local Islamic insurgency groups. Beginning with provision of operational support and 
resources to facilitate growth, Al Qaeda representatives work to transform an insurgency group 
such as Jemaah Islamiyya (Indonesia) from a group seeking political change to a full-fledged 
terrorist organization executing multi-casualty attacks such as the Bali bombing in 2002 [10].  

Al Qaeda's global network, as we know it today, was created while it was based in Khartoum, 
from December 1991 to May 1996. To coordinate its overt and covert operations as Al Qaeda's 
ambitions and resources increased, it developed a decentralized, regional structure. Al Qaeda 
pursues its objectives through a network of cells, associate terrorist and guerilla groups and other 
affiliated organizations. For instance, the Sudanese, Turkish and Spanish nodes ran clandestine 
military activities in Europe and North America.  

The worldwide nodes appear to have no formal structure and no hierarchy. Assignments are 
often carried out by individuals and small groups designated for the purpose as "the person 
responsible." The regional nodes appear not to have a fixed location and move quickly when 
dictated by the political situation in the region. Al Qaeda shares expertise, transfers resources, 
discusses strategy and sometimes conducts joint operations with regional terrorist groups.  

Although the modus operandi of Al Qaeda is cellular, familial relationships play a key role. As 
an Islamic cultural and social network, Al Qaeda members recruit from among their own 
nationalities, families and friends. What gives Al Qaeda its global reach is its ability to appeal to 
Muslims irrespective of their nationality, enabling it to function in eastern Asia, Russia, western 
Europe, sub-Saharan Africa and North America with equal facility.  

Unlike conventional military forces which are often hierarchical and centralized, terrorist 
militant units are often small, dispersed and seemingly disorganized. Nevertheless, they have 
been able to effectively counter much larger conventional armies. Large terrorist organizations 
operate in small, dispersed cells that can deploy anytime and anywhere [11]. Dispersed forms of 
organization allow these networks to operate elusively and secretly.  

The apparent structure of Al Qaeda is not exclusive to such militant or terrorist groups. Indeed, 
they bear a family resemblance to the structure of other resistance groups. For example, a study 
published in 1970 by L. Gerlach and V. Hine [12] concluded that U.S. social movements, such as 
the environmental and anti-war movements in the 1960s, were structured as "segmented, 
polycentric, and ideologically integrated networks" (SPINs).  

"By segmentary I mean that it is cellular, composed of many different groups... . By polycentric I 
mean that it has many different leaders or centers of direction... . By networked I mean that the 



segments and the leaders are integrated into reticulated systems or networks through various 
structural, personal, and ideological ties. Networks are usually unbounded and expanding... . 
This acronym [SPIN] helps us picture this organization as a fluid, dynamic, expanding one, 
spinning out into mainstream society."  

The dynamics exhibited by SPINs appear to exist in these social movement groups as well as in 
various terrorist, criminal and fundamentalist networks around the world [11].  

However, unlike many protest movements, terrorist and criminal networks often wish to remain 
covert. The need for security dictates that terrorist organizations must be structured in a way that 
minimizes damage to the organization from arrest or removal of one or more members [13]. This 
damage may be direct (making key expertise, knowledge or resources inaccessible for the 
organization) or indirect (exposing other members of organization during interrogations). There 
are several factors that allow a terrorist organization to remain covert, including:  

• Strong religious (in case of Islamic groups) or ideological (in case of Sendero Luminoso 
and other South American guerilla groups) views that allow members to form extremely 
strong bonds within a cell.  

• Physical proximity among cell members, often to the extent of sharing living quarters, 
working and training together.  

• Lack of rosters on who is in which cell.  
• Cell members being given little knowledge of the organizational structure and the size of 

the organization.  
• Little inter-cell message traffic.  
• Information about tasks issued on a need-to-know basis, so very few people within the 

organization know about the operational plans in their entirety.  
• Cells are often formed on the basis of familial or tribal ties, or strong interpersonal ties 

forged in training.  

However, a need-to-know information policy can be counterproductive when an organization 
needs to complete a task that is larger than any one cell. Further, such policies tend to lead to 
duplication of effort and reduce the ability of one cell to learn from another. To fix these 
inefficiencies, terrorist organizations have been known to employ "sleeper links" - where a small 
number of members of each cell have non-operational ties (such as family ties, ties emerging 
from common training, etc.) to members of other cells [14]. These links are rarely activated, and 
are used mainly for coordinating actions of multiple cells in preparation for a larger operation.  

On the one hand, in part to remain covert, Al Qaeda has structured itself as a leaderless design 
characterized its organic structure, horizontal coordination, and distributed decision making. 
However, the need to maintain a strong ideological foundation and resolve coordination issues 
has led to the need for strong leadership. One apparent solution has been to have multiple leaders 
diffused throughout the network and engaged in coordinating activities, without central control 
or a hierarchy among the cells. Whether the leaders are themselves hierarchically organized, 
even though the cells are not, is less clear.  



Under constant pressure from various world governments, terrorist organizations have evolved a 
structure that appears to be resilient to attacks. However, information on these terrorist 
organizations, their membership, the connections among the members, and so on is, at best, 
incomplete. Available information is often obtained during post factum investigations of terrorist 
acts, and may offer little insight into the "main body" of the organization or the way in which it 
is evolving.  

Cellular Networks and Terrorist Organizations  
Substantial intelligence effort is needed to piece together the massive amount of often misleading 
information - both post factum and "logs" of activity - to generate a picture of the entire 
organization. Nevertheless, the picture that is emerging suggests that terrorist organizations are 
organized at the operational level as cellular networks rather than as hierarchies [15].  

Cellular networks are different from traditional organizational forms in that they replace a 
hierarchical structure and chain of command with sets of quasi-independent cells, distributed 
command, and rapid ability to build larger cells from sub-cells as the task or situation demands. 
In these networks, the cells are often small, only marginally connected to each other, distributed 
geographically, and may take on entirely different tasks.  

Each cell is functionally self-sufficient, and is capable of executing a task independently. Cells 
are loosely interconnected with each other, for purposes of exchanging information and 
resources. However, the information is usually distributed on a need-to-know basis and new cell 
members rarely have the same exact skills as current members. This essentially makes each 
individual cell expendable. The removal of a cell generally does not inflict permanent damage on 
the overall organization or convey significant information about other cells. Essentially, the 
cellular network appears to evolve fluidly in response to anti-terrorist activity.  

The fact that covert networks are often built from self-similar and somewhat self-sufficient cells 
leads to a hypothesis that cells throughout the network contain structurally equivalent [16] and 
essential roles, such as ideological or charismatic leaders, strategic leaders, resource 
concentrators, and specialized experts as needed given the modus operandi of the cell or its 
environment.  

Given this hypothesis, we can further reason that operations of a particular cell will be affected 
in a negative way by removal of an individual filling one of these roles. Using this as a base for 
further exploration, we venture to show in this paper that cellular networks indeed contain vitally 
important and structurally equivalent roles, which can be detected through the use of dynamic 
social network analysis on the organizational MetaMatrix.  

Profile of a Covert Network  
From a combination of pressures to operate efficiently and pressures to remain covert, an 
organizational network emerges that combines massive redundancy with secrecy, separating into 
densely connected cells that are sparsely interconnected with each other through the leaders. No 



clear hierarchy emerges from observation of these networks, other than a definite role of a cell 
leader, who is often the only contact that the cell has with the outside world.  

The best profile of the structure of terrorist networks, based on publicly available data, is the 
following [7]:  

• The network consists of cells with very low interconnection between cells.  
• Internally, the cells exhibit high degree of connectedness and all-to-all communication 

patterns.  
• There is a very low probability of a tie occurring by chance (0.007).  
• The probability of triad closure (link from x to y being more likely if both x and y are 

linked to third party z) is 0.181.  
• Senior members of each of the cells are often also parts of other cells and interact with 

other senior members on the network.  
• Cell leaders are more knowledgeable then other members.  
• Cell members have distributed knowledge.  
• Cells use information technologies and electronic communication.  

Destabilization of Covert Networks  
The most common class of attacks against covert networks is comprised of strategies aimed at 
isolating or incapacitating a particular actor or leader, or an attack on the networks' 
infrastructure, training or weapons facilities.  

For an attack on the infrastructure of a terrorist group to be successful, it has to be carefully 
targeted to not simply dismantle the command-and-control infrastructure, but to fully disconnect 
cells from crucial operational information or resource flow. Such precision targeting requires 
knowledge of the organizational structure of the network (including redundancies and latent 
links), the task structure (i.e. resource and knowledge requirements) and resource and knowledge 
distributions within the organization.  

Distributed cellular nature of covert networks means that targeted actor attacks require such 
precision targeting. Targeted actor attacks involve the isolation of actors, where isolation can 
mean disabling of communications from/to or discrediting actors, incarceration or assassination.  

Social Network Analysis and Network Destabilization  
Traditional social network analysis (SNA) techniques have focused on analysis of 
communication networks between individuals. However, most SNA studies have been conducted 
on single-mode networks (i.e. relationships between people) with binary data (i.e. presence or 
absence of a connection). Also, most studies have been concerned with analysis of a single 
network. A further complication is that traditional social network measures are not designed for 
time-series analysis of dynamic networks. While static analysis may be adequate for slow-
changing interpersonal networks, covert networks are characterized by their fluidity and 



dynamism. Thus, analysis of covert networks needs to be approached from a dynamic 
perspective, tracking change inside the network as well as its static parameters.  

Nevertheless, from an organizational perspective, it is important to look beyond social networks. 
Krackhardt and Carley [17] proposed concentrating knowledge about an organization in a format 
that could be analyzed using standard network methods, called the MetaMatrix. The MetaMatrix 
analysis represents organizations as evolving networks in which the nodes in the social network 
are actively engaged in realistically specified tasks. This conceptualization made it possible to 
link performance to social networks and ask, at a concrete level, how changes in the social 
network could effect changes in performance. Carley [18] [19] generalized this approach and 
extended the perspective into the realm of knowledge networks, enabling the researcher to ask 
how changes in the social network could effect changes in the distribution of information and the 
resultant impact of knowledge disruption strategies on organizational performance. By taking an 
information processing perspective, we are explicitly linking knowledge management and social 
networks [1] and enabling network evolution through learning mechanisms. From a conceptual 
and data perspective, this means that we examine the co-evolution of all networks in the 
MetaMatrix as described in table 1. Moreover, we explicitly focus on the fact that the 
organization, and so these underlying networks, evolve.  

 

Table 1: Metamatrix of Organizational Knowledge 

 People Knowledge Tasks 

People  

Stuctural 
knowledge: 
Command 
and control 
structures, 
information 
pathways and 
relationships 
between 
organization 
members.  

Knowledge 
Distribution: 
Who has 
access to what 
knowledge 
within the 
organization.  

Task 
Assignment: 
Who does 
which tasks 
within the 
target 
organization.  

Knowledge 

  Knowledge 
Precedence: 
Which types 
of skills go 
together.  

Skill 
Requirements: 
Which skills 
are needed to 
accomplish a 
particular 
task.  

Task     Task 
Precedence: 



On a tactical 
level, the 
sequencing 
and 
precedence of 
tasks that the 
target 
organization 
can 
accomplish.  

 
 

A number of social networks metrics have been proposed for identifying the key actors who 
should be targeted in order to destabilize covert networks. Such metrics include, but are not 
limited to, those focused on centrality, random attacks, and from a more dynamic network 
perspective, cognitive demand [7].  

Identifying an actor as key, using one of these metrics and then isolating that actor is a 
destabilization strategy. We now consider several such strategies. 

The centrality approach, consisting of measuring the centrality [20] of each node in the network, 
then selecting a small number of most central nodes as targets for further action, is an intuitive 
approach to finding a core group of leaders within a terrorist network.  

However, it is known from available intelligence that terrorist networks function in tightly 
connected cells and maintain only loose connections with the rest of the organization. Therefore, 
a search for highly central individuals is more likely to turn up a large number of agents that do 
not constitute the leadership circle, but are members of a densely connected cell. Moreover, as 
Borgatti [21] stated, none of the centrality metrics is guaranteed to disconnect the network into 
discreet components.  

Bienenstock and Bonacich [22] have conducted a simulation study on vulnerability of networks 
to random and strategic attacks. The study suggests that as average connectedness of each 
individual node rises and high betweenness nodes are methodically attacked, the impact on 
overall performance of the network is minimal. However, if neighborhoods (nodes connected to 
a high-centrality node) are attacked along with the node, the opposite is true.  

The implication of that result is that the cells of covert networks that are connected by a few 
individuals with high betweenness are very vulnerable to discovery of these individuals.  

Johnson et al. [23] show in their study of Antarctic winter crews that in order for an organization 
to exhibit high morale and operate efficiently, the positions of formal and informal (charismatic) 
leader of the network have to be occupied by the same person, and this person needs to be highly 
embedded within the network. The results of this study suggest that perhaps the structural 
position of a gatekeeper is not important to the functioning of an isolated cell. However if two 



cells of the organization are to function in concert, the best position for the charismatic leader is 
in a gatekeeper role.  

The cognitive load approach described by Carley [6] combines static measures of centrality with 
dynamic measures of information flow, task performance and resource distribution. These 
measures are based on the meta-matrix knowledge about the organization and have been shown 
to accurately detect emergent leaders. Consequently, cognitive load metrics can potentially be 
useful for detecting key members of terrorist networks.  

Based on the foregoing review of the literature we have identified a suite of destabilization 
strategies. Each strategy identifies actor criticality in a different way. All strategies rely on data 
in one or more cells in the meta-matrix. The identified strategies are:  

• Highest degree centrality: Isolate one agent from the covert network that has the highest 
degree centrality [20].  

• Highest betweenness centrality: Isolate one agent from the covert network that has the 
highest betweenness centrality [20].  

• Highest cognitive load: Isolate one agent from the covert network that has the highest 
cognitive load [6], where cognitive load is computed as a linear combination of:  

1. Number of people person i interacts with / total number of people in the group;  
2. Number of subtasks person i is assigned to / total number of subtasks;  
3. Sum of number of people who do the same tasks person i does / (total number of 

tasks * total number of people);  
4. Sum of negotiation needs person i needs to do for each task / total possible 

negotiations, where a negotiation corresponds to the amount of information or 
resources that an agent needs to complete a subtask that it is assigned to, but 
doesn't have (and thus has to obtain from another agent by negotiation).  

• Highest task accuracy: Isolate the best performing agent in the organization. This 
corresponds to standard police practice of arresting agents implicated in commission of a 
terrorist act.  

• Amount of unique knowledge: Isolate the agent that has the highest expertise.  

When a destabilization strategy is applied, an actor is identified and isolated. This results in one 
or more changes in the underlying networks in the meta-matrix and possibly a cascade of future 
changes [24]. Since the overall network is a complex adaptive system there is no guarantee that 
such cascades will destabilize the overall network, particularly in the long run. Thus, an 
examination of these destabilization strategies needs to be done in a dynamic context.  

NetWatch: A Multi-Agent Network Model of 
Covert Network Surveillance and 
Destabilization  



NetWatch is a multi-agent network model for examining the destabilization of covert networks 
under varying levels and types of surveillance. Computational models, particularly, multi-agent 
network models, are a valuable tool for studying complex adaptive systems like organizations in 
general [14] [25] and covert networks in particular [7].  

In multi-agent models, social behavior grows out of the ongoing interactions among, and 
activities of, the intelligent adaptive agents within the system. From the meta-matrix perspective, 
actions of each agent or actor are constrained and enabled not just by the activities of other 
agents but by what resources or knowledge they have, what tasks they are doing, the order in 
which tasks need to be done, the structure of communication and authority, and so on. Further, 
the agents are intelligent, adaptive and computational information processing systems.  

The goals of NetWatch are to:  

• Simulate the communication patterns, information and resource flows in a dynamic 
covert cellular network;  

• Model the process of gathering signal intelligence on a cellular network and evaluate a 
variety of heuristics for intelligence gathering;  

• Model and evaluate strategies for destabilizing a covert network based on intelligence 
obtained;  

• Model reactions of a covert network to these destabilization strategies.  

Agents in NetWatch  
The Multi-Agent Network paradigm is based upon the following postulates:  

• The simulation consists of agents.  
• Agents are independent, autonomous entities endowed with some intelligence.  
• Agents are cognitively limited.  
• Agents can learn knowledge about the world and referential knowledge about other 

agents, with a limited learning capacity.  
• Agents can forget.  
• Agents communicate asynchronously and deal with asynchronicity (i.e. deadlocks, 

delays, etc) in an autonomous manner.  
• Agents do not have accurate information about the world.  
• Agents do not have accurate information about other agents.  
• Unless required by the simulation domain, there is no central mediating entity to resolve 

the conflicts.  
• Unless required by the simulation domain, the agents do not use predefined geometrical 

locations or neighborhoods.  
• Agent communications are governed by a number of common protocols, including these 

for knowledge and resource exchange, task execution and reporting of status or results.  

The social and cognitive underpinnings of the actors and the network in which they operate are 
based upon the CONSTRUCT model of the co-evolution of social and knowledge 
networks [18] [24]. The agents in the model perform a classification task that is information-



intensive (i.e. requires a large amount of knowledge to complete without guessing). In the 
beginning of the simulation, agents are endowed with relatively little knowledge and must 
engage in learning behaviors in order to increase their task performance. Agents learn by 
interaction: trading facts with other agents or asking direct questions in hope of getting an 
accurate answer. Agents also forget little-used facts.  

In keeping with the research in cognitive science, the agents representing humans are both 
cognitively and socially constrained [26] [27] [28] [29]. Thus, their decision-making ability, 
actions, and performance depend on their knowledge, structural position, procedures and abilities 
to manage and traverse these networks.  

Unlike Construct agents, the NetWatch agents are implemented as non-deterministic finite 
automata, with states of the automaton representing low-level behaviors and transitions 
governing the way the agent switches between them. Some transitions are deterministic, others 
rely on probabilistic equations.  

Low-level behaviors include chatter, knowledge seeking, resource seeking, task execution and 
information reporting.  

Chatter is the simplest of the low-level behaviors. It can be thought of as non-goal-directed 
socializing, where some information is exchanged but it may or may not be relevant to the task 
the agent is engaged in. Partners for chatter interaction are randomly picked from the agent's ego 
network (peer group). Chatter uses the Knowledge Exchange Protocol (see section 4.3) but its 
messages have the lowest priority.  

Knowledge and Resource seeking behaviors use the same protocol as chatter, however assign a 
higher priority to the messages. Communication partners are determined by estimating the 
probability of a successful interaction, informed by the MetaMatrix representation of the agent's 
ego network. Processes that govern selection of partners are described in section 4.2.  

Task execution is described in detail in section 4.4. It is governed by a simple challenge-response 
protocol that is executed over one time period. Task messages have the highest priority in the 
system and will preempt both knowledge exchange and chatter messages.  

It is important to note that due to asynchronous execution of agents and multi-tiered message 
priorities, it is possible that some interactions will never complete or will complete after a 
significant delay. Each agent stores incoming unprocessed messages in a queue sorted by 
message priority. Thus, if an agent is overwhelmed with tasks or goal-oriented information 
exchange, most chatter requests will never be processed.  

To prevent deadlocks, each of the messages is time-stamped at the time of sending, and 
interactions are set to time out after a fixed number of time periods. Also, agents are capable of 
handling multiple interactions at the same time, with task preempting based on priority of 
incoming messages. For example, if an agent was in the middle of a chatter interaction when a 
resource request or a task request arrived, the chatter will not be resumed until higher-priority 
interactions have been finished.  



Formal and Informal Networks in NetWatch  

In NetWatch, the formal structure of the organization is specified as a directed weighted graph 
that specifies the communication channels that are open as well as their throughput or cost of 
communication. The directed nature of the graph allows one to specify one-way relationships 
and chain-of-command relationships.  

The beliefs about the informal structure are individual to every agent, and also consist of a 
weighted directed graph. However, when an agent joins a network, its informal relationship 
graph is empty, and it must learn about the informal network before it can be used for 
communication.  

In NetWatch, the agents' interactions are governed by the formal structure of the organization, 
and agents' beliefs about the informal structure.  

The agents communicate solely on the basis of networks that they belong to. Each of the 
networks is represented as a directed graph structure representing probability of communication 
or social proximity:  

 

 
 
 
 

 
 
 
 

 
 
 

The agents do not have access to full information about the network, but rather every agent 

can only access a probability vector where is a probability of agent 

communicating with all agents . This means that each agent may only know who it may 
interact with or is close to - but does not have access to interaction patterns of any other agents. 



Each agent also possesses a belief matrix that it uses to store any information it learns about 
interrelationships of other agents within the network. However, this information is far from 
complete and is often inaccurate.  

The directionality of the network also means that the communication may be asymmetric - thus 
allowing full representation of command networks as well as (more symmetric) friendship 
networks.  

For example, in NetWatch, a cellular organization like Al Qaeda can be represented as a cellular 
network structure. The formal network consists of small densely connected cells that maintain a 
small number of connections to other cells. The ties in experimental networks are generated from 
a profile of a cellular organization, such as one described in section 2.2. The profile contains the 
following information:  

• For communication networks: Mean and standard deviation of size of cells, connection 
density inside cells and outside cells, density of one-way links and probability of triad 
closure;  

• For knowledge networks: Amount of common knowledge (doctrine), distributed 
knowledge (group member specialties) and specialized (expert) knowledge;  

• For resource networks: Amount of resources needed to accomplish tasks, amount of 
common and distributed resources;  

• For task networks: Branching factor and depth of the task precedence network.  

The profile is used to create a probability distribution for each edge within a network, thus 
generating a space of random networks that all conform to the original profile. A number of 
sample organizations is then drawn from that space and run through the simulation, and mean 
and standard deviation of each of the resulting variables are taken.  

Processes Governing Communication  
Each of the agents in NetWatch maintains a perception of its surroundings, via the notion of 
MetaMatrix 1. The perceptive MetaMatrix consists of the agent's ego network (agents that it is 
directly connected with), agent's own knowledge, resources and task assignments, and is 
augmented by the agent's perception of other agents' ego networks, knowledge, resources and 
task assignments.  

However, an agent may only learn of other agents outside its ego network via interaction with 
agents that are in its ego network - and therefore any agent's perception of other agents' networks 
or knowledge is generally inaccurate. Moreover, it has been shown [30] that knowledge of 
people outside a person's ego network decreases exponentially as graph distance between the 
actors increases.  

In the context of a cellular organization, this translates to agent's initial knowledge of its network 
including its cell (because of dense communication patterns inside cells) and a small number of 
agents outside the cell with whom cell members regularly communicate. Agents may later 
acquire further knowledge of the organization through interactions.  



The choice of communication partner at every time period is based on two factors: Social 
proximity of the agents and their motivation to communicate. Social proximity is defined as 
closeness of a relationship between two agents, scaled between 0 and 1 where 0 means "no 
relationship" and 1 is "very close relationship." 

Motivation to communicate is computed on the basis of homophyly (relative similarity) and 
relative expertise.  

We define homophyly to be based on a measure of relative similarity between agent and agent 

: the amount of knowledge that and have in common divided by the amount shares with 
all other agents, or  

 

 
 
 

where is 1 if agent knows fact and 0 otherwise.  

Relative expertise is defined as = how much agent thinks knows that does not know 
divided by how much thinks all others know that does not know, or  

 

 
 
 

In both cases, agents operate on their beliefs about what the other agents know. Thus, their 
predictions of relative expertise or similarity can be inaccurate. However, as interaction 
progresses and agents learn more and more about each other, they learn an increasingly complete 
picture of their world.  



Processes Governing Knowledge Exchange  
In a multi-agent network, the agents do not have perfect knowledge about the world. The only 
way to obtain information about the world is via ineraction with other agents - either through 
direct query or through information exchange.  

Tracing back to its roots with Construct [18] model, the NetWatch model is based upon the 
concept of knowledge, knowledge manipulation and learning. In NetWatch, each agent's 
knowledge is represented by a bit string. A value of 1 in the position means that the agent 
knows fact and the value of 0 means that it does not.  

At the start of the simulation, the agents are endowed with some initial knowledge (typically 
within 2%-10% range). This allows for only a minimally acceptable performance (and thus a 
very low utility), giving agents an incentive to communicate with other agents and attempt to 
gain more information.  

To learn new facts, the agents execute the Construct Knowledge Exchange Protocol. For ease 
of description, we shall refer to the parties in knowledge exchange as Alice (agent ) and Bob 

(agent ). Note that Alice and Bob can be any two agents .  

1. Determine who to communicate with: Alice does this by evaluating Relative Similarity 
(Eqn. 4.2) or Relative Expertise (Eqn. 4.2) of every agent accessible through the Alice's 

social network (i.e. for ). After the probability of communication 
for each of the agents is computed, Alice throws a dice that reflects the computed 
probability vector and determines an agent to communicate with, or Bob.  

2. Determine what to communicate: This is done by weighing information seeking vs. 
similarity-driven communication. If Alice is in information seeking mode, it chooses at 
random a part of the knowledge string that is not known (i.e. bits are set to "false") and 
queries the agent chosen in step 1. In similarity-based communication, Alice chooses a 
part of the known knowledge string and sends it to its counterpart.  

3. Determine proper response: On receipt of a query, Bob determines if it should answer 
it by checking whether the sender of the query is a part of its network and whether it has 
the knowledge in question - and, if all is good, sends a reply. If Bob does not know the 
facts requested, it checks its internal belief matrix and may respond to Alice with a name 
of another agent (Clare) that may be better suited to answer Alice's question. In this case, 
the agents exchange referential data.  

On receipt of knowledge, Bob determines if the knowledge is useful (i.e. whether it is 
already known) and whether it came from one of the agents in its network (and thus can 
be trusted). If all is good, the agent will choose some knowledge from its knowledge base 
and send it back.  



4. Update internal knowledge base: On receipt of the reply, Alice determines the 
usefulness of the reply and uses that to update its internal knowledge of Bob ("Bob 
knows fact ") as well as its knowledge base ("I now also know fact ").  

If Alice receives referential data, it uses that to update both its knowledge of Bob ("Bob 
does not know fact " and "Bob knows Clare") and its knowledge of Clare ("Clare may 
know fact ").  

This may be followed by a query to Clare - which may or may not be honored.  

Note that Clare may not have been originally a part of Alice's network - but now, through Bob, 
Alice has learned about her existence. Thus, agents within the organization use referential data 
about each other to form an informal network.  

Due to asynchronicity of communication, the agents may not be able to conduct a knowledge 
exchange transaction in one time period. It is also possible that agents may be too busy to be able 
to respond to a query, and may either delay or terminate the transaction. The knowledge 
exchange protocol, however, provides for a robust deadlock resolution, allowing agents to detect 
a transaction that is deadlocked, terminate it and start anew, finding a different party to 
communicate with.  

Tasks and Organizational Performance in NetWatch  
The simulation paradigm is task-independent. The task is merely defined as a function that maps 
a problem vector and agent's knowledge and resource vectors onto a result vector.  

In NetWatch, we measure agent performance as accuracy in performance of a ternary 
classification task. The classification task is represented by a vector of binary values. An agent 
can only access bits in the task vector that correspond to non-zero values in agent's knowledge 
vector. The task is then decided by a "majority rule." 

An agent's decision accuracy is computed by taking a series of classification tasks and 
comparing agent's decisions to "true decisions" - computed by applying a majority rule to the 
tasks assuming "perfect knowledge" or access to all bits of the task string. Task performance is 
measured as a percentage of correctly decided tasks.  

The agents in NetWatch are engaged in a knowledge-intensive ternary classification task, 
identifying targets (represented as bit strings) and determining whether they should be attacked, 
treated as friendly or ignored. Each individual agent's performance on each particular task 
depends on its level of knowledge: an agent can see specific parts of the target bit string only if it 
has appropriate facts in its knowledge base.  

While appearing simplistic, performance in classification tasks have been shown [31] to 
correspond, in aggregate, to organizational performance in real-world cases, thus making 
classification tasks a suitable substitute for more complex tasks for purposes of simulation 
modelling.  



Simulation Design  

 
Figure 1: NetWatch Simulation Design 

The simulation consists of several networks of agents (see figure 1): the Red Team, representing 
the covert network of a terrorist organization, the Blue Team representing the anti-terrorist or 
law enforcement forces, and a set of instrumentation agents that observe and document the 
behavior of other agents for later retrieval and processing.  

Red Team  



 
Figure 2: Red Team: A Cellular Covert Network (click the figure to zoom)  

The Red Team, or the Covert Network consists of a set of small fully-interconnected cells of 
agents with little interconnect between them, mimicking the organizational structure of a terrorist 
organization described in section 2.  

The plot on figure 2 shows a covert network generated using parameters in section 2 and bears a 
striking resemblance to the structure of terrorist networks as shown by Valdis Krebs [14].  

In the same time, driven by the incentive to increase task performance accuracy, the agents are 
engaged in learning behavior using the protocol described in section 4.3.  

If left uncontested, the members of the Red Team proceed to learn all accessible facts, thus 
increasing the performance of the organization as a whole (see figure 3).  



 
Figure 3: Knowledge Diffusion Through a Cellular Network 

Blue Team  

The Blue Team is an Anti-Terrorism organization consisting of a small number of fully 
interconnected law enforcement agents.  

The goals of the Blue Team are:  

• Learn as much as possible about the structure, task assignments and knowledge 
distribution of the Red Team.  

• Use the knowledge obtained to remove or isolate Red Team members, aiming to impair 
Red Team's performance as much as possible.  

The Blue Team has very little access to the actual information about the Red Team. Its only 
source of information is a set of wiretaps placed on the communication network of the Red 
Team.  

Wiretaps  

A wiretap in NetWatch is an agent that selectively intercepts messages from the message stream 
and routes them to one or more Blue Team members, functioning on a subscription model. When 
a Blue Team agent receives a message through a wiretap, it records the origin and destination of 
the message. If a wiretap were capable of capturing all communication, this would allow the 
Blue Team agent to create a full and accurate picture of the Red Team network.  



However, the wiretap agent (as well as real wiretaps) is not capable of capturing all relevant 
messages. Based on empirical information about the use of wiretaps, the wiretap efficiency is set 
between 5% and 25%.  

Given the expense and political difficulty of wide use of wiretaps, law enforcement agencies 
utilize a number of strategies to maximize the yield of useful information from the minimum 
number of wiretaps.  

In this paper, we study three different wiretap strategies:  

• Random: Any message in the message stream has an equal probability of being 
intercepted. This is similar to the Echelon signal intelligence gathering.  

• Targeted: Only messages addressed to or from a specific person can be intercepted, 
similar to the way standard police wiretaps are done.  

• Centrality-Based Roving: Every 50 time periods, the most central person is picked for 
surveillance.  

As the Blue Team agents receive messages from the wiretap agents, they use the message To: 
and From: fields to build a representation of the organizational network of the Red Team, or the 
Learned Network. Other information collected includes data on task performance and knowledge 
as communicated by the agents on the Red Team.  

Network Destabilization Tactics  

In a subset of the experiments, the Blue Team agents not only collect information about the Red 
Team but also attempt to influence the performance of the Red Team by finding vulnerabilities 
in the covert network and attacking them by isolating or terminating agents within the covert 
network.  

In this paper, we test a number of strategies for finding key individuals within the covert 
network, including  

• Random: A base-line strategy; isolate one random individual from the network.  
• Highest degree centrality: Isolate one agent from the covert network that, by the data of 

the Blue Team, has the highest degree centrality.  
• Highest betweenness centrality: Isolate one agent from the covert network that, by the 

data of the Blue Team, has the highest betweenness centrality.  
• Highest cognitive load: Isolate one agent from the covert network that, by the data of the 

Blue Team, has the highest cognitive load, where cognitive load is computed as a linear 
combination of:  

1. Number of people person i interacts with / total number of people in the group;  
2. Number of tasks person i is assigned to / total number of tasks;  
3. Sum of number of people who do the same tasks person i does / (total number of 

tasks * total number of people);  
4. Sum of negotiation needs person i needs to do for each task / total possible 

negotiations.  



• Highest task accuracy: Isolate the best performing agent in the organization.  
• Amount of knowledge: Isolate the agent that has the highest expertise.  

Performance Metrics  

The Red Team performance metric is based on the average accuracy of the classification task (as 
described in section 4.6, or, for any given task ,  

 

 
 
 

where is the number of agents in the system, is the decision made by agent in 
task and takes values of 2 for "Hostile Target", 1 for "Neutral Entity" and 0 for "Friendly 

Entity" and is the correct decision for task , taking on the same values.  

The performance of the Blue Team is subject to two measures: a measure of intelligence 
gathering accuracy and a measure of isolation strategy effectiveness.  

The effectiveness of intelligence gathering is measured as a Hamming Distance between the 
knowledge of the Red Team as collected by the Blue Team (a.k.a. the Learned Network ) 
and the actual network of the Red Team , computed as  

 

 
 
 

or sum of absolute values of differences between the two networks represented as binary 
adjacency matrices (where 1 signifies presence of a tie between two agents and 0 signifies 
absence thereof).  



Effectiveness of wiretapping strategy can thus be measured as the first derivative of the 
Hamming Distance, signifying the speed of learning.  

The effectiveness of isolation strategy is measured as the difference between baseline 
performance of the Red Team (i.e. without any action by the Blue Team) and performance of the 
Red Team in presence of an anti-terrorist task force of the Blue Team.  

One must note, however, that the networks in question are dynamic and thus there can not be an 
absolute and static performance metric for any of the teams outside the time series data.  

Virtual Experiments  
We have conducted two virtual experiments with NetWatch simulation. For both experiments, 
the simulation was configured as follows:  

Red Team:  

• 50 agents organized into cells  
• Mean cell size is 6  
• Connection probability within cell: 95%  
• Connection probability outside cell: 5%  
• Initial knowledge: 10%  
• One agent in each cell (a cell leader) is connected to at least one other cell.  

Blue Team:  

• 5 agents, fully interconnected.  
• employ wiretaps to collect data on the Red Team  
• attempt to create a consensus view of the Red Team via the MetaMatrix representation.  
• employ one of the destabilization strategies outlined above to eliminate actors in the Red 

Team  
• employ conduct impact assessment to estimate the damage inflicted on the Red Team.  

Virtual Experiment I: Effects of Wiretap Strategy on 
Network Learning  
The goal of this experiment is to learn about the effectiveness of wiretapping strategies. In a 
three-cell design, the performance of the Blue Team (measured by the Hamming Distance 
(see 4.6.4) is evaluated at every time period.  

The experimental cells correspond to the different wiretapping strategies available in NetWatch:  

• Random: Any message in the message stream has an equal probability of being 
intercepted. This is similar to the Echelon signal intelligence gathering.  



• Targeted: Only messages addressed to or from a specific person can be intercepted, 
similar to the way standard police wiretaps are done.  

• Centrality-Based Roving: Every 50 time periods, the most central person is picked for 
surveillance. This strategy is modeled after wiretaps allowed under the PATRIOT Act in 
the investigation of terrorist organizations.  

 

Table 2: Virtual Experiment I: Effects of Wiretap Strategy on Network Learning 

Wiretap Types RANDOM; TARGETED; CENTRALITY ROVING 

Red Team 50 agents organized into cells; mean cell size=6 

Blue Team 5 agents, fully interconnected 
 

 

Results  

Results of the first virtual experiment are plotted in figure 4.  

RANDOM  

Random wiretap strategy provided a consistent, almost linear increase in the structural 
knowledge acquired by Blue Team. An important caveat of this strategy is that the simulation 
detailed in this paper only includes agents belonging to one of two teams, and no "innocent 
bystanders" - thus resulting in a fairly high signal-to-noise ratio in Echelon-style signal 
intelligence.  

In the real world the signal-to-noise ratio of such strategy would be extremely low, resulting in 
much lower performance of the system.  

TARGETED  

Targeted wiretap strategy is similar in way of functioning to wiretaps employed in police use. 
The use of a targeted wiretap allows the Blue Team to get nearly complete knowledge of a small 
segment of the network. However, due to the cellular structure of covert networks, this strategy 
has a limited usefulness due to the fact that a large number of operatives in the covert network 
will not communicate over a monitored channel and thus will not appear "on the radar" of law 
enforcement.  

It is a possibility that extensive use of such narrowly targeted investigative techniques resulted in 
the rise of cellular organizations as a counter-measure to police activity. Also, an initial choice of 
the monitoring target may result in drastically different performance: if a fringe cell of the 
organization is picked as a target, the main body of the organization may not ever be discovered.  

ROVING  



Roving wiretap strategy has the highest performance potential. As figure 5 shows, during the 
course of the experiment, the Blue Team fully discovers five cells comprising the main body of 
the organization and one fringe cell. The learning is accomplished in steps, focusing on tightly 
interconnected agents within a cell, and switching to other cells as the Blue Team learns of their 
existence.  

The main caveat of this strategy is its cost: if it was employed in the real world, the discovery 
process would require six separate court hearings. Also, the performance of this strategy may be 
jeopardized if the Red Team employs larger cells, which would prevent the Blue Team from 
fully discovering a cell before it is time to switch. However, this problem can be addressed by 
employing a switch condition based on rate of learning (a target switch occurs when the cell 
under monitoring appears fully discovered).  

 
Figure 4: Network Discovery by Wiretap Strategy 



 
Figure 5: Cell Discovery with Roving Wiretaps (click the figure to zoom) 



Virtual Experiment II: Effects of Network Learning on 
Network Destabilization  
The goal of this experiment is to find out the interdependence between intelligence gathering 
techniques and effectiveness of network destabilization. The experiment is built as a 3x6+1 
design, combining the wiretapping strategies (see 4.6.2) and network disruption strategies 
(see 4.6.3). We also ran a baseline case with the Blue Team absent.  

 

Table 3: Virtual Experiment II: Effects of Network Learning on Network Destabilization 

  RANDOM TARGETED ROVING 

NONE N/A N/A N/A 

Random RAND/RAND RAND/TARGET RAND/ROVING 

Degree Centrality DCENT/RAND DCENT/TARGET DCENT/ROVING 

Betweenness Centrality BCENT/RAND BCENT/TARGET BCENT/ROVING 

Cognitive Load CL/RAND CL/TARGET CL/ROVING 

Task Accuracy TA/RAND TA/TARGET TA/ROVING 

Knowledge K/RAND K/TARGET K/ROVING 
 

 

Network Recovery After Isolation Operations  

Figure 6: Recovery of a Cellular Network After Disconnection of a Gatekeeper Node  
(drag the mouse in the image window to rotate and examine; click "Animate" button to step 

through the demonstration)  

One of the most notable results of this experiment has been the discovery of the mechanism that 
the network uses to recover after removal of one of its key members. Figure 6 demonstrates this 
process on a small cellular network.  

1. In the original configuration, the network consists of two fully interconnected cells and 
one gatekeeper agent. As the organization goes about its business, information flows 
from cell 1 (agents 30-35) to cell 2 (agents 37-42) through the gatekeeper agent 36. In the 
process of passing knowledge and requests, small amounts of referential data (such as 
"Agent X knows fact Y") is passed from one cell to another and stored by the agents. 
Relevancy or immediate usefulness of this information is low because of the fact that all 
needed information can be easily obtained from querying the gatekeeper agent.  



2. Agent 36 is identified by the Blue Team as being important to the network because of its 
degree centrality, betweenness centrality and large amount of messages that it processes 
(cognitive load).  

3. The Blue Team proceeds to remove Agent 36, disconnecting the two cells. Because of the 
cellular structure of the organization, this makes information transfer between cells 
impossible and the performance of the organization is greatly degraded.  

4. As information becomes unavailable from the central source, agents use the referential 
data accumulated in previous transactions to attempt to find information in the other cell. 
For the connection from Agent X to Agent Y to succeed, both agents have to have 
knowledge of each other. However, referential data is asymmetric and thus most of these 
connection attempts fail.  

5. One of the connection attempts (Agent 31 to Agent 39) succeeds, thus opening a single 
pathway between cells.  

6. Referential information about Agent 39 spreads throughout Cell 1, and more connections 
between agents in Cell 1 and Agent 39 are created. Within a short period of time, Agent 
39 emerges as the new gatekeeper between the two cells.  

Information flows easily between the two cells and organizational performance is 
restored to levels similar to these before the removal of Agent 36.  

A priority in research on destabilization of covert networks has been finding key individuals - the 
removal of which will separate a cellular network into subparts. However, the recovery process 
we demonstrate illustrates that even if the Blue Team achieves separation of the covert network 
into disconnected cells, the network will use its latent resources and quickly recover from 
damage.  

Thus, the goal of network destabilization techniques should be to cause permanent damage to the 
covert network and not allow it to recover from the attack.  

This finding also prompts us to study not just the effectiveness of removal of certain individuals, 
but to look at the performance of these measures over periods of time.  

Effects of Destabilization on Task Performance  



Figure 7: Effectiveness of Destabilization Strategies on Organizational Performance 

• Random case consisted of random removal strategy combined with one of the three 
wiretapping strategies. The baseline increases with accuracy of network discovery 
because of the fact that learning more of the network gives the random strategy better 
access to targets (including these of high importance). In the absence of false positives, 
the baseline strategies perform better then many complex heuristics.  

• Degree Centrality-based removal of agents performs well only with targeted 
wiretapping. This is because targeted wiretapping allows the Blue Team to completely 
discover a cell and all of its neighborhood, and thus be very confident in removal of a 
most central person. However, the network does recover reasonably quickly from the hit, 
thus decreasing the effectiveness of this strategy.  

• Betweenness Centrality-based removal performs well with roving wiretaps - because of 
the fact that they allow quick location of key gatekeepers in the network.  

• Cognitive Load-based removal requires significant knowledge of the network, and thus 
only performs well under targeted and roving wiretap strategies.  



• Quite surprisingly, removal of Well-Performing individuals did not result in significant 
damage to the terrorist network. Most likely this is caused by the structure of the tasks 
that the agents perform and equivalence of individuals in equivalent network positions.  

• Knowledge-based removal proved to be the most effective strategy of the lot, and the 
only one to outperform the baseline strategies. The key to knowledge-based removal, 
though, is that its effectiveness hinges on speed of response more than the accuracy of 
structural knowledge. The experiments show that the highest efficiency of this strategy is 
achieved if Red Team experts are found and removed before they transmit much of their 
knowledge to the rest of the group, thus favoring quick decisive action to lengthy 
deliberation and heuristic learning that are characteristic of roving wiretaps.  

Effects of Destabilization on Knowledge Diffusion  

 
Figure 8: Effectiveness of Destabilization Strategies on Knowledge Diffusion 

The Knowledge-based isolation strategy showed the most profound effect on diffusion of 
knowledge throughout the Red Team network (see figure 8) After an expert has been removed in 
timestep 50, the knowledge diffusion is sharply capped and does not grow further.  

Other isolation strategies had a damping effect on the diffusion of knowledge, but did not result 
in permanent damage and merely slowed down the diffusion process. The most successful of 
these were based on Betweenness Centrality and Cognitive Load, mirroring the success of 
these strategies in capping the task performance of the organization.  



Nodes high in betweenness were generally in the position of gatekeepers acting as liaisons 
between pendant cells and the main body of the network. In the real world, the pendant cells 
would likely be operatives or suicide squads preparing for immediate action. Thus, isolation of 
high betweenness individuals may play a role in prevention of terrorist acts, but is unlikely to 
permanently degrade the network's ability to prepare or execute other operations.  

Cognitive load-based isolation strategy concentrates its attention on individuals with high 
dynamic characteristics, such as amount of information processed. However, the experts within 
the network engaged in dissemination of their knowledge to their close associates, as well as 
shedding tasks and as a result did not exhibit high cognitive demand. This behavior is similar to 
task-shedding behavior shown by Carley and Svoboda [32].  

Discussion  
Covert networks exhibit a number of qualities that hinder effective study and modeling. We find 
that multi-agent network models as described in this paper have a number of advantages over 
traditional methods in study of such networks.  

Standard network analysis tools use graph-theoretic measures of node criticality to determine 
which nodes are most important in a covert network. However, Borgatti [21] showed that 
traditional network analysis methods such as centrality-based measures and cutpoint algorithms 
often fall short of the goal of separating the network into discrete components.  

Optimization techniques such as the Key Player algorithm [21] have been proposed as an 
alternative to traditional network methods for finding critical nodes in the system. These 
algorithms can provide deterministic and optimal solutions to the problem of finding important 
nodes in cellular networks. However, the deterministic algorithms do not degrade gracefully 
when the data on the shape of the network is incomplete or inaccurate - which should be 
expected for covert networks.  

Due to the dynamism of covert networks and their ability to self-heal using low-priority links 
and referential data (as illustrated above), it is also unclear that separation of a covert network 
into components is the desired outcome of an isolation event. In our virtual experiments, the 
covert network was able to recover quickly from isolation of individuals in a gatekeeper position, 
while removal of key experts resulted in permanent damage. Thus, destabilization strategies that 
only consider the connections between agents are not sufficient. One needs to take into account 
properties such as knowledge and resource distribution, as well as to analyze the dynamic 
processes that reshape the network as it is being acted upon.  

This work also pushes the boundaries of multi-agent simulation. Traditional A-Life based multi-
agent simulations have been effective at modelling many dynamic phenomena in organization 
theory. A-Life based simulations are built upon the concept of agents located on a grid of pre-
specified shape and size. Interactions are based on concept of proximity, as defined by the agent 
neighborhood on the grid. Unfortunately, the size and shape of both the grid and the 
neighborhood have significant effects on agent behavior and are difficult to justify from the 



theoretic point of view. In this paper, we have placed the agents in dynamically evolving 
networks rather than a grid. The notion of grid proximity is replaced with that of a graph 
proximity, which allows for multiple overlapping networks as well as irregular-shaped 
neighborhoods, thus allowing a much higher fidelity of simulated organizational structures.  

Despite overcoming the limitations of traditional social network analysis and A-Life models, the 
NetWatch model has a number of limitations. First of all, we study behavior of a covert network 
of a limited size and clear boundaries. This does not take into account the fact that most covert 
networks actively recruit new members, as well as the fact that covert networks are often tightly 
integrated into the fabric of the society they operate in, which makes the boundaries of such 
networks difficult to determine ("fuzzy" [14]).  

Addition of recruiting to the model also raises new important questions. How can we stem the 
growth of terrorist organizations? Is it possible to integrate spies into the covert network and use 
them to obtain human intelligence? Fuzziness of boundaries not only increases the cost and 
difficulty of surveillance, but also the cost of false positives, thus changing the heuristic criteria 
for target selection.  

We also realize that a ternary classification task does not capture all of the variety of tasks done 
in terrorist organizations. This task was used in the initial iteration of the model to link our 
findings to prior models of organizational behavior (such as CONSTRUCT and ORGAHEAD). 
Future work might consider more complex tasks, such as attacks, operational support and 
resource channelling.  

Lastly, in our model the anti-terrorist units ("Blue Team") are represented as a small cooperative 
network. In fact, there are a large number of agencies involved in anti-terrorism activity and 
intelligence gathering, and their network is neither fully connected nor fully cooperative because 
of legal and organizational boundaries.  

While the NetWatch model in its current iteration is limited, it has produced a number of 
important findings. First of all, it has shown that finding the most central or structurally 
important individual in a covert network is not equivalent to success. It has also shown an 
emergent self-healing behavior of dynamic networks, which corresponds to anecdotal data on the 
effect of anti-terrorist actions.  

The multi-agent network simulation paradigm allows us to build a very detailed model of the 
activity of the organization, from realistic modelling of the task to simulation of multiple 
overlapping networks. It also allows us to test the behaviors of two competing organizations (the 
Red Team and the Blue Team) in a dynamic co-evolutionary environment that is uniquely suited 
for simulation of large complex organizations.  

Conclusion  
In this paper, we have also shown that multi-agent network simulation is capable of producing 
high-fidelity models of complex organizational structures. Further, using this approach we have 



detailed a number of strategies for obtaining information about covert networks and destabilizing 
them through selective isolation of individuals. Our model has shown that cellular networks do 
exhibit the property of containing structurally equivalent roles and individuals, and isolation of 
such individuals is a valid strategy for anti-terrorist operations.  

However, while isolation of well-connected individuals may disconnect the covert network into 
separate components, the network exhibits an emergent healing behavior that negates the drop in 
performance precipitated by loss of a central agent, and reconnects the components within a 
short period of time. Nevertheless, isolation of individuals in other structurally equivalent roles, 
such as experts, was shown to cause the most amount of permanent damage to the cellular 
network.  

The main implication of this finding is that in order to accurately map organizational networks 
(whether they are covert networks or corporate structures), one must not limit the data collection 
and evaluation to mapping pure social networks. Diversity of data and inclusion of knowledge, 
task and resource data enables significant increase in mapping performance.  

The theory of structural equivalence, presented by Lorrain and White [16], argues that agents 
that occupy the same role in a network should be structurally equivalent to each other (i.e., 
exhibit a similar pattern of linkages with neighboring nodes), and thus be substitutable for one 
another. In this sense, nodes that are structurally equivalent can be used to "replace" each other.  

Dynamic recovery of cellular networks presents a new twist by noting the impact of such 
replacement on the overall performance of the network. When an actor is isolated, the impact of 
that isolation will depend on whether or not there are other actors that are structurally equivalent 
and can come to take the place of the isolated actor.  

Thus, destabilization strategies that locate actors that have alters who are approximately 
structurally equivalent are less effective because, in using nearly similar connections to 
reconnect groups, they are increasing their similarity with the isolated actor and preserving the 
cellular nature of the network. Social networks with sets of key actors who are nearly structurally 
equivalent in this "actor space" cannot be disrupted by removing only one of those actors. In the 
pure social network, experts or those high in cognitive load, are unlikely to appear as being 
structurally equivalent to each other. As such, there is no obvious structural role that can be 
drawn on to fill the communication gaps.  
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