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Particles binding to a fluid lipid membrane can induce bilayer deformations, for instance when these

particles are curved. Since the energy of two overlapping warp fields depends on the mutual distance

between the two particles creating them, they will experience forces mediated by the curvature of the

membrane. If the deformations are sufficiently weak, the associated differential equations for the

membrane shape are linear, and the resulting interactions are understood very well; but very little is

known for stronger curvature imprint, owing to the highly nonlinear nature of the problem. Here we

numerically calculate the magnitude of such membrane-mediated interactions in the case of two

axisymmetric particles over a wide range of curvature imprints, deep into the nonlinear regime. We

show that over an intermediate distance range the sign of the force reverses beyond a sufficiently strong

deformation. These findings are quantitatively confirmed by a simple analytical close-distance

expansion. The sign flip can be traced to a change in magnitude between the two principal curvatures

midway between the two particles, which can only occur at sufficient particle tilt, a condition which is

by construction ruled out in the linearized description. We also show these large perturbation results to

agree with coarse-grained molecular dynamics simulations and suggest that a favorable comparison is

indeed more likely to hold in the strongly deformed regime.

Introduction

Objects bound to fluid lipid membranes can indirectly interact

with each other by means of the curvature deformations they

induce in the elastic surface. This phenomenon has been

observed experimentally1 and given rather substantial theoretical

reflections.2–11 In a sufficiently abstract sense it is the old story of

particles interacting through fields to which they happen to

couple (like charges through the electromagnetic field or masses

through space-time), except, maybe, that the field happens to be

rather explicitly visible. However, the state of affairs is not quite

as drab, because owing largely to the geometric origin of the

underlying theory (membrane geometry determines membrane

energetics through the Helfrich Hamiltonian12), the underlying

field equations are highly nonlinear. Membrane-mediated inter-

actions constitute a beautifully explicit and experimentally real-

izable example of a nonlinear field theory. The flip side is, of

course, that it is difficult to work out what the interaction law is.

While the analytic implications of stress conservation go a long

way,13–16 quantitative nonlinear force-laws are still only known in

one dimension and then require some numerical input.17–19 And

for the arguably most relevant case of particles on two-dimen-

sional membranes, even if they have rotational symmetry, it is

not understood how the well-known linear force law2–5 extends

into the regime of strong curvature. Yet, one has every justifi-

cation to expect fascinating new phenomena: simply recall that

exciting gravitational physics exists in the nonlinear (general

relativity) regime which is all but absent on the linear (New-

tonian) level. For instance, large-scale molecular dynamics

simulations suggest that for sufficiently strong axisymmetric

curvature imprint membrane-bound particles attract,20 despite

the fact that in the weakly curved linear regime such particles are

known to repel.2–5 Mathematically, this flip of sign in the force

law is every bit as striking as if Einstein had discovered that two

masses will repel if they are really heavy.

In this paper we study the interaction law between two

axisymmetric membrane bending particles through the entire

range of imprinted curvature. The nonlinear regime is treated

numerically using the package Surface Evolver.21 We confirm its

major findings by a remarkably simple analytical theory, which

becomes asymptotically correct at close distances and for

curvature imprints near 90�. Most notably, we verify the flip of

the sign in the force law, as observed in the simulations, and

ascribe it to a subtle crossover phenomenon between different

curvature stresses.
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Curvature interactions, the linear case

On the continuum level a deformed fluid lipid membrane is well

described by the curvature-elastic energy12

E ¼
ð
dA

�
sþ 1

2
kðK � K0Þ2 þ kKG

�
; (1)

where s is the surface tension, K ¼ 1/R1 + 1/R2 the (extrinsic)

curvature, KG ¼ 1/(R1R2) the Gaussian curvature, R1 and R2 are

the principal radii of curvature, and where we also have three

material parameters, namely the spontaneous curvature K0, the

bending modulus k, and the saddle splay (or Gaussian) modulus

�k. For up-down symmetric membranes K0 ¼ 0. And owing to the

Gauss-Bonnet theorem22,23 the term involving the Gaussian

curvature only contributes if either the topology or the boundary

of the membrane changes, neither of which will occur in the

following. Since, furthermore, we will restrict to tensionless

membranes, for which s ¼ 0, we can work with the substantially

simpler Hamiltonian

E ¼ 1
2
k

ð
dA K 2; (2)

which is proportional to the integrated squared curvature.

In the absence of additional lateral membrane tension the

elastic energy of a membrane perturbed by an axisymmetric

particle is zero, since the membrane can assume the shape of

a catenoid. This axisymmetric minimal surface is a rather special

solution of the Helfrich shape equation: by virtue of having zero

extrinsic curvature everywhere, K h 0, it minimizes the energy

density 1
2
kK 2 with its lowest possible value. However, when

a membrane contains two such particles, no minimal surface

solution is possible that satisfies all boundary conditions (i.e.,

position and slope at particle contact). A finite membrane

bending energy results that depends on the particle separation r.

At zero tension the only other length scale is the particle size a,

therefore the interaction energy U(r) between two such particles

can only depend on r/a. Within a small gradient approximation

one finds2–5

UðrÞ
pk ¼ 8 a 2

�a
r

�4

: (3)

Here, a is the contact angle the membrane makes with the

plane that contains the particle rim (see Fig. 1). The calculation

has been extended to the case of nonzero membrane tension s

by Weikl et al.,5 who showed that the new length scale

l ¼ ffiffiffiffiffiffiffiffi
k=s

p
changes the power law to an exponential. For the

case which interests us here, when there is a mirror symmetry

plane between the particles, the dominant terms for small a/r

and small a/l are5

UðrÞ
pk ¼ 2 a 2

�a
l

�2

K
0

�r
l

�
þ
��a

l

�2

K
2

�r
l

��2( )
: (4)

In the limit s / 0 (or, equivalently, l / N) eqn (4) reduces to

eqn (3). Notice that the resulting pair forces are always repul-

sive. Curvature mediated interactions exist, as expected, but

they do not lead to an aggregation of particles. Quite on the

contrary, they make particles repel each other (at least on the

pair level).

These analytical calculations make two main approximations.

First, they assume that the membrane is approximately flat and

that the distance between the particles is much larger than their

size (technically, they result from an expansion in the smallness

parameter a/r and, if applicable, a/l). Second, they are ground-

state calculations that neglect membrane shape fluctuations and

thus the Casimir interactions also present in these systems. The

strength of these fluctuation forces decouples from the ground

state terms discussed so far,8 and thus only depends on the radius

a of the particles and not on their curvature imprint a. To lowest

order in a/r the associated fluctuation-based potential energy is

given by2,8,24–26

UðrÞ
kBT

¼ �6
�a
r

�4
: (5)

Notice that (i) this interaction is attractive and (ii) it follows the

same distance dependence as the (tension free) curvature

repulsion. Yet, it is not clear whether it can lead to aggregation

of proteins. We see that the fluctuation and the ground state

term have a comparable strength for a curvature imprint of a ¼
(3kBT/4pk)

1/2, which at a typical value of k x 20kBT amounts

to a x 6�. Beyond this fairly small curvature the (far-field)

ground state repulsion would overwhelm the (far-field) fluctu-

ation induced attraction. Remodeling proteins, which are

believed to impose much stronger local deformations (consider

for instance the enormous deformation created by a BAR

domain27,28), should then repel. We hasten to add, though, that

a BAR domain imposes a non-axisymmetric curvature imprint.

In this case even a linear calculation correctly shows that (i)

vertical membrane torques align two domains and (ii) aligned

domains experience a ground-state attraction with a large

distance 1/r2 potential.9 The prefactor of this term vanishes in

the axisymmetric limit, thus recovering the isotropic 1/r4

repulsion.

Curvature interactions, the nonlinear case

In the present article we use the program ‘‘Surface Evolver’’

of Brakke21 to calculate – for the first time – the full nonlinear

curvature-mediated interactions between two axisymmetric

particles. We aim to shed light on the following two ques-

tions: First, how well does the linear prediction (3) fare for

large deformations and/or small separations between the

particles? And second, how do results change in the strongly

nonlinear regime? Although in this work we focus on

Fig. 1 Cross-sectional schematic of the mirror-symmetric geometry of

a pair of membrane deforming proteins. In three dimensions proteins are

circular disks of radius a.

8568 | Soft Matter, 2011, 7, 8567–8575 This journal is ª The Royal Society of Chemistry 2011
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pair-forces, it is worth emphasizing that multibody effects in

such nonlinear systems can qualitatively change the

behavior.6,29,30 How such effects evolve deep into the nonlinear

regime will be important for understanding the aggregation

behavior of such membrane proteins, but this is beyond the

scope of the present paper.

Methods

Surface Evolver represents a two-dimensional surface embedded

in three-dimensional space though an adaptive triangulation and

finds the shape that minimizes a given discretized surface

Hamiltonian. By adopting the discretized version of (2), we can

find the membrane shape that minimizes the Helfrich Hamilto-

nian for a given set of constraints—which in our case follow from

the size, position, and orientation of the membrane-bound

circular particles. The patch of membrane considered, when

viewed from ‘‘above’’, is a semi-circle with a radius ten thousand

times larger than that of the particles (see Fig. 2). The boundary

of the membrane is constrained to lie on a semi-circular tube

vertically surrounding the semi-circle, and the outward pointing

tangent vector of the membrane on that boundary is constrained

to be horizontal (notice that the latter does not imply that the

membrane’s unit normal points vertically). One particle lies

within this semi-circle and is modeled as a region of membrane

that is constrained to lie on a spherical cap. Because we wish to

enforce mirror symmetry at the flat side of the semi-circle, the

membrane tangent vector perpendicular to this rim is forced to

be horizontal. This system is therefore equivalent to two particles

centrally located within a much larger circular patch of

membrane.

The intersection of the free membrane and the constrained

patch that constitutes the model particle is a circle, whose radius

a defines the characteristic length scale for our system. We define

the position of the particle to be the midpoint of this circle (rather

than the center of the sphere which describes the particle’s

curvature). The separation between the two particles is adjusted

by varying the distance between this midpoint and the flat edge of

the semi-circular boundary, and the orientation of the particle is

altered by tilting this circle around a horizontal axis parallel to

the flat edge of the semi circle and passing through its mid point.

The angle q ¼ 0 corresponds to two horizontal particles, whereas

q ¼ p
2
corresponds to two particles whose upper surfaces face

each other.

For a given set of constraints, Surface Evolver finds the

membrane shape that minimizes the energy functional (2),

where the integral extends over the entire membrane and all

boundary conditions discussed above are required to hold. The

triangulation that represents the membrane is refined to

different levels in different places depending on the local

curvature of the membrane. Briefly, we monitor the dihedral

angle between any two triangles, and if this exceeds a pre-

defined maximum, these triangles are further subdivided. To

ensure numerical stability the actual procedure used is slightly

more complicated and is described in the ESI.† Once the

membrane shape minimizing the energy is found, the forces and

torques acting on the particle are calculated by measuring the

energy change caused by ‘‘infinitesimal’’ translations and rota-

tions. Surface Evolver calculations were performed for (scaled)

particle separations r/a ranging from 0.2 to 10, and for contact

angles between the particle and the membrane, a, ranging from
1
32
pz5:6� to 3

4
p ¼ 135�.

Numerical results for small curvature imprint

In Fig. 3 we show force–distance-curves for particles with

comparatively small membrane contact angles of 1
32
p, 1

16
p, 1

8
p

Fig. 2 Schematic top view of the geometry of the Surface Evolver

calculation (not to scale). Due to mirror symmetry and horizontal

boundary conditions it is sufficient to explicitly represent only the left half

of the system. Notice that from above the circular particles appear

elliptical at nonzero tilt angle q.

Fig. 3 Force between two weakly curved membrane-bound particles as

a function of their separation at different curvature imprint a. The

symbols correspond to a ¼ 1
32
p (B), 1

16
p (,), 1

8
p (C), and 1

4
p (-). The

dotted lines are the large distance asymptotics from eqn (6). The dashed

curves are the small distance asymptotics from eqn (7), with the highest

curve corresponding to a ¼ 1
32
p and the lowest to a ¼ 1

4
p. The inset

shows the rapid rise of the tilt angle q below r/a x 2 for curvature

imprints 1
8
p (C) and 1

4
p (-). The distances in the lightly shaded regions

are only possible if the particles tilt; the darkly shaded region in the inset

(q\arccos r
2a
) is forbidden.

This journal is ª The Royal Society of Chemistry 2011 Soft Matter, 2011, 7, 8567–8575 | 8569
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and 1
4
p. The dotted straight lines correspond to the curvature-

mediated force implied by eqn (3),

Fa

pk
¼ 32 a 2

�a
r

�5
: (6)

As expected, the agreement between the analytical theory and

the numerical calculations is very good for large particle

separations and small contact angles. However, we confess

ourselves astounded by the amazingly good description that

the linear far-field theory gives down to separations of r/a x
2. This is where the particles – if they were to remain hori-

zontal – would actually touch! Also, the full solution agrees

remarkably well with the linear calculation for contact angles

as large as 1
4
p ¼ 45�, even though accuracy clearly diminishes

in that case. We found that even though particles with contact

angles larger than p
4
still show the r�5 force scaling at large

separations, the prefactors are smaller than those predicted by

eqn (6). The onset of this behavior can be seen in Fig. 3,

where the points for a ¼ p
4
lie noticeably below the analytical

prediction.

For separations smaller than r/a ¼ 2 the agreement suddenly

breaks down quite dramatically. The required tilt q has to rise

very rapidly, since the collision constraint q$ arccos r
2 a

must

hold (see darkly shaded region in the inset of Fig. 3). Indeed,

the tilt rises rapidly, and even though it hardly exceeds the

minimum value required by the collision constraint (a

remarkable finding in its own right), this soon defeats the small

gradient approximation on which the linear theory leading to

eqn (6) rests. As a consequence, the forces for small separations

are qualitatively different from the predictions. They also vary

less as a function of both separation and a. Unfortunately we

were not able to calculate very many data points at these short

distances, because the associated numerics turned out to be

very unstable.

Numerical results for large curvature imprint

Upon slowly increasing the curvature imprint, analytical theory

(outside the near-field regime) fails at first only in terms of pre-

factors. However, beyond a sufficiently large contact angle

a qualitatively new effects arise, as can be seen in Fig. 4.x The

force–distance curve for a ¼ 3p
8

still looks similar to that

observed for smaller contact angles, in that the repulsion

increases continuously at decreasing separation, even though for

distances below r/a x 2.5 it falls very substantially below the

linear prediction. But at the contact angle a ¼ p
2

we find

a fundamentally different functional form of the force law: As

the separation is decreased, the repulsive force first increases to

a maximum at a separation of r/a x 1.8, after which it decreases

and at a separation of around r/a x 1 becomes attractive. This

attraction continues to strengthen down to the smallest separa-

tion we measured, r/a ¼ 0.2. Snapshots of the membrane shape

for this contact angle can be seen in Fig. 5 at scaled particle

separations r/a ¼ 0.2, 2, and 6.

For a. p
2
a small distance repulsion reappears, so the regime

of attractive forces occurs between a minimal and a maximal

separation. Of the two stationary points where the force

vanishes, the one at the smaller separation is a minimum in the

potential, showing that under these conditions two particles can

Fig. 4 Force between particles as function of separation. Curves are

shown for particles with contact angles of 3p
8
(B), p

2
(,), 5p

8
(C), and 3p

4

(-). Solid lines are merely guides to the eye. The dashed line is the

large-distance analytical prediction for a ¼ 3p
8
, while the two dotted

curves are the small distance asymptotics from eqn (7b) for contact angles
5p
8
(C), and 3p

4
(-).

Fig. 5 Images of twomembrane-bound particles with contact angles of p
2

at the zero torque condition. Their separations are (a) 0.2a, (b) 2.0a and

(c) 6.0a.

x The reader might worry whether situations in which a approaches p are
physically stable against complete budding or fission. It turns out that
a curvature elastic membrane behaves differently than a surface subject
to surface tension only, which indeed is unstable against many
topology changing events—think of droplets pinching off, or the
famous Goldschmidt instability, where a soap film spanned between to
coaxial parallel circles of radius R collapses once the separation
between the circles exceeds 1.32549R.31 In contrast, curvature elastic
surfaces are stable against such events, which is for instance why on
can pull long membrane tethers. Moreover, at any value of a (with or
without lateral tension) one can find equilibrium solutions of the shape
equation;32,33 a striking illustration for a close to p is the accumulation
of almost completely wrapped but budding-arrested viruses on the
surface of cells, as illustrated in the beautiful electron micrographs in
the paper by Gottwein et al.34

8570 | Soft Matter, 2011, 7, 8567–8575 This journal is ª The Royal Society of Chemistry 2011
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(meta-)stably remain at a nonzero distance without touching each

other.

While the case a ¼ p
2
is the smallest angle we have studied for

which we found attractive forces, continuity considerations

strongly suggest that the first instance of an attractive force is

reached for some critical value of a smaller than p
2
but bigger than

3p
8
. In fact, a closer study of the small distance behavior for a ¼ 3p

8

suggests the existence of a small non-monotonic ‘‘wiggle’’ (which

would be the onset for such a behavior), but we were unable to

calculate sufficiently many points to fully verify this.

Analytical theory for small separation

The shape of the membrane for a ¼ p
2
and r/a/ 0, as illustrated

in Fig. 5a, essentially extends between the two particles as

a circular cylinder, while the rest of the membrane is connected to

this structure through a very small catenoidal neck. Making use

of the relation lim
r/0

qðrÞ ¼ p
2
, which is enforced by

arccos r
2a
# q# p

2
(see again the inset of Fig. 3), we therefore

propose the following small distance asymptotics for the highly

nonlinear regime of large tilt.

Consider a contact angle a (not too far away from p
2
) and two

close and parallel circular discs, between which the connecting

membrane will span. Its shape will be well represented by

a toroidal rim of small (signed) curvature radius ct
�1 ¼ r ¼

r/(2cos a) and large curvature radius ck�1 ¼ a + d ¼ a + r(1 �
sin a), as sketched in Fig. 6. We assume that the connection to

the asymptotically flat parent membrane proceeds indeed via

a catenoidal neck whose energy will vanish in the limit r / 0, so

that we can neglect it altogether in our subsequent discussion.

What is the force transmitted between the two discs through

this toroidal bridge? This can be calculated very efficiently by

making use of the concept of a membrane stress tensor. Briefly, in

complete analogy to the notion of stress in deformed solids, one

can define a stress tensor for deformed curvature-elastic

membranes.13,35 This tensor gives the force per length that acts

across a fictitious cut of the membrane along any chosen cutting

direction. If this direction coincides with a principal curvature

direction (i.e., if it is a local line of curvature), then the answer is

very simple: there exists an attractive force per length propor-

tional to 1
2
kc 2jj , where ck is the curvature parallel to the cut, and

a repulsive force per unit length of 1
2
kc 2t, where ct is the

curvature perpendicular to that cut. If we wish to know the force

transmitted through the membrane between the two discs, we

merely have to integrate the stress tensor along the circular cross-

section of length 2p(a + d) lying half-way between the discs. The

symmetry guarantees that this is a line of curvature, and hence we

find that the force F mediated between the two particles by the

curvature-elastic membrane is given by the expression

Fa

pk
¼ a

pk
� 1

2
k
h
c 2
t � c 2

jj
i
� 2pðaþ dÞ

¼ a

pk
� 1

2
k

�	
1

r


2

�
	

1

aþ d


2�
� 2pðaþ dÞ

(7a)

¼ 1þ x ð1� sinaÞ
x 2

� 1

1þ x ð1� sinaÞ
¼ x�2 þ ð1� sinaÞ x�1 � 1þ oðxÞ;

(7b)

where we used the scaled distance variable x ¼ r/(2acos a). This

asymptotic force–distance relation turns out to describe many

features of the interaction law in the strongly nonlinear regime.

We will now discuss them in detail.

Discussion

The predictions of the simple analytical model from the previous

section are also included in the force–distance plots displayed in

Fig. 3 and 4, and we refer the reader to these illustrations while

discussing several interesting features worth pointing out

explicitly.

1. The functional form of eqn (7b) is very different from the

linear result in eqn (6), thus mirroring the observation that for

close distances or large angles the linear result is qualitatively off.

2. For small separations eqn (7b) predicts a power-law diver-

gence, but with a much smaller exponent �2, compared to the

large distance exponent �5. This explains why the (admittedly

sparse) numerical data in the small distance regime in Fig. 3

exhibit a much weaker distance dependence.

3. The dependence of interaction strength on contact angle

reverses qualitatively compared to the large distance asymp-

totics: While for large distances the force becomes stronger with

larger angle (F f a2), the close distance force becomes smaller

with increasing angle (F f cos2 a), as long as a# p
2
. This,

unfortunately, cannot be backed up with the few data points we

have in this regime.

4. For a ¼ p
2
we have cos a ¼ 0, hence x�1 ¼ 0. In this case the

particles do not experience a diverging power-law repulsion.

Instead, they feel an attraction of asymptotic strength F ¼ pk/a.

This is exactly the force transmitted through a cylindrical

membrane tube in the absence of tension and area constraints.

Fig. 6 In the limit where the two circular discs approach very closely,

they become essentially parallel, and the membrane assumes the shape of

an axisymmetric, ‘‘bulged out’’ cylinder between them. This surface,

which is part of a torus, is itself connected to the asymptotically flat

membrane by a thin catenoidal neck that is not shown for clarity (but see

Fig. 5a). The left three-dimensional graphic illustrates this geometry, the

right sketch denotes the variables needed for the analytical calculation

underlying this simple shape ansatz.
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Notice that this removal of close distance repulsion happens only

for a ¼ p
2
.

5. To continue: the prediction limr/0F(r)a/pk ¼ �1 and the

numerical data are only semi-quantitatively compatible: The

smooth extrapolation performed in Fig. 4 does not appear to

approach the value �p. There are two possible reasons for this:

First, one needs to bear in mind that the value�1 is the third term

in an expansion of which the first two vanish for a ¼ p
2
, and it is

not clear whether this simple ansatz for the shape is accurate up

to third order. In fact, it seems quite remarkable to us that the

na€ıve prediction fares so well. And second, the numerical

calculation close to the critical limit r / 0 is especially prone to

discretization errors.

6. As eqn (7a) shows, it is the difference between the squared

curvature along the line connecting the particles and the squared

curvature within the mirror plane which determines the sign of

the force. The former needs to become small for the latter to take

over. However, the former can only become small if the tilt angle

gets close to p
2
. Since linear theory by construction is restricted to

small tilts, this partly explains why linear theory invariably

predicts a repulsion.

7. For angles a close to p
2
a stable bound state must exist in

which the attractive and repulsive contributions balance. Setting

F ¼ 0 and using the first three terms in eqn (7b) we see that this

leads to a binding distance rmin of

r
min

a
x cosa

�
1� sina� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5� sinað2� sinaÞp �
; (8)

where the ‘‘ + ’’ sign holds for 0#a# p
2
and the ‘‘ � ’’ sign for

p
2
#a#p. For a close to p

2
this simplifies to

r
min

a
z 2 ja� p

2
j. We

will see soon that this bound state can at most be metastable to

the separated state. Notice also that this strongly suggests that

attractive interactions also exist for contact angles a somewhat

smaller than p
2
, even though we have no explicit force–distance

curve to support this conjecture.

Having discussed forces, it would also be instructive to study

the associated potentials. One might think it would suffice to

merely plot the minimized energy which Surface Evolver yields,

but this turns out to be much too inaccurate. The reason is that

at different distances Surface Evolver converges to different

triangulations, and the associated numerical noise is unfortu-

nately comparable to the energy difference we aim to identify.

This is why we instead calculated forces from ‘‘virtual’’

displacements, since these are not nearly as sensitive to the

triangulation-dependent numerical noise in the energy. In order

to get the potential, we therefore used suitably chosen func-

tions, fit them to the force data as best we could, and then

numerically integrated these functions. The results are shown in

Fig. 7 for a˛ 1
2
p; 5

8
p; 3

4
pg�

. Again, several comments are in

order:

1. Since for a ¼ p
2
and r / 0 the membrane between the

particles reduces to a vanishing cylindrical ring and a catenoid of

vanishing energy (see again Fig. 5), we expect limr/0U(r) ¼ 0.

The deviation of 0.05pk found in Fig. 7 can thus be taken as

some approximate estimate for the error of this procedure to

obtain the potential.

2. The functional (2) is positive (semi-)definite; Since the elastic

energy imposed by a single particle vanishes (the catenoid –

again) and limr/NU(r)¼ 0 by conventional choice, the potential

energy also satisfiesU(r)¼ Etwo particles(r)� 2Eone particle$ 0 at all

distances.

3. The nonlinear potentials are all substantially weaker than

the linear prediction.

4. As we found when studying forces, metastable minima are

possible. In the two cases the prediction for their location from

eqn (8) is found to be excellent.

5. SinceU(r)$ 0, it is impossible for a close-distance minimum

to be more stable than the unbound state, which has U(N) ¼ 0.

6. Within our accuracy the height of these minima could

actually be zero. However, this cannot be generally true, for the

following reason: For a close to zero we know that the

potential is given by eqn (3), which is a monotonically decaying

function. For a ¼ p
2
it is the solid curve in Fig. 7. For a slightly

smaller than p
2
it will qualitatively look similar to the dashed

curve (which has a ¼ 5
8
p). However, upon continuously

increasing a from small values, there is no way to turn

a monotonically decreasing function into a positive non-

monotonic function which has a minimum that touches zero.

Stated differently, the only way to continuously eliminate that

minimum at finite distance is to lift it up until the ‘‘wiggle’’

disappears; the alternative of reducing the barrier to zero

cannot be true because otherwise the potential would have to

be identically zero beyond the finite-distance minimum—which

is contradicted by the monotonically decaying small gradient

result (3). The fact that these minima seem only metastable

with respect to the unbound state is thus real.

7. The barriers particles need to overcome in order to fall into

the metastable minima are remarkably small. Assuming k x
20kBT, we find a barrier height of about 13kBT for a ¼ 5

8
p and

4kBT for a ¼ 3
4
p.

8. Given the strong reduction of the repulsive force, one might

wonder whether the Casimir attraction now becomes competi-

tive. However, for r/a ¼ 2, a ¼ 3
4
p, and again k x 20kBT, we

have

Fig. 7 Potential between particles as function of separation. Curves are

shown for particles with contact angles of p
2
(solid), 5p

8
(dashed), and 3p

4

(dotted). The bold curves are the full nonlinear solution, obtained by

numerically integrating the empirical fits to the data in Fig. 4. The fine

curves are the linear solution from eqn (3). The two arrows mark the

locations of the potential minima in the dashed and dotted case predicted

by eqn (8).
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UCasimirð2aÞ
U ground stateð2aÞx

6 kBT 2�4

4 kBT
z 0:1; (9)

which leaves UCasimir about an order of magnitude smaller than

the remaining barrier for a ¼ 3
4
p. Of course, the magnitude of

the fluctuation forces will be quite different at such a large

deformation, so this estimate must be taken with more than just

a grain of salt. But it nevertheless gently reminds us that there is

no obvious reason to expect fluctuations to dominate over the

ground state at large curvature imprint (even though of course

they might end up doing just that).

Comparison with coarse-grained molecular dynamics
simulations

We have previously studied the forces between curvature-

imprinting particles20 through coarse-grained (CG) Molecular

Dynamics simulations using the ESPResSo36 package. Details of

the implementation can be found in this earlier paper and its

accompanying supplementary material. We briefly summarize

the facts which matter for the following discussion:

We examined particles constructed as hollow spheres and

inflated by filler particles to reach a bare radius R0 x 5.5s (with

the CG length s mapping roughly to 1 nm) and a ¼ 2
3
p

(implemented by a strong difference in adhesion energy between

sphere surface and lipid head group). We defined the effective

radius R relevant for membrane bending to be the physical

radius of the capsid, R0, plus half the thickness of the membrane,

d x 6s, for a total of R ¼ R0 þ 1
2
d ¼ 8:5s. The particles were

placed on a square patch of membrane (using the Cooke

model37,38) containing 10 240 lipids and having initial dimension

of 80s� 80s. A modified Andersen barostat39 kept the tension in

both x and y direction at zero by adjusting the box-length to

compensate for any nonzero stress. The spheres were placed with

a line of connection parallel to the y direction. Their center-to-

center distance was constrained to dc, but they could still move

vertically and rotate. Notice that this sphere-based way of

specifying the geometry slightly differs from the disc-based one

discussed so far. However, it is quite easy to see that these two

descriptions are related by

dc

R
¼ r

a
sina� 2cosa sin q: (10)

A cross-section of a typical configuration is illustrated in the inset

of Fig. 8.

The filled squares in Fig. 8 are the membrane-mediated forces

between these particles as measured earlier,20 determined from

the constraint force necessary to fix the particle separation to dc.

At short distances the particles repel strongly, at larger distances

a substantial attraction exists that persisted to the largest values

of dc we examined. While the data do not tell how it develops

beyond dc/R ¼ 2.5, an attraction extending to infinity is not

possible within a bending-only ground state framework, as

explained above, but it is conceivable that other effects (fluctu-

ations, lipid packing and protrusions, tilt fields, etc.) complicate

matters.

To study this further, we performed additional simulations to

explore larger separations, but also refined our setup:

1. We used a membrane containing twice as many lipids,

extending twice as far in the x-direction. Exact analytical theory

shows that the force is fully determined by a line integral over

geometric membrane properties on the intersection curve

between the membrane and the mirror plane,15,16 and since

deformations of this curve extend quite far away from the

capsids, we want to avoid a premature cutoff.

2. Since the barostat involves changes in the box length, this

can interfere with the distance constraint of the particles along

the y-direction. Hence we decided this time to only adjust the box

length in x-direction.

3. Besides the old way of constructing the particles we also

used a second strategy, in which capsids are modeled as rigid but

hollow spheres, in which suitable bending potentials support the

spherical geometry. These spheres have the same size, amphi-

philic surface structure, and attraction strength in the adhesive

region as the hollow spheres (notice that the ‘‘filler beads’’ never

attracted the lipids). We will refer to the former construction as

‘‘filled spheres’’ and the new one as ‘‘hollow spheres’’. In both

cases the spheres deformed negligibly during the simulation.

The circular symbols in Fig. 8 correspond to our new simu-

lation data, which add the following information:

1. The overall functional force–distance relation is compatible

with the continuum prediction from Fig. 4. We have no simu-

lations which exactly match the continuum calculations in terms

of contact angle, and in fact the precise value of that angle is

difficult to unambiguously define in the simulation due to

discreteness issues. However, the case a ¼ 2
3
p is bracketed

between the two continuum curves for a ¼ 5
8
p and a ¼ 3

4
p.

2. More specifically, the possibility of an asymptotic attraction

seems ruled out. Both curves suggest that for dc/R somewhere

between 2 and 2.5 the attraction reverts back to a repulsion. Since

this crossover is predicted to be around r
a
x 1:8 (see Fig. 4) and in

this case the tilt angle is approximately qx 1
4
p (see Fig. 5b), we

Fig. 8 Forces measured between constrained spherical particles with

a ¼ 2
3
p measured in CG Molecular Dynamics simulations. Solid squares

(-) are the results presented in an earlier publication,20 the circular

symbols are from this work, in which the membrane has been enlarged,

the barostat applied differently, and two different capsid constructions

tested: filled spheres (C, as previously) and hollow rigid spheres (B). The

inset shows the cross-section of a typical configuration.
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find from eqn (10) that dc
R
x 2:3 for the crossover predicted in the

simulation data, which is indeed compatible with Fig. 8.

3. For the force we find Fa
k
¼ FR sina

k
x 0:866 FR

k
. From Fig. 8 we

get FmaxR
k

z 0:75 for the maximal attractive force, implying
Fmaxa

k
z 0:65, in line with Fig. 4, when again interpolating between

the two angles 5
8
p and 3

4
p.

4. Disconcertingly, the two different capsid constructions

appear to make a small but statistically significant difference in

the forces. We were unable to trace the origin of this effect, but

would like to emphasize that it does not affect the general

behavior: A large scale repulsion, followed by a medium-range

attraction, which ultimately goes into a strong short range

repulsion (in the case that the curvature imprint is large enough).

While we therefore expect the exciting feature of an intermediate

attraction to be universally true, its overall strength might

depend on subtle details of the particles involved, which makes it

difficult to (i) compare with experiment or simulation and (ii)

tune such interactions in experiment, say by suitable surface

coatings.

Conclusions and outlook

Taken together, our exact numerical solutions of the shape

equations and the CG Molecular Dynamics simulations show

that curvature mediated interactions between axisymmetric

membrane curving particles display exciting new physics in the

strongly nonlinear case of large curvature imprint. While for

large distances and weak bending the linear solution fares

exceedingly well, it is incapable of predicting the crossover into

a regime in which attractive forces exist over a range of distances

that is bounded both below and above. We have identified these

forces both in continuum theory and simulation, with results that

are compatible (when accounting for slight differences in

geometric definitions). Moreover, a remarkably simple close-

distance analytical model can account for almost all novel

features of the nonlinear regime, thus further corroborating the

novel findings beyond the linear realm.

These studies support the view that the attractive forces

between strongly membrane deforming objects, as identified in

our earlier simulations,20 are indeed manifestations of curvature

mediated interactions and not merely artifacts of various other

possible mechanisms that might be operative in the simulation

(which is is of course more complex than a simple continuum

Helfrich membrane).

Despite the agreement between simulation and theory in this

regime, it must be pointed out that a number of mysteries still

remain:

1. In the (seemingly less formidable) case of weaker curvature

imprint (say, a � 1
4
p) analytical theory clearly predicts a repul-

sion over the entire range of distances. And yet, many curvature

imprinting disks with a in this range are able to cooperatively

drive vesiculation.20 It is possible that multi-body effects, not

discussed in the present work, change the pair-picture.6,29

A fascinating scenario along these lines has recently been put

forward by Auth and Gompper: Many curvature imprinting

proteins can drive vesiculation precisely because they repel.30 The

formation of a macroscopically curved membrane that accom-

modates the protein curvature reduces the repulsion and thus

lowers the energy. This requires the confinement of all proteins in

a finite area of the membrane, which indeed happens in simula-

tions of finite membrane patches, but which would need to be

enforced by other means in a biological context. Laterally

segregated domains which preferentially bind the membrane

curving proteins could for instance accomplish such a task.

2. The time evolution of budding events driven by many

spheres with a ¼ 2
3
p (see Supplementary Video 3 of ref. 20)

shows that these spheres readily ‘‘fall’’ towards each other over

distances bigger than dc/R x 2, without any indication that an

energy barrier of 5.10 kBT would need to be overcome. Even

though Fig. 8 supports the view that the barrier predicted by

continuum theory also exists in the simulations, its magnitude

cannot be quantified very precisely, because the forces at larger

distances become exceedingly small and thus very hard to

measure with sufficient accuracy. Recall also that, disconcert-

ingly, the barrier depends sensitively on details (such as the

capsid construction protocol) whose relevance is not obvious. A

second caveat is that these multi-capsid simulations are not done

under exactly the same conditions for which our continuum

results have been derived: Apart from the fact that many capsids

are involved, thereby changing the boundary conditions relevant

to this situation, a possibly more severe issue is that the system is

not in equilibrium (capsids move towards each other), and the

overall membrane might simply not have had enough time to

adjust to some energy-minimizing shape for which the forces

could conceivably be different.

3. For smaller curvature imprint the geometry forces weaken

and become comparable to a variety of other membrane medi-

ated interactions, such as tilt mediated forces, lipid packing

effects, or fluctuations of any of these mediating fields. Once this

happens, the net result is likely a coaction of considerable

complexity, and it is unclear how meaningful progress can be

obtained through analytical theory. Curiously, the strong

curvature regime might thus be conceptually easier than the weak

one, if the geometric component dominates the others.

We would like to conclude by reminding the reader that

throughout this article we have focused on a very small region of

parameter space: that of inflexible, symmetric particles on a zero-

tension and unconstrained membrane. Yet, even within this small

region of parameter space there remain rather fundamental

unanswered questions. Further ground-state calculations –

possibly going beyond Helfrich theory – as well as calculations

that capture the effect of fluctuations more systematically and to

higher order are clearly required. Most importantly however,

controlled experiments that attempt to isolate these effects

between real particles on a real membrane are necessary to give

us a guideline that can be used to advance our understanding of

these forces. They can easily compete with other more

‘‘conventional’’ interactions between membrane bound particles,

and yet we cannot so far describe them as quantitatively as

needed in many situations where it would matter.
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