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The Effect of Intensity of Effort to Reach Survey Respondents:
A Toronto Smoking Survey

Louis T. Mariano and Joseph B. Kadane '

Abstract

The number of calls in a telephone survey is used as an indicator of how difficult an intended respondent is to reach. This
permits a probabilistic division of the non-respondents into non-susceptibles (those who will always refuse to respond), and
the susceptible non-respondents (those who were not available to respond) in a model of the non-response. Further, it
permits stochastic estimation of the views of the latter group and an evaluation of whether the non-response is ignorable for
inference about the dependent variable. These ideas are implemented on the data from a survey in Metropolitan Toronto of
attitudes toward smoking in the workplace. Using a Bayesian model, the posterior distribution of the model parameters is
sampled by Markov Chain Monte Carlo methods. The results reveal that the non-response is not ignorable and those who do
not respond are twice as likely to favor unrestricted smoking in the workplace as are those who do.

Key Words: Call-backs, numbers of; Bayesian analysis; Markov Chain Monte Carlo method; Informative non-

response; Ignorable non-response.

1. Introduction

Given the reality of non-response in every survey, it is of
interest to determine how to account for this non-response in
the interpretation of the collected data. Rubin (1976) gives
necessary and sufficient conditions for such an analysis to
be identical from, respectively, a frequentist, likelihood, and
Bayesian perspectives, to an analysis based on a model
incorporating a missingness mechanism. Building on this,
Little and Rubin (1987) led to an extensive literature
modeling non-response in an informative, non-ignorable
way.

Information about the interaction between the survey and
the surveyed can sharpen the analysis of the import of
missing data in a survey. The example in this paper
concerns the attitudes of Toronto citizens about smoking in
the workplace. Random telephone numbers were chosen; at
least twelve calls were made to try to reach the intended
respondents. Our data for the respondents includes only the
number of calls until the survey was completed, not the
timing of the unsuccessful calls. With even this attenuated
data on how difficult the respondent was to reach, we find
our view of the results of the survey to be importantly
informed by the number of unsuccessful calls.

The use of information on the number of calls to a
subject chosen to participate in a survey is not unique.
Potthoff, Manton and Woodbury (1993) present a method
for correcting for survey bias due to non-availability by
weighting based on the number of call-backs. While our
analysis also focuses on the bias due to non-availability,
there are major differences. Instead of assuming that
refusals do not exist, we allow for and utilize their
potential existence in modeling the mechanism which

causes non-response. In the analysis that follows, the
relationship of non-response to the response variable of
interest in the survey is evaluated along with other
explanatory variables, after weighting for both household
size and the appropriate population demographics. In
doing so we address not only whether error exists due to
non-availability, but also whether stratification of the
respondents by household size and the then current age/sex
distribution may eliminate the necessity for accounting for
the error by the introduction of a mechanism which
describes the non-response. Note that here we match the
groupings of Pederson, Bull and Ashley (1996) used in the
original published analyses of the dataset; more complex
cell adjustment procedures are possible (e.g., Little 1996;
Eltinge and Yansaneh 1997, and references cited therein).

The remainder of this article is organized as follows:
Section 2 gives more detail on the survey; section 3
introduces the methodology employed; Sections 4 and 5
respectively explore missing-at-random and non-ignorably-
missing models; Section 6 discusses the priors distributions
chosen for the main analysis, whose results are explained in
section 7. Finally, section 8 gives our conclusions.

2. The Survey

A bylaw regulating smoking in the workplace in the City
of Toronto took effect on March 1, 1988. From January
1988 to the present, a series of six surveys have been
conducted to assess attitudes of the public toward smoking,
awareness of health risks related to smoking, and the impact
of the law on the residents of Metropolitan Toronto. The
data being utilized in this analysis comprises the third phase

1. Louis T. Mariano is a Ph.D. candidate, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213; Joseph B. Kadane is Leonard
J. Savage University Professor of Statistics and Social Sciences, Department of Statistics, Carnegi Mellon University, Pittsburgh, PA 15213.
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of this series. Northrup (1993) provides the technical docu-
mentation for this survey. For clarity, when necessary, the
data being analyzed here is referred to as the Phase III data,
and information from the first two surveys is referred to as
the Phase I & I data.

Northrup (1993) indicates that the data of interest, which
were made available by the Institute for Social Research
(ISR) at York University, were collected from 1,429
residents of the Metropolitan Toronto area in December
1992 and March 1993. A two-stage probability selection
process was utilized to select survey respondents. The first
stage employed random digit dialing. The second stage used
the most recent birthday method to select one adult
individual once an eligible residence was reached. The
responses were then weighted by the number of adults in the
household. In the analysis that follows, post-stratification
weighting was also applied to the census age-sex dis-
tribution to adjust for the underrepresentation of some
population subgroups. The number of distinct phone lines in
the household was not taken into consideration during the
data collection.

The number of calls it took to reach each respondent is
included as a variable in the dataset, and there are no
missing values for this variable. Northrup (1993) explains
that the 1,429 responses came from a sample of 5,702
telephone numbers generated by the random digit dialing
method. Of these numbers, 2,286 were verified to be
eligible households, and 3,150 of the numbers in the sample
were not eligible. The status of the remaining 266 numbers
was not able to be determined. It has been assumed by ISR
that the household eligibility rate of these 266 numbers was
equal to the rate for the rest of the sample. This eligibility
rate implies an estimated total of 2,398 households in the
sample and a response rate of 60%. Thus, an estimated 969
subjects chosen to participate in the survey did not respond.
Each subject received a minimum of 12 calls, including day,
night, and weekend calls, before being classified as non-
respondent.

The dependent variable, for the purpose of this analysis,
is an individual’s opinion on the regulation of smoking in
the workplace, in one of three categories. Category “0”
indicates smoking should be permitted in restricted areas
only, category “1” indicates smoking should not be
permitted at all, and category ‘“2” indicates smoking should
not be restricted at all. For each subject chosen to participate
in the survey, let Y, € {0, 1, 2} represent the opinion of
subject i.

The data comprises of the answers to 50 survey questions
as well as 18 other variables identifying characteristics of
the subject. Included in these are:

— “K-risk” is an integer score from 0 to 12 which

indicates knowledge of the risks and effects of
second-hand smoke.
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— “Smoker” indicates the smoking status of the subject:
“Current smoker” (S), “Former smoker” (SQ) or,
“Never smoked” (NS).

— “Bother” indicates if second-hand smoke bothers the
subject: “Always bothers” (b.A), “Usually bothers”
(b.USUL), or “Does not bother” (b.NO).

“Age”: (Age in years-50) / 10.

Pederson, Bull, Ashley and Lefcoe (1989) created a
“knowledge of health effects score” on passive smoking out
of the answers to six survey questions, which measured a
subject’s knowledge of the effects of second-hand smoke.
Pederson et al.’s questions were used in Phase III to create
their score, here renamed “K —risk”. A higher K — risk
score indicates a greater knowledge of the risks of second-
hand smoke. The variable “Age” was shifted and rescaled to
match how age was treated by Bull (1994) in the Phase
[ & 11 analysis.

3. Overview of Methodology

The fundamental question of interest is: “May we ignore
the unit non-response and treat the observed data as a
random subsample of the population?” Mapping to the
terminology of Little and Rubin (1987) and Rubin (1976): If
we may treat the observed data for the dependent variable of
interest as a random subsample, we call the missing data
“missing completely at random” (MCAR). If we may treat
the observed data for the dependent variable of interest as a
random subsample, after conditioning on the explanatory
variables, we call the missing data “missing at random”
(MAR). Let 0 represent the parameters of the data and let
n represent the parameters describing the missing data
process. Rubin (1976) calls the parameters m and ©
distinct “if there are no a priori ties, via parameter space
restrictions or prior distributions, between w and 0.” If
either the MCAR or MAR cases apply and if 7 and 0 are
distinct, the mechanism which causes the missing data is
said to be “ignorable” for inference about the distribution of
the variable of interest. If the missing data for the dependent
variable of interest is dependent on the values of that data,
then the mechanism which causes the missing data is said to
be “non-ignorable” (NI). Groves and Couper (1998) note
that when the likelihood of participation is a function of the
desired response variable, the non-response bias can be
relatively high, even with a good response rate.

Let R be an indicator of response. R; = i ondent;
(subjecti) and R = (R, ..., R,)". Little and Rubin (1987)
suggest that one possible method for accounting for the non-
response mechanism is to include this response indicator
variable in the model. We may call the mechanism which
causes the missing data ignorable if © and 0 are distinct
and:

SR Yoo Yoo ©) = f(R| Yy, ) 1
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where Y, and Y . represent the observed and missing
portions of the dependent variable of interest.

The terms “MAR assumption” and “NI assumption” will
be used throughout this analysis. For clarity, the term
“MAR assumption” is defined as the assumption that the
missing data mechanism is ignorable for inference with
respect to the dependent variable identified in section 2.
That is, the observed values of that variable are a random
subsample of the population, possibly within postrata, and it
is not necessary to account for the missing data mechanism.
The term “NI assumption” is defined as the assumption that
the missing data mechanism is non-ignorable and the data
collected for the dependent variable of interest cannot be
treated as a random subsample. Specifically, inference for
the population must involve the missing data mechanism.

The approach to assessing the MAR assumption is
comprised of three steps. The first step is the examination of
what one might do under the MAR assumption. Since the
dependent variable of interest has three categories and some
of the explanatory variables are quantitative, polytomous
logistic regression is employed. Both frequentist and
Bayesian forms of the logistic regression model are
examined.

In the second step, and NI model is constructed. The non-
response mechanism is modeled utilizing the information
available about the number of calls made to each subject.
Here, the idea of a surviving fraction in the sample is
examined to model whether it is actually possible to reach
all the intended respondents. Then, the non-response
mechanism is related to the dependent variable by including
the number of calls in the logistic regression model.

In the development of the NI model, we employ a
Bayesian approach to allow for an examination of the values
the missing data re likely to take, given the observed data
and the model parameters. This is accomplished by utilizing
a data augmentation approach, where the missing data are
imputed in each iteration of a Markov Chain Monte Carlo
(MCMC) simulation. A possible alternative would be to
utilize the expectation-maximization (EM) algorithm
(Dempster, Laird and Rubin 1977) to compute the
maximum likelihood estimates (MLE’s) of the missing
values.

In the third step, an evaluation of the MAR assumption is
made. Non-zero coefficients for the number of calls in the
logistic regression portion of the NI model will imply that
the number of calls does make a difference; ie., the
opinions of those who did not respond in the first 12 calls
are likely to differ from those who responded in just a small
number of calls. In this case, the missing data mechanism is
not independent of the values of the missing data and an
MAR assumption would be inappropriate. Next, the log
odds of response among the three models are examined.
Differences here identify the magnitude of the error that a
faulty MAR assumption causes. So, in the evaluation of the
MAR assumption, the questions “is there a difference?” and
“how large is the difference?” are both addressed.
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4. MAR Models

4.1 Logistic Regression

Using the data collected from the (m = 1,429) subjects
that did respond to the survey, weighted logistic regression
was employed to model the public’s opinion on smoking in
the workplace. The collection of candidate predictors found
in the survey questions and the background information was
narrowed utilizing a series of Wald tests. Then likelihood
ratio tests, AIC, and BIC were used to compare the possible
models. The model with the best fit was found to be the one
which included additive terms for the variables “ K — risk”,
“Smoker”, “Bother”, and “Age”, as defined in section 2.

As each of the models examined in this analysis employs
a logistic regression component, it is useful here to illustrate
the notation being used. Category “0”, smoking allowed in
restricted areas only” was chosen to be the reference
category. Recall Y, € {0, 1, 2}. For the MAR model, we
use only the observed values of the subject’s opinion on
workplace smoking, Y. = (¥, ..., V). Let ¥, = I,,,())
be an indicator of subject i responding in category j, and
let W, represent the weight each subject received. As in the
original published analyses of this dataset (Pederson et al.
1996) both household (see Northup 1993) and post-
stratification (see Appendix A) weighting were used in the
consideration of all models here.

The two categorical explanatory variables, “Smoker” and
“Bother”, were included in the model by utilizing indicator
variables for two of the three categories, with the effect of
the third category being absorbed in the intercept term. For
“Smoker”, “S,”” and “ SQ, ”” were included as indicators that
subject i was either a current smoker or a smoker who had
quit. For “Bother”, “b.USUL,” and “b.NO,” were includ-
ed as indicators that second had smoke usually bothered or
did not bother subject i.

Let X, =represent the vector for explanatory variables
for subject i. Then,

X, = (K—risk,, S, SQ,, b.USUL,, bNO,, Age,).

Here we use an unordered multinomial logit model to
consider p;(x;) = P(Y; =1] X, =), the probability
that subject i responds in category j e {0, 1, 2}, given the
observed explanatory variables for subject . This model, of
course, utilizes linear equations m,; describing the log odds
of subject i responding in category ; versus the reference
category j=0. So, for j =1, 2 we wish to examine:

pj(xi) _

In =
Po(x,)

n; = Boj' + XiBj’ (2)

with m,, =0. The two resultant linear equations, m, and
M;»» €ach have seven coefficients, including an intercept
term f3; and those displayed below:

B,- = (BK-risk,a Bs,a BSQ,a BbAUSUL,’ BbANO,’ BAge,)-

Statistics Canada, Catalogue No. 12-001
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The MAR logisitic regression model has 14 parameters.
The vector of these 14 parameters, represented by P =
(Boy» Bi> Boa» B,) has the likelihood (or, more appro-
priately, pseudo-likelihood, since the weights are
incorporated through the variable W) :

mo 2 e Vit
L(B) ¢ | . 3)
o[

4.2 Bayesian Logistic Regression

The likelihood in equation (3) and the data collected
from the survey respondents are utilized in the Bayesian
analysis. The same four explanatory variables selected in the
frequentist analysis above are used as the explanatory
variables here. Prior distributions, discussed in section 6,
were assigned to the logistic regression parameters. An
MCMC simulation is utilized in order to draw from the
posterior distribution of the parameters.

5. NI Model

5.1 Modeling the Non-Response Mechanism

Since the missing values are not necessarily missing at
random, the mechanism which caused them to be missing
must be addressed. Northup (1993) indicates that non-
respondent subjects chosen to participate in the survey were
called a minimum of 12 times, including a minimum of
three day, four evening and four weekend calls. Unfortu-
nately, other useful information regarding the number of
calls was not retained. We do not know which of the non-
respondents were called more than twelve times or whether
an individual call was placed during the day, evening, or
weekend. We also are unaware of the details of the non-
response, such as whether the subject was contacted but

refused to participate, whether the calls were ever answered
by a machine, or whether they were answered at all. Thus,
stratification of the non-respondents was not possible, and
they were all treated as exchangeable in this analysis.

Each subject was called a number of times until the
survey was successfully completed or they were classified
as non-respondent. For the respondents, the number of calls
variable (C;) describes the number of trials until the first
success for subject i. Thus, one might expect the number of
calls to follow a Geometric distribution with truncated
observations for the non-respondents. Specifically, let
n=P (a call is successful); then, consider C, ~ Geometric
(m) and P(C, = c,) = n(l — m)“"". Note that if auxiliary
information about the number of calls to the non-
respondents were available (e.g., Groves and Couper 1998),
we could have also considered conditional response
probabilities here.

The histograms in Figure 1 compare the data (through the
first twelve calls) to a Geometric distribution with parameter
7 =0.225, which appears to match fairly well. The sample
order statistics suggest © € (0.2, 0.25). The histogram of
the actual survey data reveals that the number of subjects
reached on the first call are fewer than the number reached
on the second call. It is possible that more of the second
calls were placed at a time which had a higher success rate.

Suppose © = 0.225; by the memoryless property of the
Geometric distribution, we would expect 218 of the 969
non-respondents to reply on the 13™ call. This would make
the data through the first 13 calls appear as in Figure 2.
Clearly, Figure 2 does not display the behavior of a
Geometric random variable. Consider the following
question: “If all subjects were called an unlimited amount of
times, would they all have been reached?” Answering “yes”
to that question for this dataset results in the problem
illustrated in Figure 2.

0.24

0.20 -

0.16

0.12

0.08

Proportion of Subjects Responding

0.04

1 2 3 4 5 6 7 8 9
Actual Data

10 11 12

1 L L] ] i T L] i 1 1 1 i
1 2 3 4 5 6 7 8 9 10 11 12
Expected Under Geometric (0.225)

Number of Call Attempts

Figure 1. Comparison of the actual survey data for successful calls in the first 12 attempts to expected results based
on a Geometric (0.225) distribution for the number of calls needed to complete the survey.
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300 =

200 =

150 =

100 =

Number of Subjects Responding

50 A

1 2 3 4 5 6

. Actual Data
D Imputed 13" Call

7 8 9 10 11 12 13

Number of Call Attempts

Figure 2. Display of the actual number of successful calls on each attempts through the first 12 and the expected
number of successful calls on the 13™ attempt. The expectation for the 13™ callis based on a Geometric
(0.225) distribution to model the number of calls until the survey is completed.

Given the information outlined above, the assertion that
“not all subjects chosen for the survey are reachable” is a
viable one. Maller and Zhou (1996) discuss immune
subjects — individuals who are not subject to the event of
interest. Following their terminology, if it is not possible to
procure a response from a subject chosen for the survey
given an unlimited amount of calls, that subject is
categorized as immune. Subjects who are not immune are
categorized as “susceptible”. The set of immune (i.e., non-
susceptible) subjects comprise the “surviving fraction” of
the sample. Mapping to more familiar terminology, the
immune subjects include those who were reached and
refused, those who would have refused if they had been
reached, and those cases of a physical or mental inability to
ever participate. Northup (1993) indicates that those who
initially refused to participate were subsequently contacted
by the most senior interviewers, so, we make the as-
sumption here that all remaining refusals would not ever
participate. The susceptible group includes the respondents,
those who would have responded if successfully contacted,
and those who were physically or mentally unable to
participate during the data collection period but were willing
and able at some other time.

Let the variable Z; = I, e (Subject i) be an
indicator of the susceptibility of subject i, and p = P
(subject i is susceptibility), i.e., Z, ~ Bernoulli (p). Now
suppose that the number of calls to the susceptible subjects
follows a Geometric distribution, ie, C,|Z, =1~
Geometric (7). Does this eliminate the problem illustrated
in Figure 2?

Let R, be an indicator of response of subject i. The non-
response mechanism can be accounted for by including
these response indicators in the model. However, the
introduction of the susceptibility variable implies two

distinct classes of non-response. So, it is possible to be more
detailed and use both the susceptibility Z = (Z,, ..., Z,)"
and the response R indicators in a mixture model de-
scribing the non-response. Updating Equation (1), the
missing data mechanism is ignorable if and only if (7, p) is
distinct from 0 and

f(R, Z|Yobsa Ymis’ TE, p) = f(R, Z|Yobsa TC, p) (4)
Let C,, =(C, .., C,) and Z, =(Z, .., Z,) be

obs obs
the vectors of the number of calls and the observed
susceptibility for each respondent. Also, let R =
(R, ..., R)) =be the vector of response for each intended
respondent. Every subject, i, may be classified by response
into three mutually exclusive groups, A, —observed,

A, —missing, and 4, —immune, where:

Ay = {iti was Susceptible and Responded}

A = {i:i was Susceptible but did not Respond in 12 calls}
A, = {i:i was not Susceptible}.

The probability that a subject is in each of these categories
may be calculated as follows:

PlieA,)=P(Z,=1,R=1,C =c) =pn(l-n)"
P(icd,)=P(Z=1,R =0,C, >12) =p(1-mn)"~
P(ic A, )=P(Z =0) =1-p.

Statistics Canada, Catalogue No. 12-001
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The data indicates m = 1,429 subjects in 4, and
n — m = 969 non-responsive subjects in A UA,.;
n = 2,398 is the estimated total number of subjects chosen
to participate in the survey. Thus, the joint density of

Z,. R and C,  given p and 7 is:

obs?

FZoys R, oy, Ip> ) [pmnm (1- n)@g”"”]

x[(1=p)+p-m]" (5)

The mixture model described by Equation 5 may be
viewed as a special case of the non-response models
discussed in Drew and Fuller (1981).

It would be useful to confirm that the above joint
distribution accurately represents the response pattern of the
susceptibles in the dataset. The MLE estimate for p is
simply the proportion of respondents in the sample, which
clearly underestimates p. Setting U(0, 1) prior distributions
for both p and m and examining their joint posterior
distribution by MCMC simulation, the posterior medians
are found to be p = 0.636 and m = 0.205, with equal-
tailed posterior credible intervals of (0.613, 0.659) and
(0.191, 0.219) for p and 7 respectively. Figure 3 illustrates
how the dataset might look after imputing the missing
number of calls for our susceptible non-respondents based
on these posterior medians. The problem previously
displayed in Figure 2 has now been mostly eliminated.

While the Geometric distribution appears sufficient (after
accounting for susceptibility), a referee questions the use of
the Geometric distribution as it does not make use of
possibly useful covariates. As explained above, the
covariates we think would be most useful for this purpose
were not collected. One alternative for modeling the

response mechanism of the susceptibles is to use a
discretized Gamma distribution. In cases where more
complexity is necessary, the v —Poisson (a two parameter
Poisson which generalizes some well known discrete
distributions, including the Geometric) of Shmueli, Minka,
Kadane, Borle and Boatwright (2001) may also be
considered.

5.2 Relating Non-Response to the Dependent
Variable —The NI Model

Since the non-response of the susceptibles is described
by the conditional Geometric distribution of the number of
calls, the effect of the non-response of the susceptibles on
the dependent variable may be considered by including the
number of calls as an additional explanatory variable in the
logistic regression likelihood. This will create two additional
parameters in the logistic regression portion of the model,
which are the coefficients of the number of calls, B, in
each of the linear equations m, described in equation (2).

Non-zero coefficients for the number of calls, then,
would indicate that the dependent variable is not
independent of the non-response mechanism, and, hence the
non-response mechanism is non-ignorable. If these coef-
ficients are zero, the non-response of the susceptibles is
ignorable. Conclusions made here rely upon the underlying
modeling assumption that the relationship among the
number of calls, the dependent variable and the other
explanatory variables considered is the same for the
respondents and susceptible non-respondents. Including the
number of calls in the logistic regression portion of the
model does not address the immune subjects, since there
will never be the realization of a successful call to them.

300 1

250 7

200 1

150 1

100 1

Number of Subjects Responding

50

1 2 3 4 5 6 7 8

. Actual Data

D Imputed Future Calls

| ——

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of Call Attempts

Figure 3. Display of the actual number of successful calls on each attempt through the first 12 and the expected
number of successful calls for call attempts 13 and higher. Imputed values are based on a probability of a
successful call of 0.205 and a probability of susceptibility of 0.636.
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The full pseudo-likelihood for the NI model (or, more
precisely, the susceptible NI model) is the product of the
non-response and logistic regression pieces:

Lp, m, B)oc | p"n"(1— )(Z,"llc,)— m:|

x [(1—p) +p-m ]

i m 2 eTl,, YiWi
x —_— .

1;[ g I+e" +e

Note that the household and post-stratification weighting
variable W, is included here in an effort to account for
whether proper stratification of the respondents may

eliminate the necessity for the introduction of a mechanism
to describe non-response.

5.3 Data Augmentation

Tanner and Wong (1987) suggest an iterative method for
computation of posterior distributions when faced with
missing data. This method applies whenever augmenting the
dataset makes it easier to analyse and the augmented items
are easily generated. Consider the following additional
notation: Let S represent the total number of susceptible
subjects in the sample. S = >, Z,, S ~ Binomial (p). Let
X be the matrix of explanatory variables (including the
number of calls) for all the subjects selected to participate in
the survey. Let ¥ = (Y}, ..., ¥) be the vector of their
responses. Partitions X into {X ., X, Ximms and ¥
into {¥,., Y., ¥...}. Also, by the memoryless property of
the Geometric distribution, the distribution of the additional
number of calls required to reach the subjects in A4, is
known, and may be expressed: Vi e 4., let V, =
C; — 12, which is also distributed as a Geometric random
variable with parameter 7.

Now suppose that the true values of S, X, and Y .
were known. The likelihood could then be considered in the
form:

L(p’ T, B| Xobsa X Y

obs? mls’

S, R)

mis?®

* |:(p m)’ (1- TC)(ZCS“S)_S:I X |:(1 —p)" :I

s 2 e Vi
X s 7
[,‘ 1 ]i! {1 +enl +e j ] ( )
where >.C

J
ws =2Chs + 2V, +12) is the number of
calls that would have been necessary to reach all sus-
ceptibles and the summands are taken over the appropriate
range of subjects.
Although the true values of S, X, ., and Y . are
unknown, one may utilize what is known about the behavior
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of these variables to impute stochastically possible values
for them within the MCMC algorithm. Given p, a value for
S may be drawn from a truncated Binomial (2,398, p),
where 1,429 < § < 2398. Given S, the number of
subjects in 4, is known. For each of these subjects in
A, a value V, ~Geometric (1) may be drawn, which
results in an imputation for the number of calls needed to
reach each susceptible but unreached subject. The re-
lationships among the number of calls and the other
explanatory variables may then be exploited to impute
values for the rest of X ... Specifically, the missing values
of Age and K — risk are imputed by regressing Calls on Age
and K — risk respectively and predicting from the resultant
linear equations. Similarly, the missing values of Smoker
and Bother are imputed via logistic regression on each,
using Calls as the explanatory variable. Here the model
assumptions are checked using the respondents data, and an
assumption is being made that these same relationships hold
for the susceptible non-respondents. Note that these regres-
sion and logistic regression equations are fit in the Bayesian
context (e.g., Gelman, Carlin, Stern and Rubin 1998) and
necessitate the inclusion of additional parameters, 3,, in the
MCMC process which describe these relationships (see
Appendix B for more detail). We chose this imputation plan
in the interest of the efficiency of the full MCMC algorithm.
An alternative would be to impute the missing values for a
particular explanatory variable conditional on all the
remaining variables (e.g., Rubin 1996). Finally, Y, .. may be
predicted by utilizing the imputed values of X, and the
relationship described in the logistic regression model. In
the interest of the exchangeability of the susceptible non-
respondents in the absence of subsequent stratification
information, we apply a weight of 1.0 to all the imputed
Y .. values; an alternative here would be to impute the sex
and household size of the susceptible non-respondents, in
addition to their age, and apply the weighting procedure
described in Appendix A to the imputed Y.

5.4 Sampling from the Posterior Distribution

The full MCMC simulation consists of a Metropolis
algorithm supplemented in every iteration with the data
augmentation described above. An outline of the MCMC
algorithm used may be found in Appendix B. Convergence
was assessed utilizing the method of Hiedelberger and
Welch (1983) as described in Cowles and Carlin (1996).
MacEachern and Berliner (1994) assert that, under loose
conditions, subsampling the MCMC simulated values to
account for autocorrelation will result in poorer estimators.
Following their suggestion, all simulated values, after an
appropriate burn-in period, were used in the analysis that
follows.
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6. Choice of Prior Distributions

In the evaluation of possible prior distributions for the
parameters of both the NI and MAR models, the goal of the
comparison of the wvarious models was taken into
consideration. The choice of prior distributions for the
parameters was made from the perspective of the MAR
belief. Two possibilities were examined.

The first option is built around the utilization of the Phase
[ & II surveys. Since these surveys were similar to and were
completed prior to the Phase I1I survey which comprises our
data, information contained in these first two surveys may
be utilized in the construction of priors. The same dependent
variable was contained in the Phase I & Il dataset, along
with the variables Smoke, Age, and K —risk. A logistic
regression model was compiled from the Phase 1 & II data
to describe the relationship between the opinion on
workplace smoking and these three explanatory variables.
Normal priors were constructed for the coefficients of these
three variables centered at their MLE’s, but with increased
standard error. The error terms were increased due to three
factors:

i) There was a three year span between the Phase 11
and Phase III surveys; opinions may have
changed over that time, possibly as a result of the
impact of the bylaw.

ii) The MLE’s were calculated under the same
MAR assumption being evaluated.

iii) Prior to the collection of the Phase III data, there
existed the possibility that other explanatory
variables would be included in the model; in the
presence of other variables, the effect of these
three could be altered.

Although the variances were increased, the means were not
changed, since it was unknown, a priori, in what direction
any change might occur. Since the available Phase [ & II
data contained no information about the Calls or Bother
variables, the coefficients of these were assigned a diffuse
Normal (0, 9) prior. For clarity, this option will be referred
to as the “Phase I & 11 prior” in this analysis.

In the second option Normal (0, 9) priors are assigned to
each of the logistic regression coefficients. One motivation
for this choice is that, for the same three reasons the error
terms were increased above, the variables common to the
Phase 1 & II and Phase III surveys are not exchangeable.
Thus, construction based on the Phase I & II results would
be inappropriate. This option will be referred to as the
“Central Prior”.

The choice to use Normal (0, 9) distributions here is for
convenience. Centering the prior at zero gives equal weight
to either direction of the relationship. We believe the choice
of a variance of nine to be adequate without being overly
diffuse. The use of improper priors could lead to a Markov
Chain Monte Carlo simulation that never converges, and, as
Natarajan and Kass (2000) show, an overly diffuse proper
prior may behave like an improper one. In section (7.2), we
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offer a sensitivity analysis to evaluate how the results are
effected by the choice of prior.

The non-response parameters of the NI model, p and m,
were treated the same under both prior options. There was
no additional information available about the probability of
a successful call or the probability of susceptibility. Thus, p
and © were each assigned a U(0, 1) prior.

The data augmentation parameters found in each of the
logistic regression equations, 3,, were independently given
diffuse Normal (0,9) priors. For each linear regression
equation found in the data augmentation process, the coef-
ficients, B,, and variance, >, were set to p(B,,o.)
1/ o>, the standard non-informative prior distribution (e.g.,
Gelman etal. 1998). Note that the closed forms of the
posterior distributions of the linear regression parameters are
known and may be drawn from directly.

7. Results

First, the validity of the MAR assumption is examined
through the coefficients of the number of calls variable.
Then, the NI model is evaluated with respect to sensitivity
to the choice of prior. Finally, the magnitude of the impact
of a faulty MAR assumption for this dataset is investigated
by illustrating the change in the odds of response.

7.1 Coefficients for the Number of Calls

For both the Phase 1 & Il and Central priors, Figure 4
displays the posterior density (solid line) and 95% credible
interval estimates (dotted lines) of the coefficient of the calls
variable in m,, in the NI model, and compares them to the
point B, = 0 (dashed lines). The results clearly indicate
this coefficient differs from zero. We also find a non-zero
result in m,,, where, using the Phase I & II prior, the 95%
HPD credible interval for ., is (=0.03613, 0.11595).

The non-zero coefficient of C, demonstrates a de-
pendence between the number of calls and the subject’s
opinion on smoking in the workplace. Thus, the dependent
variable and the non-response mechanism are not in-
dependent under the conditions discussed in section 5.2.
This results implies that an assumption that the missing
observation are missing at random prior to accounting for
the non-response mechanism is incorrect for this dataset.

There is a hint in Figure 3 that the probability of a
successful call decreases as the call number increases. To
verify the assumption that the relationship between the
number of calls and the log odds of response is linear, a
second Bayesian NI model was constructed. This model
split the calls variable into two, C; /-5 and C, I,
based on whether the number of calls were fewer than
seven. The posterior distributions of the coefficients of these
two variables were then compared and evidence that they
are essentially different was not found. In particular, for n,
the 95% credible interval for C, /.., contained the same
interval for C,/,_,, and for m;, the 95% credible
intervals strongly overlapped.
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Figure 4. Display of B,
credible interval (dotted line), compared to 3

7.2 Sensitivity to Priors

Would different prior distributions, either on the calls
coefficient or on the others, make a difference in the effect
illustrated above? Table 1 displays 95% HPD credible
intervals for the coefficient of the calls variable in the first
logit equation of the NI model for six different priors. The
priors include the Phase I & II and Central priors as well as
four others — labeled options 3, 4, 5, and 6. Option 3 and 4
resemble the Central prior except that they change the prior
distribution on the coefficient of the number of calls to
Normal (1,9) and Normal (-1, 9) respectively. Option 5
places Normal (0, 9) priors on B, Buge» and Byysyr,» @
Normal (1,9) prior on B,, a Number (0.5,9) prior on
B_sis» @ Normal (=1, 9) prior on By and Normal
(=5, 9) priors on By, and PB,yo. Option 6 takes the
Central Prior and reduces all the variances from nine to two.

Under all six priors, Table 1 demonstrates that the
coefficient of the calls variable in the first logit equation
clearly differs from zero. The finding that the missing data
mechanism is non-ignorable for this dataset does not appear
to be effected by the choice of prior among these options.

cal

the coefficient of the calls variable in m,,: posterior density (solid line) and 95% equal tailed

,, =0 (dashed line).

Table 1
95% HPD Credible Intervals for f,, Under
Six Different Prior Distributions

Prior Coefficient of the number of
Calls “C;” in n,
95% intervals
Lower Bound Upper Bound

Phase I & 1T 0.00129 0.07746
Central 0.00446 0.07980
Option 3 0.00447 0.07983
Option 4 0.00441 0.07975
Option 5 0.00440 0.07970
Option 6 0.00436 0.07944

7.3 Effect on Odds of Response

Given the failure of the MAR assumption shown above,
it is of interest to question the relevance of the error that
using the MAR assumption would create. The magnitude of
the error induced by a faulty MAR assumption may be
illustrated by examination of its effect on the odds ratio
pi1(x;)/ py(x,). First, we consider the effect on a typical
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respondent profile. The modal respondent was a non-
smoker between the ages of 25-—35 years old who was
usually bothered by second-hand smoke, had a K — risk of
11 and could be reached in 2 calls. We label this modal
respondent as Subject 1. Table 2 demonstrates the change in
posterior odds for Subject 1 when called 13 times.

Table 2
Comparison of the Odds of Response for 4 Typical Subjects.
Posterior Medians Were Used As the Point Estimates for
the Coefficients in the Bayesian Models; the Mle
Was Used for the Frequentist Model

Subject 1 Subject 2 Subject 3 Subject 4

Smoker No No Former Yes
Age 30 50 27 40
Bother Usually Always No No
K —risk 11 12 7 3
Model Odds Y=1/Y =0
MAR MLE 0.674 2.105 0.457 0.396
MAR Phase I & II prior 0.703 4.487 0.209 0.116
NI Phase I & II prior: 2 calls 0.640 4.024 0.202 0.108
NI Central prior: 2 calls 0.593 4.442 0.162 0.102
Option 3: 2 calls 0.594 4.449 0.162 0.102
Option 4: 2 calls 0.592 4.435 0.162 0.101
Option 5: 2 calls 0.590 4.423 0.161 0.101
Option 6: 2 calls 0.590 4.426 0.161 0.101
NI Phase I & II prior: 13 calls 0.974 6.128 0.308 0.165
NI Central prior: 13 calls 0.936 7.013 0.256 0.160
Option 3: 13 calls 0.937 7.026 0.256 0.161
Option 4: 13 calls 0.934 7.000 0.255 0.160
Option 5: 13 calls 0.930 6.975 0.254 0.159
Option 6: 13 calls 0.931 6.980 0.254 0.160

The subject 1 column Table 2 indicates a dramatic
difference in the posterior odds when the non-response
mechanism is taken into consideration. For this typical
respondent profile, when the number of calls is increased
from two to thirteen the posterior odds of choosing
“Smoking should not be permitted at all” over “Smoking
should be permitted in restricted areas only” increases by
52.18% under the Phase 1 & II prior and 57.84% when
using the Central prior. This is dramatic evidence of the
relationship between the dependent variable and the non-
response mechanism.

Are the results for the modal subject above typical?
Table 2 also displays the effects on the odds of response
under the NI model for three additional test subject profiles
for each of the six different priors considered above. Subject
2 is a fifty year old non-smoker who is always bothered by
smoke and has a perfect “ K — risk” score. Subject 3 is a 27
year old former smoker who is not bothered by smoke and
has a “K — risk” score of seven. Subject 4 is a 40 year old
smoker who is not bothered by smoke and has a “K — risk”
score of three. On multiple subjects with multiple priors,
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Table 2 consistently shows the same result. Increasing the
number of calls to greater than 12 will increase the posterior
odds of choosing category “1” over category “0”. For each
of the test subjects and priors found in Table 2, the increase
was between 52.18% and 58.41%.

Similar results were found when examining the odds of
choosing the “Smoking should not be restricted al all”
category over the “Smoking should not be restricted at all”
category over the “Smoking should be permitted in
restricted areas only” category. Using test subjects which
were a current and a former smoker (Subjects 3 and 4
above), the posterior odds increased 46.7% when the
number of calls was increased from 2 to 13 under the Phase
[ & 11 prior.

7.4 Effect on Probability of Response

With the shift in posterior odds illustrated above comes a
corresponding shift in the estimated probabilities that a
subject will respond in a particular category. Among the
respondents, 57.45% chose category “0”, 40.64% chose
category “1”, and 1.91% chose category “2”. The number of
non-respondent susceptibles have a posterior median of 469,
with a 95% credible interval of (25,944). On average,
55.88% of the simulated non-respondent susceptibles chose
category “0”, 40.03% chose category “1”, and 4.08% chose
category “2”. While, for categories “0” and ““1”, the average
values for the non-respondent susceptibles fall within the
95% confidence intervals for the proportions of the
respondents in these categories, the point estimates for each
category shift when the non-response mechanism is
included in the model. In comparing the category “2”
results, we estimate that non-respondents are twice as likely
to favor no restrictions on smoking (category “2”) than are
respondents. While the low number of subjects found in
category “2” are unlike to provoke a change in workplace
smoking law, the increasely noted in the non-respondents in
this category serves as an example of how the lack of proper
consideration of the non-respondents could lead to flawed
conclusions about the data.

8. Conclusion

Section 7 demonstrates that, for the dependent variable of
interest in this dataset, an assertion that the missing
observations are missing at random, prior to accounting for
the missing data mechanism, is incorrect, assuming the
relationship among the relevant variables is the same for all
susceptible subjects. Furthermore, the use of a faulty MAR
assumption in the evaluation of this dependent variable risks
serious error in the calculation of the posterior odds and in
any conclusion drawn from them. In order to perform a
proper evaluation of the opinion on smoking in the
workplace in Toronto in early 1993 via the dependent
variable of interest in this survey, it is necessary to account
for the non-response mechanism in the model structure.
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In this analysis, only one simple piece of information, the
number of calls, was utilized. A more complete treatment
could have been made, had more information been
available. Knowledge of the exact number of calls to the
non-respondents, instead of a minimum, and the time of day
of the calls could have enabled this analysis to be more
precise. In addition, knowledge of the type of non-response,
refusal or non-availability, and the number of times the non-
respondents were actually contacted could have allowed for
better classification of the non-respondents. Groves and
Couper (1998) point out that statistical errors arising from
non-availability and those arising from refusals are likely to
differ. As they further comment, the evaluation of how
efforts to seek cooperation effect measurement error is an
important area of research.

The results illustrated above apply only to this one
dependent variable assessing smoking in the workplace in
this one dataset. Given the perception that smoking has
become less socially acceptable over recent years, it would
be reasonable to think that non-response error due to
questions about smoking may be more severe than other
topics. A comparison of non-response bias including various
smoking related questions and others which do not concern
smoking may be found in Biemer (2001); this comparison
lends no credence to the idea that non-response error is
unique to questions relating to smoking.

Although the above results make no implications about
the missing data mechanisms in other surveys, there is a
clear demonstration here that blindly assuming that the
respondents of a survey constitute a random subsample of
the population for the variables of interest can be an unwise
choice. Information, available at the time of data collection,
can enable the evaluation of whether or not the mechanism
which causes the non-response is ignorable. In light of this
observation, then, it should be interest to those who work
with such data to make use of the available information
pertaining to the non-response in the evaluation of that data
and to make such information available to others who utilize
the dataset. As a general matter, we believe that the
collection and analysis of data on where and how
respondents were found, as well as how difficult they were
to find, is an important future direction for survey
methodology and practice.
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A. Post-Stratification Weighting

HHW, is the household weight of subject i as described
in Northup (1993).

— Let m = the number of respondents.

— Let r=the cumulative number of adults in the
responding households.

— Let h = the number of adults in subject i’s
household.

- HHW,=h -m/r.

Proportions in the sample falling into the following age
groups were calculated for both male and female respon-
dents: 18 —-24 years, 25—-44 years, 45—-64 years, and
over 65 years old. These proportions were then compared to
the age/sex distribution in Metropolitan Toronto.

— Let p, = the proportion of adult Metropolitan
Toronto residents falling into the same age/sex
category as subject i, as per the 1991 Census.

— Let p,, = the proportion of survey respondents with
the same age and sex categories as subject .

— W, = HHW, - p,;/ p,;, where W, is the final post-
stratification weight used in the analysis.

B. MCMC Implementation

The full MCMC simulation for the NI model consists of
a Metropolis algorithm supplemented with the data
augmentation described in section 5.3. The following is an
overview of the MCMC algorithm. Variables used below
are defined in section 5. At each iteration ¢,

1. Draw p, for Beta(s,_; + 1.2398 — 5, + ).
2. Impute s, from Binomial (p,) > 1.429.

3. Impute C,:
metric(m,_,) and V¢, € ¢

draw (s, — 1.429)v,’s from Geo-
¢ =v +12.

mis?®

4. Draw m, from Beta(s, + 1, ¢y, — s, + 1).
5. Impute values for the rest of X, by utilizing the
relationships with the number of calls, as described in

section 5.3.
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6. Update the additional parameters used in the data
augmentation of X ...

— Update linear regression parameters, 3, and o,
by drawing directly from the closed form of their

posteriors.
— Update logistic regression parameters, 3, using a
Metropolis step on each.
7. Impute Y . :Vy, €y, draw y, from a Multi-

nomial (p, ()/c,. ), pi(x;), p,(x;)).
8. Update each B, using a Metropolis step on the
conditional likelihood and a Normal Jump function.
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