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A Rate of Incoherence Applied
to Fixed-Level Testing

Mark J. Schervish, Teddy Seidenfeld,
and Joseph B. Kadane†‡

Carnegie Mellon University

It has long been known that the practice of testing all hypotheses at the same level
(such as 0.05), regardless of the distribution of the data, is not consistent with Bayesian
expected utility maximization. According to de Finetti’s “Dutch Book” argument, pro-
cedures that are not consistent with expected utility maximization are incoherent and
they lead to gambles that are sure to lose no matter what happens. In this paper, we
use a method to measure the rate at which incoherent procedures are sure to lose, so
that we can distinguish slightly incoherent procedures from grossly incoherent ones.
We present an analysis of testing a simple hypothesis against a simple alternative as a
case-study of how the method can work.

1. Introduction. Cox (1958) and Lindley (1972) have shown that the prac-
tice of testing all hypotheses at the same level, regardless of the distribution
of the data, can lead to inadmissibility and incompatibility with Bayesian
decision theory. One of the most compelling arguments for Bayesian de-
cision theory and the use of probability to model uncertainty is the “Dutch
Book” argument, which says that if you are willing to accept either side
of each bet implied by your statements and finite combinations of these
together, either

(a) those statements are “coherent,” that is they comport with the
axioms of probability, or
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(b) a gambler betting against you can choose bets so that you are a
sure loser.

Excellent introductions to the concepts of coherence and Dutch Book can
be found in Shimony (1955), Freedman and Purves (1969), and de Finetti
(1974, Section 3.3).

As a practical matter, it is very difficult to structure one’s statements
of probabilities (i.e. previsions) in such a way that they both reflect one’s
beliefs and are coherent (see Kadane and Wolfson 1998). Yet the dichot-
omy above does not allow for discussion of what sets of previsions may
be “very” incoherent or just “slightly” incoherent. This paper explores a
remedy for this by studying how quickly an incoherent bookie can be
forced to lose money. A faster rate of sure financial decline to the bookie,
or a faster rate of guaranteed profit to the gambler, is associated with a
greater degree of incoherence.

The problem as stated so far requires some normalization. Suppose that
a particular combination of gambles yields a sure loss y for the bookie.
Then multiplying each gamble by the same constant k � 0 will create a
combination of gambles that yields sure loss ky. In this paper we explore
how to perform the normalization from the bookie’s perspective. We in-
troduce normalizations in Section 3. To fix ideas, however, consider that
the bookie cannot be assumed to have infinite resources. A wise gambler
would want to be sure that the bookie could cover all the bets. One way
to do this would be to require the bookie to escrow the maximum amount
that the bookie could lose on each gamble separately. Thus we can ask
how much the bookie can be forced to lose for sure, given a specified level
of escrow that the bookie can offer. In Section 4, we apply these ideas to
assess the incoherence of the practice of fixed level hypothesis testing.

2. Gambles and Incoherence. Think of a random variable X as a function
from some space T of possibilities to the real numbers. We assume that,
for a bounded random variable X, a bookie might announce some value
of x such that he/she finds acceptable all gambles whose net payoff to the
bookie is �(X � y) for � � 0 and y � x. Each such x will be called a
lower prevision for X. In addition, or alternatively, the bookie may an-
nounce some value of x such that the gamble �(X � y) is acceptable when
� � 0 and y � x. These x will be called upper previsions for X. We allow
that the bookie might announce only upper previsions or only lower pre-
visions or both. For example, if X is the indicator IA of an event A the
bookie might announce that he/she finds acceptable all gambles of the
form �(IA � y) for y � p if � � 0 but no other gambles, in particular, not
for y � p. It will turn out not to matter for any of our results whether or
not the bookie finds the gamble �(IA � p) acceptable. In the special case
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in which x is both an upper prevision and a lower prevision, we call x a
prevision of X and denote it P(X ). Readers interested in a thorough dis-
cussion of upper and lower previsions should refer to Walley (1991).

It will be convenient to assume that, whenever both an upper prevision
x� and a lower prevision x� have been assessed for the same random
variable X, x� � x�, otherwise the bookie is willing to sell X for a certain
price and then buy it right back for a higher price. Although such inco-
herence could be measured, it requires cumbersome bookkeeping that
makes general results difficult to understand. (See Examples 4 and 5 of
Schervish et al. 1999.) In particular, this assumption implies that there can
be at most one prevision of X.

A collection x1, . . . , xn of upper and/or lower previsions for X1, . . . ,
Xn respectively is incoherent if there exists e � 0 and a collection of ac-
ceptable gambles { ( )}α i i i i

nX y− =1 such that

sup ( ) ,
t T

i i i
i

n

X t y
∈ =

−( ) < −∑α ε
1

(1)

in which case we say that a Dutch Book has been made against the bookie.
Of course, we would need �i � 0 and yi � xi if xi is a lower prevision for
Xi and we would need �i � 0 and yi � xi if xi is an upper prevision for
Xi. When a collection of upper and/or lower previsions is incoherent, we
would like to be able to measure how incoherent they are. As we noted
earlier, the e in (1) is not a good measure because we could make e twice
as big by multiplying all of the �i in (1) by 2, but the previsions would
be the same. Instead, we need to determine some measure of the sizes
of the gambles and then consider the left-hand side of (1) relative to
the total size of the combination of gambles. This is what we do in Sec-
tion 3.

3. Normalizations. To begin, consider a single acceptable gamble such as
Y � � (X � y). There are a number of possible ways to measure the size
of Y. For example supt |Y(t)| or supt �Y(t) might be suitable measures.
This last one has a nice interpretation. It is the most that the bookie can
lose on the one particular gamble. It measures a gamble by its extreme
value in the same spirit as Dutch Book measures incoherence in terms of
an extreme value (the minimum payoff to the gambler) of a combination
of gambles. Alternatively, if we think of the gambler and bookie as ad-
versaries with regard to this one gamble Y, the gambler might want to be
sure that the bookie will be able to pay up when the bet is settled. We
could imagine that the gambler requests that the bookie place funds in
escrow to cover the maximum possible loss. So, for the remainder of the
paper, we will call e(Y ) � supt �Y(t) the escrow for gamble Y. Note that
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e(cY) � ce(Y) for all c � 0. We use the escrow to measure the size of the
gamble Y.

Example 1. Let A be an arbitrary event which is neither certain to
occur nor certain to fail. Suppose that a lower prevision p is given,
and consider the gamble Y(t) � �(IA(t) � p) with � � 0. Then
supt �Y(t) � �p, and the escrow is e(Y) � �p. If an upper prevision
q is given and � � 0, then supt �Y(t) � ��(1 � q) � e(Y), where
� � 0.

When we consider more than one gamble simultaneously, we need to
measure the size of the entire collection. We assume that the size of (escrow
for) a collection of gambles is some function of the escrows for the indi-
vidual gambles that make up the collection. That is e(Y1, . . . , Yn) �
fn(e(Y1), . . . , e(Yn)). In order for a function to be an appropriate measure
of size, we have a few requirements. First,

fn(cx1, . . . , cxn) � cfn(x1, . . . , xn), for all c � 0, x1, . . . , xn. (2)

Equation (2) says that the function fn must be homogeneous of degree 1
in its arguments so that scaling up all the gambles by the same amount
will scale the escrow by that amount as well. Second, since we are not
concerned with the order in which gambles are made, we require

fn(x1, . . . , xn) � fn(y1, . . . , yn), for all n, x1, . . . , xn

and all permutations (y1, . . . , yn) of (x1, . . . , xn). (3)

Third, in keeping with the use of escrow to cover bets, we will require that,
if a gamble is replaced by one with higher escrow, the total escrow should
not go down:

fn(x1, . . . , xn) is nondecreasing in each of its arguments. (4)

If a gamble requires 0 escrow, we will assume that the total escrow is
determined by the other gambles:

fn�1(x1, . . . , xn, 0) � fn(x1, . . . , xn), for all x1, . . . , xn and all n. (5)

Since nobody can lose more than the sum of the maximum possible losses
from all of the accepted gambles, we require that

f x x x n x xn n i n
i

n

( , , ) , , .1 1
1

… …≤
=
∑ for all  and all (6)

Small changes in the component gambles should produce only small
changes in the escrow, so we require that

fn is continuous for every n. (7)
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Finally, since we have already decided how to measure the size of a single
gamble, we require

f1(x) � x. (8)

So, if Y1, . . . , Yn is a collection of gambles, we can set e(Y1, . . . , Yn) �
fn(e(Y1), . . . , e(Yn)) for some function fn satisfying (2)–(8) and call e(Y1,
. . . , Yn) an escrow for the collection of gambles. Every sequence of func-
tions { }fn n=

∞
1 that satisfy (2)–(8) leads to its own way of defining escrow.

Such a sequence is called an escrow sequence. Each function in the se-
quence is an escrow function.

We can find a fairly simple form for all escrow sequences. Combining
(8), (4), and (5), we see that fn(x1, . . . , xn) � max{x1, . . . , xn}. From (3),
we conclude that fn is a function of the ordered values x(1) � x(2) � . . . �
x(n) of x1, . . . , xn. That is, fn(x1, . . . , xn) � fn(x(1), . . . , x(n)). Combining
these results with (6), we get

0 1
1

1

≤ ( ) − ≤
=

−

∑f x x x xn n n i
i

n

( ) ( ) ( ) ( ), , .… (9)

Let kn(x(1), . . . , x(n)) � (fn(x(1), . . . , x(n)) � x(n))/x(n) so that

fn(x(1), . . . , x(n)) � x(n) (1 � kn(x(1), . . . , x(n))). (10)

In order to satisfy (5), we need kn(0, x(2), . . . , x(n)) � kn�1(x(2), . . . , x(n)).
In order to satisfy (2), kn must be invariant under common scale changes
for all of its arguments. That is

kn(cx(1), . . . , cx(n)) � kn(x(1), . . . , x(n)).

Every such function can be written as

λ γn n n
n

n

n

x x
x

x

x

x( ) ( )

( )

( )

( )

( )

, , , , .1

1 1… …( ) = 









−

In order to satisfy (4), we must have cn nondecreasing in each of its ar-
guments. In order to satisfy (9), we must have

0 1 1
1

1

≤ ≤−
=

−

∑γ n n i
i

n

y y y( , , ) .…

In summary, every escrow sequence satisfies

f x x x
x

x

x

xn n n n
n

n

n

( , , ) , , ,( )

( )

( )

( )

( )
1

1 11… …= +






















−γ (11)
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for some sequence c1, c2, . . . of continuous functions where c1 � 0 and
for n � 1 the functions satisfy the following properties:

• cn(y1, . . . , yn�1) is defined and continuous for 0 � y1 � y2 � . . .
� yn�1 � 1,

• cn is nondecreasing in each argument,
• 0 � cn(y1, . . . , yn�1) � i

n
iy=

−∑ 1
1

• cn (0, y2, . . . , yn�1) � cn�1(y2, . . . , yn�1),
• x[1 � cn(y1/x, . . . , yn�1/x)] is nondecreasing in x for all y1 � . . .

� yn�1 � x.

(The last condition is equivalent to fn being nondecreasing in x(n).) It is
straightforward to show that every sequence that meets this description
satisfies (2)–(8), hence we have characterized escrow sequences.

One simple collection of escrow sequences consists of all sequences in
which cn(y1, . . . , yn�1) � γ yii

n

=

−∑ 1

1
for some common constant c � [0,1].

In this case, we get a family of escrow functions:

f x x x xn n n i
i

n

γ γ, ( ) ( )( , , ) ,1
1

1

… = +
=

−

∑ (12)

for each 0 � c � 1. Another example is cn(z1, . . . , zn�1) � zn�1 for
n � 1. This one makes the total escrow equal to the sum of the two largest
individual gamble escrows. Other functions are possible, but we will focus
on fc,n for 0 � c � 1. It is easy to see that the two extreme escrow functions
correspond to c � 0 and c � 1:

f x x x

f x x x

n n n

n n i
i

n

0 1

1 1
1

, ( )

,

( , , ) ,

( , , ) .

…

…

=

=
=
∑

We now propose to measure the incoherence of a collection of inco-
herent previsions based on a normalization by an escrow. For a combi-
nation of gambles Y X yi i ii

n
= −

=∑ α ( )
1

define the guaranteed loss to be
G(Y) � �min {0, supt�T Y(t)}. So, Dutch Book can be made if there
exists a combination of acceptable gambles whose guaranteed loss is
positive. The rate of guaranteed loss relative to a particular escrow func-
tion fn is

H Y
G Y

f e Y e Yn n

( )
( )

( ), , ( )
,= ( )1 …

(13)
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where Yi � �i(Xi � yi). Notice that the rate of guaranteed loss is un-
changed if all �i are multiplied by a common positive number. Also, the
rate of guaranteed loss is interesting only when Dutch Book is made,
otherwise the numerator is 0. The denominator fn(e(Y1), . . . , e(Yn)) is 0 if
and only if e(Yi) � 0 for all i. This will occur if and only if the agent who
is required to escrow cannot lose any of the individual gambles, in which
case the numerator is 0 as well, and we will then define the rate of guar-
anteed loss to be 0 (since we cannot guarantee loss). The extent of inco-
herence relative to an escrow and corresponding to a collection of previ-
sions will be the supremum of H(Y) over all combinations Y of acceptable
gambles. If the previsions are incoherent then the maximum rate of guar-
anteed loss is positive, otherwise it is 0.

There is a slightly simpler way to compute the extent of incoherence
corresponding to a finite set of previsions than directly from the definition.

Theorem 1. Let x1, . . . , xn be a collection of incoherent upper and/or
lower previsions for X1, . . . , Xn. Define

g X t x

h f e X x

n
t T

i i i
i

n

n n

( , , ) sup ( ) ,

( , , ) [ ]

α α α

α α α

1
1

1 1 1 1

…

…

= −( )

= −

∈ =
∑
(( ) −( )( ), , [ ] .… e X xn n nα

Then the rate of incoherence is

sup
( , , )

( , , ), ,α α

α α
α α1

1

1…

…
…n

g

h
n

n

−
(14)

or equivalently

− ≤inf ( , , ), ( , , ) .
, ,α α

α α α α
1

1 1 1
…

… …
n

g hn nsubject to (15)

The supremum and infimum are taken over those �i that have the appro-
priate signs.

As with all of the more lengthy proofs in this paper, the proof of The-
orem 1 is in Schervish et al. (1999). Theorem 1 allows us to ignore the fact
that the gamble �(X � x) might not be acceptable when x is a lower or
upper prevision for X if we are proving results concerning the rate of
incoherence.

Note that if a collection of gambles satisfies the escrow condition
h(�1, . . . , �n) � 1, then every subcollection also satisfies the escrow
condition because of (5). Also, note that, since every escrow function fn is
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between f0,n and f1,n, the maximum and minimum possible rates of inco-
herence correspond to these two escrows.

When we use the bookie’s escrow with e(Y) � supt �Y(t) for each
individual gamble Y, we call the extent of incoherence the maximum rate
of guaranteed loss, since the extent of incoherence is the maximum rate at
which the bookie can be forced to lose relative to the particular escrow
chosen. We focus on the family of escrows fc,n defined in (12). The corre-
sponding maximum rates of guaranteed loss will be donoted qc.

4. Testing Simple Hypotheses At a Fixed Level. Lindley (1972, 14) argues
that it is incoherent to test all hypotheses at the same level, such as .05.
(See also Seidenfeld, Schervish, and Kadane 1990.) Cox (1958) gave an
example of how testing all hypotheses at the same level leads to inadmis-
sibility. In this section, we show how this incoherence and inadmissibility
can be measured using the measure of incoherence q.

Consider the case of testing a simple hypothesis against a simple alter-
native. Let f0 and f1 be two possible densities for a random quantity X,
and let f be the “true” density of X. Suppose that we wish to test the
hypothesis H0 : f � f0 versus the alternative H1 : f � f1. To write this as
a decision problem, let the parameter space and the action space both be
{0, 1} where action a � 0 corresponds to accepting H0 and action a � 1
corresponds to rejecting H0. Also, parameter i corresponds to f � fi for
i � 0, 1. Let the loss function have the form

L i a
c f f a ii i( , )

,
=

= = −



if  and 

otherwise,

1

0
(16)

with c0, c1 � 0. The Neyman-Pearson lemma says that the most powerful
tests of their sizes and the Bayes rules with respect to all priors have the
form: For some constant k, choose a � 1 if f1(x) � kf0(x), choose a � 0
if f1(x) � kf0(x), and do whatever you wish (even randomization) if
f1(x) � kf0(x). Now, suppose that someone chooses a value of k and de-
clares that he/she prefers the corresponding test to all other tests. One
could infer from this choice an “implied prior” over the two possibilities
f0 and f1. If Pr( f � f0) � p and Pr( f � f1) � 1 � p, then the Bayes rule
is to choose a � 1 if pc0 f0(x) � (1�p)c1f1(x), which corresponds to k �
pc0/[(1�p)c1]. So p � c1k/(c0 � c1k).

Of course, a classical statistician who refuses to use prior and posterior
probabilities will not acknowledge the implied prior. However, incoher-
ence will arise if two tests about the same parameter imply different priors.
We illustrate this with a version of the example of Cox (1958). Since the
only part of the loss function that matters is c0/c1, let c1 � 1. As an ex-
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ample, let f0 and f1 be normal distributions with different means h but the
same variance r2. Suppose that the hypothesis is H0 : h � 0 versus H1 :
h � 1 with c0 � 1. (The phenomenon we illustrate here applies more
generally as shown in Theorem 2). Suppose that either r � 1 or r � 0.3
will be true, but we will not know which until we observe the data. That
is, the data consist of the pair (X, r). Let Pr(r � 1) � 0.5, so that r is
ancillary. A classical statistician who prefers level 0.05 tests whenever
available might think that, after observing r a conditional level 0.05 test
should still be preferred to a test whose conditional level given r is some-
thing else. The most powerful conditional level 0.05 test is to reject H0 :
h � 0 if X � 1.645r. The most powerful marginal level 0.05 test rejects
H0 if X � 0.5 � 0.9438r2 and is the Bayes rule with respect to the prior
Pr(h � 0) � 0.7199. The marginal power of the Bayes rule is 0.6227, while
the marginal power of the conditional level 0.05 test is 0.6069. Since both
tests have the same level, the conditional test is inadmissible.

To see how this inadmissibility translates into incoherence, we interpret
the preference of one test d1 to another d2 as a preference for suffering a
loss equal to the risk function of d1 to suffering a loss equal to the risk
function of d2. The risk function of a test d is

R
c

( , )
,

θ δ
δ θ

=
=0 0 times size of test  if 

one minus power of teest if 1.δ θ =




To say that d1 is preferred to d2 means that R(h, d2) � R(h, d1) is an
acceptable gamble. In our example, let �d(r) and bd(r) denote the size and
power of test d conditional on r. Also, let bcl(r) denote the power of the
most powerful level 0.05 test. Then, for each r, the classical statistician
prefers the level 0.05 test to every other test. So, for each r and all d that
are not the most powerful level 0.05 test, the following gamble is accept-
able, even favorable:
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In other words, b is an upper or lower prevision for A depending on
whether a � 0 or a � 0.

We can make use of the construction in (17) to obtain a general result.
Theorem 2 has a technical condition (concerning risk sets) that is known
to be satisfied for problems of testing simple hypotheses against simple
alternatives using fixed sample size and sequential tests. For more detail
on risk sets, see Sections 3.2.4 and 4.3.1 of Schervish (1995).

Theorem 2. Let h be a parameter and let the parameter space X consist
of two points {0, 1}. Consider two decision problems D0 and D1 both
with the same parameter space X and with nonnegative loss functions
L0 and L1. Let the data in problem Di be denoted Xi. Suppose that the
risk sets for the two decision problems are closed from below. Suppose
that an agent prefers the admissible decision rule di to all others in
problem Di for i � 0, 1. For each decision rule w in problem Di, let
Ri(h, w) denote the risk function. Let A � {h � 0} and define

a R R R R
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(18)

If w is admissible in problem Di and is not equivalent to di, then

Ri(h, w) � Ri(h, di) � ai(w)(IA � bi(w)). (19)

If d0 and d1 are not Bayes rules with respect to a common prior, then
there exist real numbers d0 and d1 and decision rules w0 (in problem
D0) and w1 (in problem D1) such that the two gambles d0a0(w0) (IA �
b0(w0)) and d1a1(w1) (IA � b1(w1)) are both acceptable, but

d0a0(w0)(IA � b0(w0)) � d1a1(w1) (IA � b1(w1)) � 0. (20)

Also,

ρ
γγ =
−

− + −>
sup

max{ , } min{ , }
,

p p

p p

p p p p0 1

0 1

0 1 0 11 1 (21)

where the supremum is over all p0 � p1 such that either di is a Bayes
rule with respect to prior pi for i � 0, 1 or di is a Bayes rule with
respect to prior p1�i for i � 0, 1.

As an example of Theorem 2, return to the test of H0 : h � 0 versus
H1 : h � 1 where X � N(h, r2) with r being one of two known values.
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Let ri be the value of r for problem Di for i � 0, 1. The implied prior
probability of {h � 0} is k/(c0 � k) where k comes from the form of the
Neyman-Pearson test and c0 comes from the loss function (16). If a clas-
sical statistician decides to test the hypothesis H0 : h � 0 at level 0.05
regardless of the value of r, this will often require choosing two different
values of k in the Neyman-Pearson lemma. In fact, k � exp(1.645/r �
0.5/r2), and the implied prior is

p c( ) exp
. .
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(22)

not a one-to-one function of r, but highly dependent on r. In this prob-
lem, the lower boundary of the risk set is a strictly convex differentiable
function so that every point on the lower boundary has a unique support
line and hence a unique prior such that the corresponding rule is Bayes
with respect to that prior. This means that the sup in (21) is unnecessary
and

ρ
σ σ

σ σ γ σ σγ =
−

−{ } + −{ }
p p

p p p p

( ) ( )

max ( ), ( ) min ( ), ( )
,0 1

0 1 0 11 1

if p(r0) � p(r1) with a similar formula if p(r0) � p(r1). For the case of
c � 1, this simplifies to

ρ
σ σ

σ σ1
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0 11
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+ −
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( ) ( )
,

In this case, the degree of incoherence is a simple monotone function of
how far apart the implied priors are for the two level 0.05 tests. Theorem
2 would also apply if one or both of the two decision problems were a
sequential decision problem in which the loss equals the cost of observa-
tions plus the cost of terminal decision error.

It is interesting to examine the relationship between qc and the pair (r0,
r1). For example, suppose that ri � 2/Zni for two different values n0 and
n1. This would correspond to the data consisting of a sample X1, . . . , Xni

of independent normal random variables with mean h and variance 4,
where the sample size is ni in decision problem Di. Figure 1 is a plot of qc

as a function of (n0, n1) for the case c � 1 and c0 � 19. Other values of c
produce plots with similar appearances. Of course the values of qc are
higher for c � 1. We chose c0 � 19 to correspond to the classical choice
of � � 0.05. Each curve in Figure 1 corresponds to a fixed value of n0

and lets n1 vary from 1 to 150. Notice that each curve touches 0 where n1
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Figure 1. Plot of q1 for level 0.05 testing as a function of n1 (running from 1 to 150) for
various values of n0 with c0 � 19.

� n0 since there is no incoherence in that case. Some of the curves come
close to 0 in another location as well. For example, the n0 � 27 curve
comes close to 0 near n1 � 2 and the n0 � 2 curve comes close to 0 near
n1 � 27. The reason is that the implied priors corresponding to r � 2/Z2
and r � 2/Z27 are nearly the same (0.7137 and 0.7107 respectively), mak-
ing these two level 0.05 tests nearly coherent. Indeed, the entire curves
corresponding to n0 � 2 and n0 � 27 are nearly identical for this same
reason. Another interesting feature of Figure 1 is that all of the curves are
rising as n1 r � but not to the same level. As n1 r �, the implied prior on
A � {h � 0} converges to 0. But if n0 is large also, then the implied prior
corresponding to r � 2/Zn0 is also close to 0. For example, with n0 �
100, the implied prior is 7.3 � 10�4. There is not much room for inco-
herence between 0 and 7.3 � 10�4, so the curve corresponding to n0 �
100 will not rise very high. On the other hand, with n0 � 11, the implied
prior is 0.1691, leaving lots of room for incoherence. In fact, since 0.1691
is the largest possible implied prior in this example, all of the other curves
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have local maxima near n1 � 11, and the n0 � 11 curve rises higher than
all the others as n1 increases. Since the limiting implied prior is 0 as n1 r

�, the height to which the n0 curve rises as n1 increases is

p n

p n
n n

2 0

1 2 0
2 19 0 8224 0 125

0

0

0 0

1( ) −
+ ( ) − = + − +( )




−

exp . . .

The curve corresponding to n0 � 4 illustrates the original example of Cox
(1958), in which the alternative is that h equals the larger of the two dif-
ferent standard deviations.

Lehmann (1958) offered a rule of thumb for choosing tests based on
both their size and their power. One chooses a postive number k (such as
c0 in the loss function (16)) and then chooses the test so that the probability
of type II error equals k times the probability of type I error. In our case
of testing one normal distribution against another one with the same var-
iance r2, this procedure will produce the minimax rule with loss (16) if k
� c0. When k � 1, it is easy to check that Lehmann’s suggestion is the
Bayes rule with respect to the prior with Pr(h � 0) � 1/(1 � c0) for all
r. In this special case qc � 0 for all c. However, when k � 1, each r leads
to a Bayes rule with respect to a different implied prior. Assuming that
the test will be to reject H0 if X � y, one must solve the equation
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σ σ

Φ Φ−




=

−





y y 1
. (23)

The implied prior, assuming, still, that the loss is (16), is then

p c
y

L ( ) exp
.

.σ
σ

= +
−













−

1
0 5

0 2

1

(24)

When k � 1, y � 1/2 solves (23). Plugging this into (24) yields pL (r) �
1/(1 � c0) for all r as we noted earlier. Two other limiting cases are of
interest. If r r �, then y/r must converge to U�1 (k/[1 � k]) in order for
(23) to hold. This would make the type I error probability 1/(1 � k), and
the limit of pL(r) would be 1/(1 � c0). It is not difficult to see that the type
I error probability is highest for r � �, so it must be less than 1/(1 � k)
for all finite r. If r r 0, then (y � 1/2)/r2 must converge to log(k) in order
for (23) to hold. In this case, pL (r) converges to k/(k � c0). For the case
of k � c0 � 19, Figure 2 shows the value of q1 with ri � 2/Zni for i �
0, 1 for various values of n0 and n1 in the same spirit (and on the same
vertical scale) as Figure 1.
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Figure 2. Plot of q1 for minimax rule with c0 � 19 as a function of n1 (running from 1 to
150) for various values of n0.

The curves in Figure 2 are higher for large n1 than the corresponding
curves in Figure 1. This means that, when c0 � 19, Lehmann’s procedure
with k � 19 is more incoherent (as measured by q1) for large values of n1

than testing at level 0.05. Lehmann (1958) made his suggestion for testing,
not to be more coherent than fixed level testing, but rather to avoid a
different problem exhibited by fixed level testing. Testing all hypotheses
at the same level, regardless of how much data one has, allows the prob-
ability of type II error to become much smaller than the probability of
type I error as the sample size increases. This amounts to behaving as if
the null hypothesis were not very important compared to the alternative.
Indeed, the fact that the implied prior goes to zero as the sample size
increases reflects this fact. Lehmann’s procedure forces the type I and type
II errors to decrease together as sample size increases, thereby making
sure that both the null and the alternative remain important as the sample
size increases. In fact, the implied prior approaches a value strictly between
0 and 1 as sample size increases. What makes Lehmann’s procedure less
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coherent than fixed level testing is the rate at which the implied prior
approaches its limit as sample size increases. For Lehmann’s procedure,
the implied prior differs from its limit by approximately a constant divided
by sample size whereas the implied prior for a fixed level test differs from
0 by approximately exp(�cn) for some constant c. In this simple testing
problem, Lehmann’s procedure with k � 1 leads to coherent choices of
admissible tests for all sample sizes. Lehmann’s procedure with k � 1 here
corresponds to an implied prior for the null hypothesis of 1/(1 � c0) �
0.05 when c0 � 19, and an implied prior of 1/2 when losses are equal (c0

� 1). As we noted, Lehmann’s rule gives the minimax risk solution for
k � c0. However, as Lindley (1972, 14) points out, it is not guaranteed
that minimax risk solutions from different families of admissible tests cor-
respond to the same Bayes model. In our testing problem, this is what
happens with Lehmann’s rule when k � 1, which explains how it suffers
a positive degree of incoherence. An alternative procedure to Lehmann’s
which also lets type I and type II error probabilities decrease as sample
size increases, but which is coherent, is to minimize a positive linear com-
bination of those error probabilities.

5. Summary. In this article we introduce a familiy of indices of incoherence
of previsions, based on the gambling framework of de Finetti (1974).
When a bookie is incoherent, a gambler can choose a collection of gambles
acceptable to the bookie that result in a sure loss to the bookie (and a sure
gain to the gambler). That is, the gambler can make a Dutch Book against
the bookie. Our index of incoherence in the bookie’s previsions is the
maximum guaranteed rate of loss to the bookie that the gambler creates
through his/her choice of coefficients, relative to the bookie’s escrow.
Throughout, we mean by “escrow” an amount needed to cover the
bookie’s possible losses as developed in Section 3.

In Section 4, we apply this idea to identify the degrees of incoherence
in two policies for testing simple hypotheses. First, we consider testing at
a level that is fixed regardless of the sample size, as in the example of Cox
(1958). We show, through a trade of risks, how the gambler can make a
“Dutch Book” against a statistician who follows such a testing policy.
That is, our index of incoherence coincides with the extent to which the
fixed alpha level tests can be dominated by combinations of other tests.

When tests are based on small sample sizes, the degree of incoherence
in a fixed-level testing policy is complicated, as illustrated in Figure 1.
However, the degree of incoherence between two such tests decreases as
the sample sizes for these tests increases. Nonetheless, we do not find this
fact sufficient to justify the policy, even with large samples, because the
statitstician’s near-to-coherent behavior then requires treating one of
the hypotheses as practically impossible. That is, the Bayes model that the



     -  S263

fixed level testing policy approaches with increasing sample size assigns
probability 0 to the null hypothesis. Why bother to collect data if that is
your behavioral policy? Obviously, mere coherence of a policy is not suf-
ficient to make it also a reasonable one!

A second testing policy that we examine is due to Lehmann (1958), who
proposes admissible tests based on a fixed ratio of the two risks involved,
i.e., with a fixed ratio of type I and type II errors denoted by his parameter
k. Except for the case in which that ratio is 1, this too proves to be an
incoherent policy for testing two simple hypotheses. Figure 2 shows the
plot of the degree of incoherence for Lehmann’s rule (k � 19) applied to
tests with differing sample sizes. Surprisingly, even in a comparison of two
tests based on large sample sizes, Lehmann’s policy is sometimes more
incoherent by our standards than the fixed .05 level policy for the same
two sample sizes. Thus, in order to gain the benefits of approximate co-
herence, it is neither necessary nor sufficient merely to shrink the level of
tests with increasing sample sizes, as happens with Lehmann’s rule. In tests
based on increasing sample sizes Lehmann’s policy (k fixed) is approxi-
mately coherent against a Bayes model that assigns equal prior probability
to each of the two hypotheses, the implied priors converge to 1/2. Of
course, for that prior, the choice of k � 1 in Lehmann’s rule assures exact
coherence at all sample sizes!

Our work on degrees of incoherence, illustrated here with an analysis
of testing simple statistical hypotheses, indicates the importance of having
finer distinctions than are provided by de Finetti’s dichotomy between
coherent and incoherent methods. We see the interesting work of Nau
(1989, 1992) providing useful algorithms for computing the rate of guar-
anteed loss with the escrow used in this paper. (See Nau 1989, 389).

In conclusion, we believe that approaches like Nau’s and those we have
developed here and in Schervish, Seidenfeld, and Kadane (1997, 1999)
permit a more subtle treatment of such longstanding issues as the debate
over coherence versus incoherence of some classical statistical practices.
That is not the whole problem. Rather, we need to know how far from
coherent a particular policy is after we learn that it is incoherent, and learn
how it compares with other incoherent methods that have been adopted
in practice. We hope to continue this line of investigation in our future
work.
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