
Carnegie Mellon University
Research Showcase @ CMU

Parallel Data Laboratory Research Centers and Institutes

9-2007

Measurement and Analysis of TCP Throughput
Collapse in Cluster-based Storage Systems (CMU-
PDL-07-105)
Amar Phanishayee
Carnegie Mellon University

Elie Krevat
Carnegie Mellon University

Vijay Vasudevan
Carnegie Mellon University

David G. Andersen
Carnegie Mellon University

Gregory R. Ganger
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/pdl

This Technical Report is brought to you for free and open access by the Research Centers and Institutes at Research Showcase @ CMU. It has been
accepted for inclusion in Parallel Data Laboratory by an authorized administrator of Research Showcase @ CMU. For more information, please contact
research-showcase@andrew.cmu.edu.

Recommended Citation
.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fpdl%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/research?utm_source=repository.cmu.edu%2Fpdl%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Authors
Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen, Gregory R. Ganger, Garth A. Gibson,
and Srinivasan Seshan

This technical report is available at Research Showcase @ CMU: http://repository.cmu.edu/pdl/30

http://repository.cmu.edu/pdl/30?utm_source=repository.cmu.edu%2Fpdl%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages

Measurement and Analysis of TCP Throughput Collapse in
Cluster-based Storage Systems

Amar Phanishayee, Elie Krevat, Vijay Vasudevan,
David G. Andersen, Gregory R. Ganger, Garth A. Gibson, Srinivasan Seshan

Carnegie Mellon University

CMU-PDL-07-105

September 2007

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Cluster-based and iSCSI-based storage systems rely on standard TCP/IP-over-Ethernet for client access to data. Unfortunately,
when data is striped over multiple networked storage nodes, a client can experience a TCP throughput collapse that results in much
lower read bandwidth than should be provided by the available network links. Conceptually, this problem arises because the client
simultaneously reads fragments of a data block from multiple sources that together send enough data to overload the switch buffers
on the client’s link. This paper analyzes this Incast problem, explores its sensitivity to various system parameters, and examines the
effectiveness of alternative TCP- and Ethernet-level strategies in mitigating the TCP throughput collapse.

Acknowledgements: We would like to thank Jeff Butler, Abbie Matthews, and Brian Mueller at Panasas Inc. for allowing us and helping us
to conduct experiments on their systems. We thank the members and companies of the PDL Consortium (including APC, Cisco, EMC, Google,
Hewlett-Packard, Hitachi, IBM, Intel, LSI, Network Appliance, Oracle, Seagate, and Symantec) for their interest, insights, feedback, and support.
Finally, we’d like to thank Michael Stroucken for his help managing the PDL cluster, and Michael Abd-el-Malek for feedback on our work. This
material is based on research sponsored in part by the National Science Foundation, via grants #CNS-0546551, #CNS-0326453 and #CCF-0621499,
by the Army Research Office under agreement number DAAD19–02–1–0389, by the Department of Energy under Award Number #DE-FC02-
06ER25767, and by DARPA under grant #HR00110710025.

Keywords: Cluster-based storage systems,
TCP, performance measurement and analysis

1

1 Introduction

Cluster-based storage systems are becoming an in-
creasingly important target for both research and in-
dustry [3, 30, 15, 24, 14, 10]. These storage systems
consist of a networked set of smaller storage servers,
with data spread across these servers to increase per-
formance and reliability. Building these systems us-
ing commodity TCP/IP and Ethernet networks is at-
tractive because of their low cost and ease-of-use,
and because of the desire to share the bandwidth of
a storage cluster over multiple compute clusters, vi-
sualization systems, and personal machines. Non-IP
storage networking lacks some of the mature capabil-
ities and breadth of services available in IP networks.
However, building storage systems on TCP/IP and
Ethernet poses several challenges. In this paper, we
analyze one important barrier to high-performance
storage over TCP/IP: the Incast problem [24].

TCP Incast is a catastrophic throughput collapse
that occurs as the number of storage servers send-
ing data to a client increases past the ability of an
Ethernet switch to buffer packets. As we explore fur-
ther in Section 2, the problem arises from a subtle
interaction between relatively small Ethernet switch
buffer sizes, the communication patterns common
in cluster-based storage systems, and TCP’s loss re-
covery mechanisms. Briefly put, data striping cou-
ples the behavior of multiple storage servers, so the
system is limited by the request completion time of
the slowest storage node [9]. Small Ethernet buffers
get exhausted by a concurrent flood of traffic from
many servers, which results in packet loss and one or
more TCP timeouts. These timeouts impose a delay
of hundreds of milliseconds—orders of magnitude
greater than typical data fetch times—significantly
degrading overall throughput.

This paper provides three contributions. First, we
explore in detail the root causes of the Incast prob-
lem, characterizing its behavior under a variety of
conditions (buffer space, varying numbers of servers,
etc.). We find that Incast is a general barrier to in-
creasing the number of source nodes in a cluster-
based storage system. While increasing the amount
of buffer space available can delay the onset of In-
cast, any particular switch configuration will have
some maximum number of servers that can send si-
multaneously before throughput collapse occurs.

Second, we examine the effectiveness of exist-
ing TCP variants (e.g., Reno [5], NewReno [13],
SACK [22], and limited transmit [4]) designed to im-
prove the robustness of TCP’s loss recovery. While
we do find that the move from Reno to NewReno
substantially improves performance, none of the ad-
ditional improvements help. As we show in Sec-
tion 5, this is because in the remaining cases, TCP
loses all packets in its window or loses retransms-
sions; as a result, no clever loss recovery algorithms
can help.

Finally, we examine a set of techniques that are
moderately effective in masking the Incast problem,
such as drastically reducing TCP’s retransmission
timeout timer (Section 5.2). With some of these solu-
tions, building a high-performance cluster filesystem
atop TCP/IP and Ethernet can be practical. Unfortu-
nately, while these techniques can be effective, none
of them is without drawbacks. Our final conclusion
is that no existing solutions are entirely sufficient,
and further research is clearly indicated to devise a
principled solution for the Incast problem.

2 Background

In cluster-based storage systems, data is stored
across many storage servers to improve both reli-
ability and performance. Typically, their networks
have high bandwidth (1-10 Gbps) and low latency
(round-trip-times of 10s to 100s of µseconds) with
clients separated from storage servers by one or more
switches.

In this environment, data blocks are striped over
a number of servers, such that each server stores a
fragment of a data block, denoted as a Server Re-
quest Unit (SRU), as shown in Figure 1. A client re-
questing a data block sends request packets to all of
the storage servers containing data for that particular
block; the client requests the next block only after it
has received all the data for the current block. We
refer to such reads as synchronized reads.

This simple environment abstracts away many de-
tails of real storage systems, such as multiple stripes
per data block, multiple outstanding block requests
from a client, and multiple clients on a single switch
making requests across a shared subset of servers.
However, this is the most basic representative setting

Data Block

Server Request
Unit (SRU)

Servers
1

1

4

2
2

3

4

3

Client

Switch

Figure 1: Terminology for a synchronized reads en-
vironment, where one client requests data from mul-
tiple servers.

in which Incast can occur and simplifies our analysis.
The need for a high performance environment that

supports parallel operations such as synchronized
reads is particularly important because of such recent
projects as pNFS. pNFS is a component of NFSv4.1
that supports parallel data transfer [31, 26, 18].
Many pNFS deployments stripe data across NFS file
servers in an environment similar to ours.

Most networks are provisioned such that the
client’s bandwidth to the switch should be the
throughput bottleneck of any parallel data trans-
fer [16, 21]. Unfortunately, when performing syn-
chronized reads for data blocks across an increas-
ing number of servers, a client may observe a TCP
throughput drop of one or two orders of magnitude
below its link capacity. Figure 2 illustrates this per-
formance drop in a cluster-based storage network
environment when a client requests data from just
seven servers.

Early parallel network storage projects, such as the
NASD project [15], observed TCP throughput col-
lapse in cluster-based storage systems during syn-
chronous data transfers. This was documented as
part of a larger paper by Nagle et al. [24], who
termed the problem Incast and attributed it to multi-
ple senders overwhelming a fixed-size switch buffer.
However, while Nagle demonstrated the problem and
suggested that an alternative TCP implementation
shows a modest improvement, a full analysis and
measurement of the problem and possible solutions
was not performed.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
(SRU = 256KB)

HP Procurve 2848

Figure 2: TCP throughput collapse for a synchro-
nized reads application performed on a storage clus-
ter.

To our knowledge, Incast has never been thor-
oughly studied. Current systems attempt to avoid
TCP throughput collapse by limiting the number of
servers involved in any one block transfer, or by ar-
tificially limiting the rate at which they transfer data.
These solutions, however, are typically specific to
one configuration (e.g. number of servers, data block
sizes, line capacities, etc.), and thus are not robust to
changes in the storage network environment.

3 Experimental Setup

In this section, we describe the simulation and real
system environments where we measure the effects
of Incast and the corresponding workloads that we
use in both settings.

3.1 Simulation Environment

All of our simulations use ns-2 [2], an event-based
network simulator that models networked applica-
tions at the packet granularity. Our default simula-
tion configuration consists of a client and multiple
servers all connected to the same switch as shown in
Figure 1.

Table 1 shows the parameters, and their corre-
sponding default values, that we vary in simulation.
We choose a 256KB default SRU size to model a pro-
duction storage system [1]. From our simulations,
we obtain global and per-flow TCP statistics such as
retransmission events, timeout events, TCP window

2

Parameter Default
Number of servers —
SRU Size 256KB
Link Bandwidth 1 Gbps
Round Trip Time (RTT) 100µ
Per-port switch output buffer size —
TCP Implementation: Reno, NewReno, SACK NewReno

Limited Transmit disabled
Duplicate-ACK threshold (dathresh) 3
Slow Start enabled
RTOmin 200ms

Table 1: Simulation parameters with default settings.

sizes, and other TCP parameters to aid in our analy-
sis of Incast.

Our test application performs synchronized reads
over TCP in ns-2 to model a typical striped file sys-
tem data transfer operation. The client requests a
data block from n servers by sending a request packet
to each server for one SRU worth of data. When a
client receives the entire data block of n·SRU total
bytes, it immediately sends request packets for the
next block. Each measurement runs for 20 seconds
of simulated time, providing enough data transfer to
accurately calculate throughput.

3.2 Cluster-based Storage Environment De-
tails

Our experiments use a networked group of stor-
age servers as configured in production storage sys-
tems. Our application performs the same synchro-
nized reads protocol as in simulation and measures
the achieved throughput. All systems have 1 Gbps
links and a client-to-server Round Trip Time (RTT)
of approximately 100µs. We evaluated three differ-
ent storage clusters:

• Procurve: An HP Procurve 2848 switch con-
nects a client to up to 64 servers, running Linux
2.6.18 SMP, through one or more HP Procurve
2848 ethernet switches configured in a tree hi-
erarchy.1

• S50: A Force10 S50 switch connects 48 Red-
hat4 Linux 2.6.9-22 machines (1 client, 47
servers) on one switch.

1Although this topology does not exactly match our simu-
lation topology, we find that multiple switches do not prevent
Incast.

• E1200: A Force10 E1200 switch with 672
ports with at least 1MB output buffer per port.
This switch connects a client to 87 servers all
running Redhat4 Linux 2.6.9-22 (1 client, 87
servers).

For our workload and analysis, we keep the SRU
size fixed while we scale the number of servers, im-
plicitly increasing the data block size with the num-
ber of servers.2

4 Reproducing Incast

In this section, we first demonstrate Incast occurring
in several real-world cluster-based storage environ-
ments. Using simulation, we then show that Incast is
a generic problem and identify the causes of Incast.
We find that simulation results validate the results
obtained from our experimental setup. Finally, we
show that attempts to mitigate Incast by varying pa-
rameters such as switch buffer size and SRU size are
incomplete solutions that either scale poorly or in-
troduce system inefficiencies when interacting with
a filesystem.

4.1 Incast in real systems

To ensure that the throughput collapse shown in Fig-
ure 2 is not an isolated instance, we study Incast on
the three storage clusters described in Section 3.2.
Figure 3 indicates that both the Procurve and S50
environments experience up to an order of magni-
tude drop in goodput (throughput as observed by the
application). The E1200, however, exhibited no drop
at least up to the 87 servers available, which we at-
tribute to the large amount of buffer space available
on the switch.

In our analysis, we use estimates of the output
buffer sizes gathered from network administrators
and switch specifications. Unfortunately, we are un-
able to determine the exact per-port buffer sizes on

2Some storage systems might instead scale by keeping the
block sized fixed and increasing the number of servers used to
stripe data over, thus decreasing the effective SRU size when
spreading a block over more servers. We explore independently
the effects of changing the SRU size and increasing the number
of servers in Sections 4 and 5, so the effects of Incast can also
be predicted under this alternative scaling model.

3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 SRU = 256KB

HP Procurve 2848 (QoS)
HP Procurve 2848 (No QoS)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 SRU = 256KB

Force 10 s50
Force 10 s50 (No QOS)

(a) HP Procurve 2848 (b) Force10 S50

Figure 3: Incast observed on different switch configurations. Procurve 2848 (a) depicts TCP throughput
collapse at seven or more servers with or without QoS support enabled. Force10 S50 (b) with QoS support
disabled significantly delays the onset of Incast.

these switches. First, most switches dynamically al-
locate from a shared memory pool for each link’s
output buffer. Second, it is unclear how much mem-
ory is allocated to QoS queues when enabled. How-
ever, our estimates are corroborated by simulation re-
sults.

Many switches provide QoS support to enable
prioritization of different kinds of traffic. A com-
mon implementation technique for providing QoS is
to partition the output queue for each class of ser-
vice. As a result, disabling QoS increases the ef-
fective size of the output queues, though the amount
of this increase varies by switch. As shown in Fig-
ure 3(a), disabling QoS support on the Procurve en-
vironment does not significantly change throughput
– it still collapses above 8 servers. This suggests that
the switch does not allocate much additional buffer
space when disabling QoS support. In contrast, Fig-
ure 3(b) shows that disabling QoS support on the
Force10 S50 significantly delays the onset of Incast,
though Incast does eventually manifest. However,
the E1200 environment, which has a large amount
of per-port buffer space on the switch, does not ex-
hibit Incast with as many as 87 servers. This result
strongly suggests that switch buffer sizes play an im-
portant role in mitigating Incast. We evaluate the ef-
fect of buffer sizes on throughput collapse in Sec-
tion 4.3.

4.2 Validation and Analysis in Simulation

To determine how general a problem Incast is for
cluster-based storage over TCP/IP/Ethernet, we also
reproduce Incast in the ns-2 network simulator. Fig-
ure 4 shows Incast in simulation with an order of
magnitude collapse at 8 servers and beyond, and
these results closely match those from the Procurve
environment. The differences between the results,
including the difference in behavior below 3 servers,
have a few possible causes. First, simulated source
nodes serve data as rapidly as the network can han-
dle, while real systems are often slightly slower. We
attribute the worse performance of the real system
between 1-3 servers to these differences. Also, sim-
ulation does not model Ethernet switching behavior,
which may introduce small timing and performance
differences.

Despite these differences, the simulation validates
our real world measurements, showing that Incast
occurs in approximately the same manner for both
real world system measurements and simulation.

An analysis of the TCP traces obtained from sim-
ulation reveals that TCP retransmission timeouts are
the primary cause of Incast (Figure 5).3 When
goodput degrades, most servers still send their SRU

3TCP goodput could also be degraded by a large number of
packet retransmissions that waste network capacity. We find,
however, that retransmitted packets make up only about 2% of
all transmissions. This overhead is not significant when com-
pared to the penalty of a retransmission timeout.

4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (SRU = 256KB)

Simulation with 32KB buffer
HP Procurve 2848 (No QoS)

Figure 4: Comparison of Incast in simulation and in
real world cluster-based settings.

quickly, but one or more other servers experience a
timeout due to packet losses. The servers that fin-
ish their transfer do not receive the next request from
the client until the client receives the complete data
block, resulting in an underutilized link.

Why do timeouts occur? Reading blocks of data
results in simultaneous transmission of packets from
servers. Because the buffer space associated with the
output port of the switch is limited, these simultane-
ous transmissions can overload the buffer resulting
in losses. TCP recovers from losses by retransmit-
ting packets that it has detected as being lost. This
loss detection is either data-driven or is based on a
timeout for a packet at the sender.

A TCP sender assigns sequence numbers to trans-
mitted packets and expects TCP acknowledgements
(ACKs) for individual packets from the receiver. The
TCP receiver acknowledges the last packet it re-
ceived in-order. Out-of-order packets generate du-
plicate ACKs for the last packet received in-order.
Receiving multiple duplicate ACKs for a packet is
an indication of a loss – this is data-driven loss de-
tection. Timeouts are used as a fallback option in
the absence of enough feedback, and are typically an
indication of severe congestion.

In Figure 3(a), we see an initial drop from
900Mbps to 500Mbps between 3-5 servers on the
Procurve. Analysis of TCP logs reveal that this drop
in throughput is caused by the delayed ACK mech-
anism [5]. In the delayed ACK specification, an
acknowledgement should be generated for at least
every second packet and must be generated within

 0

 200

 400

 600

 800

 1000

 2 2.1 2.2 2.3 2.4 2.5

G
o
o
d
p
u
t
(M

b
p
s
)

time (seconds)

Block
Request 1

Block
Request 2

Block
Request 3

Block
Request 4

Instantaneous Goodput Over Time

timeout
event

Figure 5: Instantaneous goodput averaged over 5ms
intervals. Timeouts are the primary cause of Incast
and one stalled flow during a block transfer results
in an idle link duration of 200ms. Timeout events
indicate when a flow begins recovery.

200ms of the arrival of the first unacknowledged
packet. Most TCP implementations wait only 40ms
before generating this ACK. This 40ms delay causes
a “mini-timeout”, leading to underutilized link ca-
pacity similar to a normal timeout. However, normal
timeouts are responsible for the order of magnitude
collapse seen beyond 5 servers in Incast. We explore
TCP-level solutions to avoid timeouts and to reduce
the penalty of timeouts in detail in Section 5.

4.3 Reducing Losses: Larger Switch
Buffers

Since timeouts are the primary cause of Incast, we
try to prevent the root cause of timeouts – packet
losses – to mitigate Incast by increasing the buffer
space allocated per port on switches. Section 4.1
hinted at the fact that a larger buffer size on switches
delays the onset of Incast. Figure 6 shows that dou-
bling the size of the switch’s output port buffer in
simulation doubles the number of servers that can
transmit before the system experiences Incast.

With a large enough buffer space, Incast can be
avoided for a certain number of servers, as shown
by the 1024KB buffer line in Figure 6. This is cor-
roborated by the fact that we were unable to ob-

5

serve Incast with 87 servers on the Force10 E1200
switch, which has very large buffers. But Figure 6
shows that for a 1024KB buffer, 64 servers only uti-
lize about 65% of the client’s link bandwidth, and
doubling the number of servers only improves good-
put to 800Mbps.

Unfortunately, switches with larger buffers tend
to cost more (the E1200 switch costs over $500,000
USD), forcing system designers to choose between
overprovisioning, future scalability, and hardware
budgets. This suggests that a more cost-effective so-
lution is needed to address the problem of Incast-
caused timeouts.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (SRU = 256KB)

32K buf
64K buf

128K buf
256K buf
512K buf

1024K buf

Figure 6: Effect of varying switch buffer size: dou-
bling the size of the switch’s output port buffer dou-
bles the number of servers that can be supported be-
fore the system experiences Incast.

4.4 Reducing Idle Link Time by Increasing
SRU Size

Figure 7 illustrates that increasing the SRU size im-
proves the overall goodput. With 64 servers, the
1000KB SRU size run is two orders of magnitude
faster than the 10KB SRU size run. Figure 8 shows
that real switches, in this case the Force10 S50, be-
have similarly.

TCP performs well in settings without sychro-
nized reads, which can be modeled by an infinite
SRU size. The simple TCP throughput tests in net-
perf do not exhibit Incast [24]. With larger SRU
sizes, servers will use the spare link capacity made
available by any stalled flow waiting for a timeout
event; this effectively reduces the ratio of timeout

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
(Buffer = 64KB)

10K
100K

256K
1000K

8000K

Figure 7: Effect of varying SRU size: for a given
number of servers, a larger SRU improves goodput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 4 8 16

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers

SRU = 100KB
SRU = 256KB

SRU = 1000KB

Figure 8: Effect of varying SRU size for Force10 S50
with QoS support enabled.

6

Finding Location
Incast is caused by too-small switch
output buffers: increasing buffer size
can alleviate the situation.

§4.3

TCP NewReno and SACK improve
goodput considerably over TCP Reno,
but do not prevent Incast.

§5.1.1

Improvements to TCP loss recovery us-
ing Limited Transmit or reducing the
Duplicate ACK threshold do not help.

§5.1.2

Reducing the penalty of a timeout by
lowering the minimum retransmission
value can help significantly, but poses
questions of safety and generality.

§5.2

Enabling Ethernet flow control is ef-
fective only in the very simplest set-
ting, but not for more common multi-
switched systems.

§6

Table 2: Summary of Major Results.

time to transfer time.
Unfortunately, an SRU size of 8 megabytes is quite

impractical: most applications ask for data in small
chunks, corresponding to an SRU size range of 1-
64KB. For example, when requesting an 8MB chunk
from the storage system, one would like to stripe this
chunk across as many servers as needed to saturate
the link. In addition, the larger the SRU size, the
more prefetching the storage system has to commit
to, which allocates pinned space in the client kernel
memory, thus increasing memory pressure, a prime
source of client kernel failures in a fast file system
implementation [1].

5 TCP-level Solutions

Because TCP timeouts are the primary reason that
Incast hurts throughput, we analyze TCP-level solu-
tions designed to reduce both the number and penalty
of timeouts. We perform this analysis using ns-2
simulations.

5.1 Avoiding Timeouts

In this section, we analyze three different approaches
to avoiding timeouts by:

• Improving TCP’s resilience to common loss
patterns by using alternate TCP implementa-
tions;

• Addressing the lack of sufficient data-driven
feedback;

• Reducing the traffic injection rate of expo-
nentially growing TCP windows during Slow
Start [5].

Analysis Method - Performance and Timeout
Categorization: For each approach, we ask two
questions: 1) how much does the approach improve
goodput and 2) if timeouts still occur, why? To an-
swer the second question, we look at the number of
Duplicate ACKs Received at the point when a flow
experiences a Timeout (the DART count). The pur-
pose of this analysis is to categorize the situations
under which timeouts occur to understand whether
the timeout could have been avoided.

There are three types of timeouts that cannot be
avoided by most TCP implementations. The first oc-
curs when an entire window of data is lost and there
is no feedback available for TCP to use in recovery,
leading to a DART value of zero. We categorize this
kind of timeout as a Full Window Loss.

The second type occurs when the last packet of an
SRU is dropped and there is no further data available
in this block request for data-driven recovery. We
categorize this type of timeout as a Last Packet Loss
case. We find, however, that there are relatively few
Last Packet Loss cases.

The last unavoidable timeout situation occurs
when a retransmitted packet triggered by TCP’s loss
recovery mechanism is also dropped. Since there is
no way for the sender to know whether this retrans-
mitted packet is dropped, the sender experiences a
timeout before retransmitting the packet again. We
categorize this unavoidable timeout as a Lost Re-
transmit. The DART count does not help in cate-
gorizing Lost Retransmit cases; we examine the TCP
trace files to identify these situations.

5.1.1 Alternative TCP Implementations – Reno,
NewReno, SACK

Many TCP variants help reduce expensive timeouts
by using acknowledgements to more precisely iden-
tify packet losses [19, 5, 13, 22]. A well-documented

7

problem with the classic TCP Reno algorithm is that
it recovers poorly from multiple losses in a window,
leaving it susceptible to patterns of loss that cause a
timeout [13]. For example, with a window size of
six, Reno will always experience a timeout when the
first two packets of the window are lost.

The most popular solutions to this problem are
the improved retransmission algorithms in TCP
NewReno [13] and the selective acknowledgements
scheme in TCP SACK [22]. TCP NewReno, unlike
Reno, does not exit fast recovery and fast retrans-
mit when it receives a partial ACK (an indication of
another loss in the original window), but instead im-
mediately transmits the next packet indicated by the
partial ACK. TCP SACK uses a selective acknowl-
edgment scheme to indicate the specific packets in a
window that need to be resent [12].

Figure 9 shows that both TCP NewReno and TCP
SACK outperform TCP Reno.4 The patterns of
packet loss from which TCP Reno suffers are indeed
observed in this scenario. Note that TCP NewReno
offers up to an order of magnitude better perfor-
mance compared to TCP Reno in this example. Un-
fortunately, none of the TCP implementations can
eliminate the large penalty to goodput caused by In-
cast.

Figure 11(a) and (b) shows the DART distribution
for TCP Reno and NewReno, while Table 3 shows
the categorization of timeout events. The total num-
ber of timeouts per data block is much lower for
NewReno, partially explaining the goodput improve-
ment over Reno. While most timeouts can be catego-
rized as Full Window Loss cases or Lost Retransmit
cases, there are still 78 timeouts that do not fall into
these cases: they occur when the flows obtain some,
but not enough feedback to trigger data-driven loss
recovery. We next examine two schemes designed to
improve these remaining cases.

5.1.2 Addressing the Lack of Sufficient Feed-
back – Limited Transmit and Reduced Du-
plicate ACK Threshold

When a flow has a small window or when a suffi-
ciently large number of packets in a large window
are lost, Limited Transmit [4] attempts to ensure that

4We are currently investigating why NewReno outperforms
SACK.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

TCP Implementation Comparison
 (SRU = 256KB, buffer = 64KB)

reno
newreno

sack

Figure 9: NewReno outperforms Reno, SACK,
though Incast is still observed.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Comparison
 Limited Transmit, da_thresh=1, da_thresh=1 w/ no SlowStart

 (stripe = 256K, buf = 64KB)

newreno
newreno, limited transmit

newreno, da_thresh = 1
newreno, da_thresh = 1, no slow start

Figure 10: NewReno variants designed to improve
loss recovery provide no benefit.

enough packets are sent to trigger the 3 duplicate
acks necessary to enter fast retransmit and fast recov-
ery. Alternatively we can reduce the duplicate ACK
threshold (dathresh) from 3 to 1 to automatically trig-
ger fast retransmit and fast recovery upon receiving
any duplicate acknowledgement.

Figure 10 illustrates that neither of these mech-
anisms provide any throughput benefit over TCP
NewReno. We plot the DART distribution for setting
dathresh=1 in Figure 11(c). The reduced retransmit
variant successfully eliminates timeouts when only 1
or 2 duplicate ACKs were received. Unfortunately,
this improvement does not increase goodput because
each data block transfer still experiences at least one
timeout. These remaining timeouts are mostly due
to full window losses or lost retransmissions, which
none of the TCP variants we study can eliminate.

8

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

of

 O
cc

ur
re

nc
es

of Duplicate ACKs at Timeout

Duplicate ACK Distribution
Total # of timeouts = 589. Blocks = 49

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

of

 O
cc

ur
re

nc
es

of Duplicate ACKs at Timeout

Duplicate ACK Distribution
Total # of timeouts = 442. Blocks = 89

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

of

 O
cc

ur
re

nc
es

of Duplicate ACKs at Timeout

Duplicate ACK Distribution
Total # of timeouts = 349. Blocks = 84

(a) Reno (b) NewReno (c) NewReno with dathresh = 1.

Figure 11: Distribution of Duplicate Acknowledgements Received at a Timeout (DART) recorded for a 20s
run with 16 servers, 64 packet switch buffer, 256KBytes SRU size.

Reno (Fig. 11(a)) NewReno (Fig. 11(b)) NewReno + dup1 (Fig. 11(c))
of timeout events 589 442 349
of full window losses 464 362 313
lost retransmits 61 2 41
lost retransmits when DART >= dathresh 0 0 34
lost retransmits when DART < dathresh 61 2 7
last packets dropped 2 5 2
of data blocks 49 84 89

Table 3: Table categorizing timeout events under different TCP scenarios (corresponding to Figure 11)

5.1.3 Disabling TCP Slow Start

Finally, we disable TCP Slow Start to prevent net-
work congestion produced by flows exponentially in-
creasing window sizes to discover link capacity fol-
lowing a timeout (or the beginning of a TCP trans-
fer). Figure 10 shows that forcing TCP flows to
discover link capacity using only additive increase
does not alleviate the situation. We leave an analysis
of even more conservative congestion control algo-
rithms for future work.

5.2 Reducing the Penalty of Timeouts

Because many of the TCP timeouts seem unavoid-
able (e.g. Full Window Loss, Lost Retransmit), here
we examine instead reducing the time spent waiting
for a timeout. While this approach can significantly
improve goodput, this solution should be viewed
with caution because it also increases the risk of pre-
mature timeouts, particularly in the wide-area [6].
We discuss the consequences of this effect below.

The penalty of a timeout, or the amount of time a
flow waits before retransmitting a lost packet without
the “fast retransmit” mechanism provided by three

duplicate acks, is the retransmission timeout (RTO).
Estimating the RTO value trades timely response to
losses for premature timeouts. A premature time-
out has two negative effects: 1) it leads to a spuri-
ous retransmission; and 2) with every timeout, TCP
reduces its slow start threshold (ssthresh) value by
half and enters Slow Start even though no packets
were lost. Since there is no congestion, TCP thus
would underestimate the link capacity and through-
put would suffer. TCP has a conservative minimum
RTO (RTOmin) value to guard against spurious re-
transmissions [27, 19].

Popular TCP implementations use an RTOmin

value of 200ms [29]. Unfortunately, this value
is orders of magnitude greater than the round-trip
times in SAN settings, which are typically around
100µseconds for existing 1Gbps Ethernet SANs,
and 10µseconds for Infiniband and 10Gbps Ether-
net. This large RTOmin imposes a huge throughput
penalty because the transfer time for each data block
is significantly smaller than RTOmin.

Figure 12 shows that reducing RTOmin from
200ms to 200µs improves goodput by an order of
magnitude for between 8 to 32 servers. In general,

9

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Comparison of Reno and Reno with reduced RTOmin
 (SRU = varying, buffer = 64KB)

reno 10K
reno 256K

reno 1000K

reno_rto 10K
reno_rto 256K

reno_rto 1000K

(a) Varying SRU sizes

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

TCP Implementation Comparison (with reduced RTOmin)
 (SRU = 256K, buf = 64KB)

reno
newreno

reno_rto
newreno_rto

(b) Different TCP implementations

Figure 12: A lower RTO value (RTOmin = 200µs) in
simulation improves goodput by an order of mag-
nitude for both Reno and NewReno. rto represents
runs with a modified RTOmin value.

for any given SRU size, reducing RTOmin results in
an order of magnitude improvement in goodput using
TCP Reno (Figure 12(a)). Figure 12(b) shows that
even with an aggressive RTOmin value of 200µs, TCP
NewReno still observes a 30% decrease in goodput
for 64 servers.

Unfortunately, setting RTOmin to such a small
value poses significant implementation challenges
and raises questions of safety and generality.

Implementation Problems: Reducing RTOmin to
200µs requires a TCP clock granularity of 100µs,
according the standard RTO estimation algorithm
[27, 19]. BSD TCP and Linux TCP implementa-
tions are currently unable to provide this fine-grained

timer. BSD implementations expect the OS to pro-
vide two coarse-grained “heartbeat” software inter-
rupts every 200ms and 500ms, which are used to han-
dle internal per-connection timers [7]; Linux TCP
uses a TCP clock granularity of 10ms. A TCP timer
in microseconds needs either hardware support that
does not exist or efficient software timers [8] that are
not available on most operating systems.

Safety and Generality: Even if sufficiently fine-
grained TCP timers were supported, reducing the
RTOmin value can be harmful, especially in situa-
tions where the servers communicate with clients in
the wide-area. Allman et. al. [6] note that RTOmin

can be used for trading “timely response with pre-
mature timeouts” but there is no optimal balance be-
tween the two in current TCP implementations; a
very low RTOmin value increases premature time-
outs. Earlier studies of RTO estimation in simi-
lar high-bandwidth, low-latency ATM networks also
show that very low RTOmin values result in spurious
retransmissions [28] because variation in the round-
trip-times in the wide-area clash with the standard
RTO estimator’s short RTT memory.

6 Ethernet Flow Control

Some Ethernet switches provide a per-hop mecha-
nism for flow control that operates independently of
TCP’s flow control algorithm. When a switch that
supports Ethernet Flow Control (EFC) is overloaded
with data, it may send a “pause” frame to the port
sending data to the congested buffer, informing all
devices connected to that port to stop sending or for-
warding data for a designated period of time. During
this period, the overloaded port can reduce the pres-
sure on its queues.

We find that EFC is effective in the simplest con-
figuration (i.e. all clients and servers connected to
one switch), but does not work well with more than
one switch, has adverse effects on other flows in
all configurations, and is inconsistently implemented
across different switches.

We measured the effect of enabling Ethernet flow
control on a single HP Procurve 2848 switch, where
one client and multiple servers were directly con-
nected to the switch. Figure 13 shows that Ethernet
flow control can significantly improve performance.

10

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 1 2 4 8 16 32

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 SRU = 256KB

One switch, EFC enabled
One switch, EFC disabled

Figure 13: Enabling Ethernet flow control can miti-
gate Incast.

Unfortunately, TCP goodput remains highly variable
and is lower than it would be without Incast.

Despite its potential benefits, our simple network
topology and workload hide adverse side effects that
surface when Ethernet flow control is used on larger
multi-switch networks with many more clients and
active TCP flows. For many of these reasons, most
switch vendors and network operators keep flow con-
trol inactive.

The most significant problem is head-of-line
blocking, which occurs when a pause frame origi-
nating from one congested port stops several other
flows from communicating simultaneously. The ef-
fects of head-of-line blocking can be particularly se-
vere in heterogeneous bandwidth settings where one
slow link can cause other faster links to be underuti-
lized. In other words, pause frames pause all traffic
entering a port, regardless of whether that traffic is
causing congestion.

In large part because of the complexities of head-
of-line blocking, many switch vendors disable inter-
switch flow control, and the particular interactions of
multiple switches is not standardized. For instance,
in order to provide link aggregation between two HP
Procurve 2848 switches, our system was configured
with a virtual interface for the trunk over which the
switch could not enable flow control.

7 Related Work

Providing storage via a collection of storage servers
networked using commodity TCP/IP/Ethernet com-

ponents is an increasingly popular approach. The In-
cast problem studied in depth in this paper has been
noted by several researchers (e.g., [15, 17, 25, 24])
in developing this approach.

Nagle et al. [25] briefly discussed the switch buffer
overruns caused by clients reading striped data in a
synchronized many-to-one traffic pattern. Upgrading
to better switches with larger buffer sizes was one
solution used by these researchers. They also men-
tioned the possibility of using link-level flow con-
trol, but focus on its difficulty handling non-trivial
switch topologies effectively without understanding
the higher level notion of striping.

In later work, Nagle et al. [24] again report on the
effects of Incast on scalable cluster-based file stor-
age performance. Specifically they report on exper-
iments with a real product-quality system where a
single client reads a file sequentially using an 8MB
synchronization block size striped across multiple
storage servers. As the number of storage servers
is increased, keeping all other variables of the net-
work constant, the authors observe a linear scaling
of storage bandwidth for up to 7 storage servers, a
steady plateau until around 14 servers, and then a
rapid dropoff. The primary cause of this performance
collapse is attributed to multiple senders overwhelm-
ing the buffer size of the network switch. This prior
work also observed that the Incast problem does not
appear when a streaming network benchmark like
netperf is run. The main reason for the perfor-
mance collapse is therefore identified to be the syn-
chronized and coordinated reads in the SAN envi-
ronment. Nagle et al. also discuss modest perfor-
mance gains introduced by using SACK and reduc-
ing the TCP retransmission timeouts. Although this
last point is not quantified, the paper observes that
problems of degraded performance still persist with
these changes.

Our work builds upon these papers by analyzing
and explaining why Incast causes the problems ob-
served and quantifying the effects of various TCP-
and Ethernet-level modifcations.

The Incast problem studied here represents a spe-
cific form of network congestion. Early work on con-
gestion control in the wide-area by Van Jacobson ad-
dressed the TCP congestion collapse of the Internet
around 1985 [19]. Adopted as the basis of TCP con-
gestion control, the idea was to provide a method for

11

a connection to discover and dynamically adjust to
the available end-to-end bandwidth and send at that
rate. Chiu and Jain [11] describe why the window
mechanism of “additive increase / multiplicative de-
crease” achieves fairness and stability.

Unfortunately, TCP’s congestion control and
avoidance algorithms are not directly applicable to
all settings. For example, they are known to struggle
with wireless settings, where packet losses may not
be due to congestion, and with high-latency, high-
bandwidth network settings [20]. The incast problem
is another example, as explained in this paper.

The performance and fairness of TCP when many
flows share the same bottleneck was studied by Mor-
ris [23]. As the number of TCP flows through a bot-
tleneck increases to the point when there are more
flows than packets in the bandwidth-delay product,
there is an increasingly high loss rate and variation of
unfair bandwidth allocation across flows. This paper
applies some of Morris’s methods and analysis tech-
niques to the synchronized read scenario that causes
Incast.

8 Conclusion

TCP Incast occurs when a client simultaneously re-
ceives a short burst of data from multiple sources,
overloading the switch buffers associated with its
network link such that all original packets from some
sources are dropped. When this occurs, the client
receives no data packets from those sources and so
sends no acknowledgement packets, requiring the
sources to timeout and then retransmit. Often, the
result is an order of magnitude decrease in goodput.

Unfortunately, this traffic pattern is very common
for the growing class of cluster-based storage sys-
tems. When data is striped across multiple storage
nodes, each client read creates this pattern and large
sequential reads create it repeatedly (once for each
full stripe).

Whether or not TCP Incast will cause goodput
collapse in a system depends on details of the TCP
implementation, network switch (esp. buffer sizes),
and system configuration (e.g., the number of servers
over which data is striped). Unfortunately, avoiding
collapse often requires limiting striping to a small
number of servers. Techniques such as very short

timeouts and link-level flow control can mitigate
the effects of TCP Incast in some circumstances,
but have their own drawbacks. No existing solu-
tion is entirely satisfactory, and additional research
is needed to find new solutions by building on the
understanding provided by this paper.

References

[1] Private communication with Jeff Butler,
Panasas Inc.

[2] The network simulator - ns-2.
http://www.isi.edu/nsnam/ns/, 2006.

[3] Michael Abd-El-Malek, William V. Courtright
II, Chuck Cranor, Gregory R. Ganger, James
Hendricks, Andrew J. Klosterman, Michael
Mesnier, Manish Prasad, Brandon Salmon,
Raja R. Sambasivan, Shafeeq Sinnamohideen,
John D. Strunk, Eno Thereska, Matthew
Wachs, and Jay J. Wylie. Ursa minor: Versa-
tile cluster-based storage. In FAST, 2005.

[4] M. Allman, H. Balakrishnan, and S. Floyd. En-
hancing TCP’s Loss Recovery Using Limited
Transmit. RFC 3042 (Proposed Standard), Jan-
uary 2001.

[5] M. Allman, V. Paxson, and W. Stevens. TCP
Congestion Control. RFC 2581 (Proposed
Standard), April 1999. Updated by RFC 3390.

[6] Mark Allman and Vern Paxson. On esti-
mating end-to-end network path properties.
SIGCOMM Comput. Commun. Rev., 31(2
supplement):124–151, 2001.

[7] Mohit Aron and Peter Druschel. TCP imple-
mentation enhancements for improving web-
server performance. Technical Report TR99-
335, 6, 1999.

[8] Mohit Aron and Peter Druschel. Soft timers:
efficient microsecond software timer support
for network processing. ACM Trans. Comput.
Syst., 18(3):197–228, 2000.

[9] Remzi H. Arpaci-Dusseau and Andrea C.
Arpaci-Dusseau. Fail-stutter fault tolerance. In
HotOS, pages 33–38, 2001.

12

[10] Peter J. Braam. File systems for clusters from
a protocol perspective.

[11] D.-M. Chiu and R. Jain. Analysis of the in-
crease and decrease algorithms for congestion
avoidance in computer networks. Comput.
Netw. ISDN Syst., 17(1):1–14, 1989.

[12] Kevin Fall and Sally Floyd. Simulation-based
comparisons of Tahoe, Reno and SACK TCP.
Computer Communication Review, 26(3):5–21,
July 1996.

[13] S. Floyd and T. Henderson. The NewReno
Modification to TCP’s Fast Recovery Algo-
rithm. RFC 2582 (Experimental), April 1999.
Obsoleted by RFC 3782.

[14] Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The google file system. In SOSP
’03: Proceedings of the nineteenth ACM sym-
posium on Operating systems principles, pages
29–43, New York, NY, USA, 2003. ACM Press.

[15] Garth A. Gibson, David F. Nagle, Khalil Amiri,
Jeff Butler, Fay W. Chang, Howard Gobioff,
Charles Hardin, Erik Riedel, David Rochberg,
and Jim Zelenka. A cost-effective, high-
bandwidth storage architecture. In ASPLOS-
VIII: Proceedings of the eighth international
conference on Architectural support for pro-
gramming languages and operating systems,
pages 92–103, New York, NY, USA, 1998.
ACM Press.

[16] G. Grider, H.B. Chen, J. Junez., S. Poole,
R. Wacha, P. Fields, R. Martinez, S. Khalsa,
A. Matthews, and G. Gibson. PaScal - A New
Parallel and Scalable Server IO Networking In-
frastructure for Supporting Global Storage/File
Systems in Large-size Linux Clusters. In Pro-
ceedings of the 25th IEEE International Perfor-
mance Computing and Communications Con-
ference, Phoenix, AZ, April 2006.

[17] Roger Haskin. High performance NFS. Panel:
High Performance NFS: Facts & Fictions,
SC’06.

[18] Dean Hildebrand, Peter Honeyman, and
Wm. A. Adamson. pnfs and linux: Working

towards a heterogeneous future. In 8th LCI In-
ternational Conference on High-Performance
Cluster Computing, Lake Tahoe, CA.

[19] V. Jacobson. Congestion avoidance and con-
trol. In SIGCOMM ’88: Symposium proceed-
ings on Communications architectures and pro-
tocols, pages 314–329, New York, NY, USA,
1988. ACM Press.

[20] Dina Katabi, Mark Handley, and Charlie Rohrs.
Congestion control for high bandwidth-delay
product networks. In SIGCOMM ’02: Proceed-
ings of the 2002 conference on Applications,
technologies, architectures, and protocols for
computer communications, pages 89–102, New
York, NY, USA, 2002. ACM Press.

[21] Charles E. Leiserson. Fat-trees: universal net-
works for hardware-efficient supercomputing.
IEEE Trans. Comput., 34(10):892–901, 1985.

[22] M. Mathis, J. Mahdavi, S. Floyd, and A. Ro-
manow. TCP Selective Acknowledgment Op-
tions. RFC 2018 (Proposed Standard), October
1996.

[23] R. Morris. TCP behavior with many flows. In
ICNP ’97: Proceedings of the 1997 Interna-
tional Conference on Network Protocols (ICNP
’97), page 205, Washington, DC, USA, 1997.
IEEE Computer Society.

[24] David Nagle, Denis Serenyi, and Abbie
Matthews. The Panasas activescale storage
cluster: Delivering scalable high bandwidth
storage. In SC ’04: Proceedings of the
2004 ACM/IEEE conference on Supercomput-
ing, page 53, Washington, DC, USA, 2004.
IEEE Computer Society.

[25] David F. Nagle, Gregory R. Ganger, Jeff But-
ler, Garth Goodson, and Chris Sabol. Network
support for network-attached storage. In Hot
Interconnects, Stanford, CA, 1999.

[26] Brian Pawlowski and Spencer Shepler. Net-
work file system version 4 (nfsv4) charter page.

[27] Vern Paxson and Mark Allman. Computing
TCP’s Retransmission Timer. RFC 2988.

13

[28] Allyn Romanow and Sally Floyd. Dynamics of
TCP traffic over ATM networks. SIGCOMM
Comput. Commun. Rev., 24(4):79–88, 1994.

[29] Pasi Sarolahti and Alexey Kuznetsov. Con-
gestion control in Linux TCP. In Proceedings
of the FREENIX Track: 2002 USENIX Annual
Technical Conference, pages 49–62, Berkeley,
CA, USA, 2002. USENIX Association.

[30] Frank Schmuck and Roger Haskin. GPFS:
A shared-disk file system for large computing
clusters. In FAST ’02: Proceedings of the 1st
USENIX Conference on File and Storage Tech-
nologies, page 19, Berkeley, CA, USA, 2002.
USENIX Association.

[31] S. Shepler, M. Eisler, and D. Noveck. NFSv4
minor version 1 – draft standard.

14

	Carnegie Mellon University
	Research Showcase @ CMU
	9-2007

	Measurement and Analysis of TCP Throughput Collapse in Cluster-based Storage Systems (CMU-PDL-07-105)
	Amar Phanishayee
	Elie Krevat
	Vijay Vasudevan
	David G. Andersen
	Gregory R. Ganger
	See next page for additional authors
	Recommended Citation
	Authors

