1990

Design relations

Eric R. Colburn
Carnegie Mellon University

J Rinderle

International Conference on Design Theory and Methodology(2nd :1990 ;Chicago

Follow this and additional works at: http://repository.cmu.edu/meche

This Technical Report is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase @ CMU. It has been accepted for inclusion in Department of Mechanical Engineering by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
Design Relations
by
E. Colburn, J.R. Rinderle

EDRC 24-33-90
Abstract
During preliminary design, designers make critical design decisions based on their experiential knowledge of the characteristics of the components that comprise a system. In particular designers understand the inherent relationship between the form a device will take and the behavior it will exhibit and use this knowledge to estimate characteristics of components and thus evaluate a system. Knowledge of these design relations are gained with experience, but even an experienced designer may not understand the design relations for an unfamiliar device. It is therefore useful to obtain this information automatically and provide it directly to the designer to supplement experience.

In this paper we discuss the nature of design relations and show that these relations are inherent in the physics, shaped by the constraints, and dependent upon the context of the design. We describe a method for automatically identifying these relations from a constraint-based model of a device which is based on solving a sequence of constrained optimization problems.

Introduction: A Design Scenario
Consider the design of a simple servo-positioning system that might be part of a business machine such as a personal computer printer or a copying machine. Two alternative configurations are shown in Figure 1. In Configuration A, the payload platform is positioned by a cable which is clamped to it. The cable passes over a stationary pulley and is driven by a motor which is mounted to the frame of the device. In Configuration B, the motor moves with the platform. The cable is wrapped around a capstan which is dead-ended at opposite ends of the positioning track.

Which is preferable? How does the designer choose between these two configurations? One possibility is to complete each of the two designs including the specification of the motor for each configuration. The designer may then select between the two substantially complete design alternatives on the basis of anticipated cost, performance, reliability or other criteria. Although selecting from substantially complete designs may be practical in this simple case, it does give rise to a duplicity of design, prototyping and evaluation efforts. Furthermore, in most instances completing all reasonable design configurations is not possible. Thus, in practice it
Casually, we may discuss the characteristics of the two candidate configurations. In Configuration B, the entire mass of the motor is carried with the payload. It appears that a substantial performance penalty must result from this self-loading arrangement. In Configuration A, the motor is stationary and therefore self-loading, as in Configuration B, is not present. On the other hand, Configuration A, requires a pulley and a longer cable which are not required in Configuration B. Furthermore, locating the motor at the end of the positioning track results in Configuration A being longer than Configuration B. The specific requirements of the product will determine the relative importance of these characteristics and will therefore, determine which of the two configurations is preferable, but in any case our estimate of these characteristics depends critically on the characteristics of the motors. How much will the motor weigh relative to the payload? How much space will the motor consume? The answer to these questions hinges fundamentally on the relationship between motor functionality, e.g. torque, and motor form, e.g. size and weight. An understanding of the relationship between motor form and motor function is necessary for the designer to intelligently select one of these two alternative configurations [Rinderle 87]. Relations such as these reflect the characteristics of a given device. They are abstractions of the physical reality of a device, and are useful because they help the designer understand the device and thereby integrate it into a system.

The Nature of Design Relations
A form-function relation, such as the motor torque-weight relationship, is an example of the broader class of design relations. Design relations are relations among any relevant design parameters. What is the nature of these relations? How are they obtained and used? These are the questions which we discuss in the remaining sections of this paper. We present a method for automatically identifying relevant relations, including a discussion of the representation employed. We then discuss how the resulting relations are dependent on and shaped by the constraints on the design of the device.

Design Relations as Abstractions
The servo-positioner designer is attempting to determine how overall device performance will depend on certain characteristics of the motor, particularly torque and weight. The designer does not need or want to consider all characteristics of a motor but only those which he considers germane to particular device performance considerations. In this sense the designer is seeking a simplified view of a motor which includes only certain characteristics. We call this selective elimination of detail an abstraction. The designer, however, does not want the torque and weight of a specific motor but rather seeks a relationship between torque and weight for a family of motors. He wants an abstraction for a class of motors. Abstractions of this sort can be obtained in many different ways. Most expert designers would rely on their experience in estimating the relative size and weight of a motor. A designer without adequate experience might rely on trends obtained from catalogue data. For example, Figure 2 is a plot of torque and weight for two classes of DC motors which might be considered for use in a positioner.

These abstractions make it possible for the designer to reason about the feasibility of the proposed configuration without considering the possibly irrelevant details of motor current, heat dissipation, mounting holes and the like. Designers come to know these relationships with experience, but even an experienced designer may not understand the subtle characteristics of an unfamiliar device. It is therefore useful to obtain this information automatically and provide it directly to the designer to supplement experience.

Limitations of Experience Based Abstractions
It seems clear that the use of abstractions facilitates preliminary design, however, the validity of preliminary design assessments will depend on the validity of the abstractions employed. Empirical methods, however, are subject to error due to hasty generalizations and narrowness of experience. In addition, these relations are dependent on the state-of-the-art, therefore major changes in technology can render the knowledge of particular design relations obsolete. This is particularly an issue when experience is employed in an ad hoc fashion without the knowledge that the experience is directly applicable in a particular design context. Although it will be obvious to a designer that extensive experience with washing machine motors may not be applicable to the design of a servo-positioner, it is perhaps less obvious how experience with large servomotors will apply to smaller servomotors. Furthermore, any specific design context might have very special requirements which may alter the design relationships. For example, we would expect a significantly different relationship between torque and weight in the case where the axial space available for the motor was quite small and the radial space large, accommodating only a 'pancake' type motor. It is clear therefore, that the context influences the appropriate abstractions for a class of device.
Descriptive Verses Prescriptive Design Knowledge

Design relations reflect the characteristics of a given device. They are abstractions of the physical reality of a device, and are useful because they help the designer understand the device and thereby integrate it into a system. They should be distinguished from design heuristics that capture knowledge of the design process. Procedural heuristics are suggestions or hints of how to design, they are a prescription for design as opposed to design relations which are a declarative description of a designed device.

Many design automation systems use procedural heuristics to emulate the way a human designer works. We are not attempting to automate design, but rather to automate the identification of design relations that will help human designers. This is in contrast with expert systems which use the design heuristics that humans have found to help the computer design. Thus we have reversed the roles of the computer and the human designer in this respect.

Obtaining Design Relations

Design relations reflect the physics of a component, the objectives of the component designer and the limitations on an acceptable design. The weight of a motor for example, would be determined by space limitations, the physical laws governing electro-mechanical devices, and the designers objective, e.g. to obtain a certain torque with minimum weight. By solving a family of component design problems we can ascertain a relationship among parameters: A family of motors designed for slightly different torque requirements makes it possible to determine a torque-weight relationship.

Although catalogue data such as that shown in Figure 2 can provide a basis for determining design relationships, the catalogue items do not reflect the special constraints or objectives of the current device level design problem. As an alternative to sole reliance on catalogue data, we explicitly represent the physical relationships for a component family. We then augment those constraints with a design criterion and problem specific constraints and solve the resulting component design problem. To obtain design relations, we then solve a series of these parametric design problems. Each different problem results in a different solution, and the series of solutions reveals the relationships between the parameters of the designs.

This method facilitates a compact representation of a family of components and an efficient means to identify many design relations within related design contexts. This is more practical than collecting a large database of designs or precompiled relations and is easier to update and modify. It also allows for reasoning about aspects of the device that are not listed in a catalogue and about designs that do not actually exist but could, if needed, be manufactured.

Representation

Just as the design of the servo-positioner can be based in pan on a declarative representation of motor relations, so to can the motor design be based on a declarative representation of the physics of motors and of the components which comprise motors.

We employ constraints among device parameters as the fundamental declarative representation of the device. The constraints arise from physical laws, spatial relationships and material limitations. Collectively these constraints delimit the space of acceptable designs, although both the parameterization and the choice of relevant constraints shape the design space. Satisfaction of these constraints, as has been discussed by [Gross 86], [Serrano 87] and [Simon 85] among others, is central to the design task.

In this model each parameter describes some characteristic of the form (such as a physical dimension or material density) or behavior (such as velocity, stress, or torque). The constraints relate the parameters typically through equalities or inequalities. Equality constraints are fixed relationships between parameters and may be the result of physical law (e.g., $f=ma$), may be imposed as a requirement of the design (e.g., $voltage \geq 12$ volts) or may define a geometric relationship (e.g., $A = \pi D^2/4$). Inequalities are often used to express physical limitations (e.g., temperature $< melting\ temperature$), imposed requirements (e.g., torque > 2.4 ft-lbs) or spatial relations (e.g., $OD > ID$). The compositional nature of the constraints allows the model to be easily expanded to an arbitrary level of description by the addition of parameters and constraints.

A collection of these constraints forms a network [Gross 86] or a bipartite graph [Serrano 87] with each node representing either a constraint or a parameter. In this graphical representation of the constraint model, each parameter node is linked to all of the constraints that it participates in, and each constraint is linked to all of its participating parameters. A constraint network for a brushless, unhoused DC motor under stall conditions is shown in Figure 3.

Note that most of the inequality constraints and numerical limitations on the parameters are not shown in the figure for the sake of clarity.

The constraint network itself represents a prototypical device or class of devices and satisfying the network of constraints by assigning a value to each parameter such that none of the constraints are violated, results in an instance of the class. Thus we can view

We are currently using only these but our approach does not preclude other constraints such as boolean, discrete, differential equations, etc.
the satisfaction of a constraint network as analogous to parametric design. But our goal in developing this representation is not to support parametric design, it is rather to aid the designer by providing a way to automatically identify relevant design relations.

Levels of Abstraction
We must represent the design of a motor at the level of the motor designer in order to support the identification of design relations that are useful to the servo designer. In general we must represent the device at a level lower than the design relations which we seek to identify. This is because the levels of abstraction employed by designers are relative. For example the servo designer will consider the motor a component that can be reasoned about as an abstraction while the motor designer will consider the motor a complex system consisting of components itself, such as bearings, wires and magnets each of which he will treat at some abstract level.

At each level designers will employ design relations that characterize the subsystems to facilitate reasoning about the device as a whole. Motor designers understand the heat/speed/load characteristics of bearings which help them specify the bearings and design the motor. Designers that use motors in their designs understand the torque/weight/power characteristics of motors that help them incorporate the motors in their systems.

Design Context
The design relations depend on the particular design problem. A network of constraints represents the nature of a class of devices, but not a particular design problem. The specific requirements and objectives of a problem constitute a design context which can be cast over the network to represent the given task. The context further constrains the space of the solutions to those that are acceptable for the particular situation and specifies the criteria necessary to identify the best design among these. Thus both a design and its corresponding set of design relations are directly related to the context under which it was created. For example one designer may be designing a motor for a given torque while trying to minimize weight, while another may be trying to maximize the efficiency while maintaining a fixed diameter. While both designers may be designing motors of the same class, the first will produce a different design than the second, and the relations between characteristics are relative. For example the servo designer will consider the motor a component that can be reasoned about as an abstraction while the motor designer will consider the motor a complex system consisting of components itself, such as bearings, wires and magnets each of which he will treat at some abstract level.

At each level designers will employ design relations that characterize the subsystems to facilitate reasoning about the device as a whole. Motor designers understand the heat/speed/load characteristics of bearings which help them specify the bearings and design the motor. Designers that use motors in their designs understand the torque/weight/power characteristics of motors that help them incorporate the motors in their systems.

Method
To determine a design relation we solve a sequence of optimization problems, corresponding to a continuum of design contexts. This technique results in a series of optima which can be plotted to show the relationships between various parameters. The plot is similar to what [Siddall 82] calls interaction curves.

Our method consists of five basic steps:
1. Develop a network of constraints which represent the class of component.
2. Assert a design context by specifying the requirements of the design and the objective.
3. Instantiate the constraint network based on catalogue data to obtain prototypical values for all parameters.
4. Optimize the prototype for the given specifications and objective.
5. Repeatedly perturb the design context by changing one constraint and optimize to obtain the trends in design variables.

The following example illustrates our approach.

Example: Brushless D.C. Motor
Consider the use of a frameless brushless DC motor in a servo-positioner as seen in Figure 1. The designer wishes to reduce the length of a standard motor to fit it in a particularly tight space. It is necessary to reduce the length as much as possible while maintaining the same torque and inside diameter and minimizing weight. The designer may be interested in increasing the outer diameter to effect this change, however, the designer will want to know how changing the diameter may affect some of the other aspects of the design.

Figure 4 shows some of the design relations obtained for this context from the constraint network shown in Figure 3. Each of the points marked on the curves represents a computer generated optimum of a prototype motor. Each curve then relates diameter of the motor to some other parameter. The relations are shown as relative changes in the outer diameter (measured along the abscissa) versus relative changes in the other parameters (measured along the ordinate). Thus the origin represents the standard motor (optimized for minimum mass), and the curves represent relative changes from that point.

The Relationship Between Constraints and Design Relations
It is apparent that the low-level constraints used to model the device prototype are related to the high-level design relations abstracted from the model. The connection between them can be demonstrated by considering the space of possible designs as defined by the collection of constraints.

The design space [Gross 86] can be measured in the dimensions of the design variables: the characteristics that a designer has direct control over, such as dimensions or materials. Each point in the design space represents a unique set of values of these variables, and thus a unique design. Furthermore, the region of feasible and acceptable designs is partitioned from the rest of the space by the inequality constraints. The space within these bounds contain designs which satisfy all the constraints.
As the value of an is changed, the feasible region (depicted by the shading in the figure) also changes. When $a \leq 1$, the minimum is not influenced by the constraints. As a is increased, the constraint forces the minimum away from the global minimum resulting in a cusp in Figure 5b. Each point on the curve represents a constrained optimum in the optimization literature [Siddall 82, Balling 85] and is the common form of an engineering design solution.

Design relations are the result of the interaction of the defining constraints under the influence of an imposed context. In particular, the activity of the inequality constraints shape the relations as shown in Figure 5a in which contours of a function $z(x,y)$ are shown. We wish to find the minimum of z subject to two constraints, $y \leq 2$ and $x \geq a$. As the value of a is changed, the feasible region (depicted by shading in the figure) also changes. When $a \leq 1$, the minimum is not influenced by the constraints. As a is increased, the constraint forces the minimum away from the global minimum resulting in z becoming a function of a as shown in Figure 5b. When $a \geq 2$, both constraints are active and the change in constraint activity is reflected in a cusp in Figure 5b. Each point on the curve represents an optimal design for a different specification. Essentially we can see that the design relation is a trace of binding or limiting constraints. Thus design relations abstract the important characteristics of the design space relative to a given context and a variation in one of the specifications.

We can see this effect in the example illustrated in Figure 4. We note that relationships among design parameters change dramatically with changes in the activity of the constraints resulting in the various cusps in the plots. Of particular interest in this example is the relationship between outer diameter and the motor inertia. Initially increasing the diameter actually decreases the inertia, but the rotor will reach a limit on strength and further increases in the diameter will call for a more robust and therefore higher inertia rotor. Determining the nature of the active motor constraints in this way may help the servo-designer understand what is limiting the design and therefore help in reasoning about alternatives.

In general predicting the constraint activity is very difficult due to the complex, non-linear nature of the underlying equations and inequalities. The constraint activity depends on both the constraint network and the specific context of the design. For this reason it is not possible to determine a priori the active constraints, instead they must be determined for each context. Because they are difficult to predict and because they influence the design relations so strongly, the knowledge of the activity of the constraints is valuable to the designer.

The activity of the inequality constraints is important not only because of its influence on the design relations but because it can provide useful insight into the nature of the device. As the design solutions are generally constrained optima, the design is essentially limited by some aspect(s) of the technology or configuration. By providing the designer with a list of the active constraints he will be able to reason about what improvements may be made to the design, and, possibly just as important, what cannot be improved upon. For instance if the active constraints show that the design is limited by the strength of a member of the device it may be possible to change the material, but if the design is seen to be limited by imposed design specifications such as a given voltage available, then the designer can see that there is no room for improvement in that area.

Designers often characterize designs in this way, for instance a device may be called a "stress-limited" design or a "buckling-limited" design. This characterization of components and subsystems is useful when considering the design of the device because it facilitates reasoning about alternatives. Knowing that the component is limited in a specific way may tell the designer to discard the current configuration because the component can never perform as desired.

While we can see that constraints on a design and design relations are closely related, there are important differences, particularly operational differences. Constraints are used to model the low-level physics of a device. They relate "local" parameters directly through physical or geometric laws, for example $F=ma$, $v=IR$ or $OD=ID+2t$. They are a direct representation of the physics. Design relations, on the other hand, are used to express the high-level interaction of two characteristics of a device. They are useful because they relate two seemingly "distant" parameters, such as torque and diameter, in a simple way.

Conclusion
Empirical knowledge of device characteristics used by experienced designers can be seen to be abstractions of the underlying physics of a device and the objective of the device designer. These characteristic design relations are used by designers to evaluate tentative configurations based on estimations of the form and behavior of the components that constitute the device. Unfortunately, knowledge of these relations is obtained only with years of experience. Thus it is advantageous to automatically obtain relevant design relations as a means of supplementing a designer's experience. The method presented for doing this is based on the declarative representation of the constraints on the design and the use of optimization to produce design instances for a continuum of design contexts.

Acknowledgments
The authors are pleased to acknowledge the support of the Design Theory and Methodology Program of the National Science Foundation (NSF Grant DMC-84-51619) and the Engineering Design Research Center at Carnegie Mellon University (NSF Grant CDR-85-22616).
References

[Balling 85]

[Gross 86]

[Inland 85]
Inland Motor, KoUmorgen Corporation, "Direct Drive DC Motor Catalogue".

[Newsome 88]

[Paz-Soldan89]

[Rinderle 87]

[Serrano 87]

[Siddall 82]

(Simon 85)