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MEASURING INCOHERENCE

By MARK J. SCHERVISH,
TEDDY SEIDENFELD

and
JOSEPH B. KADANE

Carnegie Mellon University, Pittsburgh, USA

SUMMARY. The degree of incoherence, when previsions are not made in accordance

with a probability measure, is measured by the rate at which an incoherent bookie can

be made a sure loser. Each bet is rescaled by one of several normalizations to account for

the overall sizes of bets. For each normalization, the sure loss for incoherent previsions is

divided by the normalization to determine the rate of incoherence. We study several prop-

erties of normalizations and degrees of incoherence and present some examples. Potential

applications include the degree of incoherence of classical statistical procedures.

1. Introduction

A familiar argument for modeling uncertainty with subjective probability
is given by the Dutch Book theorem. In its simplest form it says that (in the
role of the bookie) if you are willing to accept finite combinations of either
side of bets, each of which you judge to be at fair odds, then either

(a) your fair betting odds are coherent, that is, they satisfy the axioms of
probability, or

(b) a gambler betting against you, knowing your fair odds, can arrange a
finite set of bets so that you are a sure loser, in which case your fair
odds are incoherent.

Excellent introductions to this classic result can be found in Shimony (1955),
Freedman and Purves (1969) and de Finetti (1974, Section 3.3).
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As a theoretical matter, it has been argued by many, e.g. Good (1952),
Smith (1961), Levi (1974), Kyburg (1978), Seidenfeld, Schervish and Kadane
(1990) and Walley (1991) that it is excessive to require, even normatively,
that a decision maker has determinate fair odds for an arbitrary event. In-
stead, these authors relax the theory of coherence to allow for one-sided bet-
ting. This corresponds to allowing a difference between a maximum price for
buying and a minimum price for selling a commodity, without demanding
that there be a single price at which the decision maker is willing both to
buy or to sell the commodity. In this approach, coherent one-sided odds cor-
respond to the lower or upper probabilities taken from a set of probabilities.

As a practical matter, even when a decision maker has determinate de-
grees of belief, it is very difficult to structure one’s fair odds, and more
generally, to specify one’s expectations for sets of random variables (what
deFinetti calls a set of previsions) in such a way that these both reflects one’s
beliefs and are coherent. See, for example, Kadane and Wolfson (1998). In
that sense, even an “ideal” coherent agent may be able to report her previ-
sions only to a degree of precision before they become incoherent: they are
imprecisely known previsions.

Yet, the dichotomy between coherent and incoherent sets of previsions,
or even between coherent and incoherent one-sided previsions, does not allow
for discussion of what sets are “very” incoherent or just “slightly” incoherent.
This paper explores a remedy for that problem by studying indices for how
effectively an incoherent bookie can be forced to lose money on a single
round of wagers. A larger magnitude in one of our indices is associated with
a greater degree of incoherence.

The problem as stated so far requires some normalization. Suppose that
a particular combination of gambles yields a sure loss y for the bookie.
Then multiplying each gamble by the same constant k > 0 will create a
combination of gambles that yields sure loss ky. In this paper we explore
how to perform the normalization from three different perspectives: the
bookie’s perspective, the gambler’s perspective and a neutral perspective.
We discuss normalization in general in Section 4.

To fix ideas, consider that the bookie has finite resources. A prudent
gambler wants to be sure that the bookie can cover the bets as contracted.
One way to do this is to require that, for each wager, the bookie escrows the
maximum amount that might be lost. An illustration of one of our indices
is to use the sum of these escrow amounts as the normalization. Thus, we
can ask how much the incoherent bookie can be forced to lose for sure, given
a specified level of total escrow that the bookie has the resources to cover.
Alternatively, we can recognize that the gambler, too, has limited resources.
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Then, we can ask how much the gambler can be guaranteed to win, for
given level of the gambler’s total escrow. A third perspective considers how
to measure the size of sure gains from a neutral point of view, which in the
case of simple bets on events corresponds to the total stake of the wagers.

2. Gambles and incoherence

Think of a random variable X as a function from some space S of possi-
bilities to the real numbers. We assume that, for a bounded random variable
X, a bookie might announce some values of x such that he/she finds accept-
able all gambles whose net payoff to the bookie is α(X − y) for α > 0 and
y < x. Each such x will be called a lower prevision for X. In addition,
or alternatively, the bookie may announce some values of x such that the
gamble α(X − y) is acceptable when α < 0 and y > x. These x will be
called upper previsions for X. We allow that the bookie might announce
only upper previsions or only lower previsions or both. For example, if X
is the indicator IA of an event A the bookie might announce that he/she
finds acceptable all gambles of the form α(IA − x) for x < p if α > 0 but no
other gambles, in particular, not for x = p. It will turn out not to matter
for any of our results whether or not the bookie finds the gamble α(IA − p)
acceptable. In the special case in which x is both an upper prevision and a
lower prevision, we call x a prevision of X and denote it P (X). Readers in-
terested in a thorough discussion of upper and lower previsions should refer
to Walley (1991).

A collection x1, . . . , xn of upper and/or lower previsions for X1, . . . , Xn

respectively is incoherent if there exists ε > 0 and a collection of acceptable
gambles {αi(Xi − yi)}n

i=1 such that

sup
s∈S

n∑
i=1

αi(Xi(s) − yi) < −ε, (2.1)

in which case we say that a Dutch Book has been made against the bookie.
Of course, we would need αi > 0 and yi < xi if xi is a lower prevision
for Xi and we would need αi < 0 and yi > xi if xi is an upper prevision
for Xi. When a collection of upper and/or lower previsions is incoherent,
we would like to be able to measure how incoherent they are. As noted
earlier, the ε in (2.1) is not a good measure because we could make ε twice
as big by multiplying all of the αi in (2.1) by 2, but the previsions would
be the same. Instead, we determine measures of the sizes of the gambles
and then consider the left-hand side of (2.1) relative to the total size of the
combination of gambles, in Sections 3 and 4.
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3. General Measure of Incoherence

Although incoherence is defined in terms of finitely many gambles, it is
more convenient to discuss incoherence in the presence of arbitrary collec-
tions of random variables and previsions.

Example 1. Let {Ai}∞i=1 be a countable partition. Suppose that a
bookie assigns lower prevision 1/2 to every Ai. Then every subcollection
of at least three previsions chosen from this infinite collection leads to Dutch
book. However, there is a sense in which the size of the Dutch book can be
increased the more random variables one bets on.

Let S be the set of possible states and let X be a set of uniformly bounded
functions X : S → IR. That is, there exists M such that |X(s)| ≤ M for
all s and all X. The set X is the set of random variables that are avail-
able for gambles. Let XP = X × IR. A point (X, p) ∈ XP is a random
variable together with a possible prevision. To avoid unbounded gambles,
assume that there exists M ′ such that |p| ≤ M ′ for all (X, p) ∈ XP . The
domain of our measure of incoherence is the collection of subsets of XP . Let
H be a collection of nonempty subsets of XP . To gamble, choose finitely
many elements (X1, p1), . . . , (Xn, pn) of XP together with finitely many ap-
propriate coefficients α1, . . . , αn. Here, “appropriate” means that αi ≥ 0
if pi is a lower prevision for Xi and αi ≤ 0 if pi is an upper prevision for
Xi. Let ℵ be a set of functions α : XP → IR such that α(X, p) = 0 for all
but finitely many (X, p) and such that α(X, p) is an appropriate coefficient
for each (X, p). In order to be sure that combinations of gambles remain
bounded, some type of bounding on elements of ℵ is needed. Hence require
that there exists K such that

∑
All (X, p)

|α(X, p)| ≤ K. For each H ∈ H and

α ∈ ℵ, let N(α, H) stand for a normalization for the combination of gam-
bles

∑
(X,p)∈H α(X, p)[X(s)−p]. Normalizations are discussed in Section 4.

A measure of incoherence relative to the normalization N is defined as a
function from H to [0,∞) by

I(H) = max


0,− inf

{α:N(α,H)≤1}
sup

s

∑
(X,p)∈H

α(X, p)[X(s) − p]


 .

If we knew that N(α, H) > 0 whenever α is not identically 0, then we might
define

I(H) = max

{
0,− inf

α
sup

s

∑
(X,p)∈H α(X, p)[X(s) − p]

N(α, H)

}
.
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The conditions put on the normalization N in Section 4 will guarantee that
these two definitions are equivalent when it is known that N(α, H) > 0 for
nonzero α.

4. Normalizations

Start with a single acceptable gamble such as Y = α(X − p). A normal-
ization for Y should measure its size in some sense. There are a number of
possible ways to measure the size of Y . For example supt |Y (t)| or supt −Y (t)
might be suitable normalization. Since all random quantities under consid-
eration are uniformly bounded, another possible normalization might be |α|.

Consideration of more than one gamble simultaneously requires normal-
ization of the entire collection. The normalization for a collection of gambles
is taken to be some function of the normalizations of the individual gambles
that make up the collection. To be precise, let α be a constant, X a random
variable and p a possible prevision for X. The normalization for the gamble
Y = α(X − p) will be denoted e(α, X, p), where e is a nonnegative function
satisfying

e(cα, X, p) = |c|e(α, X, p), for all real c and all α, X, p. (4.1)

Notice that e is required to be homogeneous of degree 1 as a function of α,
not as a function of (X, p). Although coherence requires that the prevision
of cX be cp when the prevision of X is p, this is not the case for potentially
incoherent previsions. Hence, we want to allow for the possibility that the
prevision of cX is something other than cp even when the prevision of X is
p. Hence, the behavior of e is not controlled when X and/or p get rescaled.

We focus our attention on three particular choices of e, although some
of the theorems are stated in more general terms. One choice of e might be
called the bookie’s escrow. This is defined by

e1(α, X, p) = max{0,− inf
s

α(X, p)[X(s) − p]}.

The bookie’s escrow is the most that the bookie could lose from the single
gamble. This would be the amount that the bookie would have to prove
that he/she had available in order to be able to cover the bet. With this
normalization, we refer to the index I as a rate of loss because it measures
the rate at which the bookie can be forced to lose relative to the amount
needed to cover the bets. Similarly, define the gambler’s escrow is by

e2(α, X, p) = max{0, sup
s

α(X, p)[X(s) − p]}.
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This is the most that the gambler could lose from the bet. With this nor-
malization, we refer to the index I as a rate of profit because it is the rate at
which the gambler can extract funds from the bookie relative to the amount
needed to cover the bets. The third normalization is neutral between the
bookie and gambler and is defined simply as e3(α, X, p) = |α(X, p)|. The
notation e(α, X, p) is used when the statement refers to an arbitrary nor-
malization.

Each of the three normalizations is continuous in the sense to be defined
next. Consider two elements of XP , (X, p) and (X ′, p′). We will measure the
difference between these by sups |X(s) − X ′(s)| + |p − p′|.

Definition 1. Let (X, p) ∈ XP and let d = 1 if p is a lower prevision
and d = −1 if p is an upper prevision. We say that e is continuous at (X, p)
if for every ε > 0 there exists δ > 0 such that |e(d, X, p) − e(d, X ′, p′)| < ε
for every (X ′, p′) such that p′ is the same type of prevision as p (i.e., upper
or lower) and such that sups |X(s) − X ′(s)| + |p − p′| < δ.

We require that the normalization for individual gambles be continuous
at each element of XP .

For n gambles {αi(Xi − pi)}n
i=1, the normalization for the combination

will be assumed to be of the form

fn(e(α1, X1, p1), . . . , e(αn, Xn, en)), (4.2)

In the notation of Section 3, (4.2) equals N(α, H) when {(X, p) ∈ H :
α(X, p) �= 0} = {(X1, p1), . . . , (Xn, pn)}. In order for a function fn to be an
appropriate normalization, we have a few requirements.

The first requirement extends (4.1).

fn(cx1, . . . , cxn) = cfn(x1, . . . , xn), for all c > 0, x1, . . . , xn. (4.3)

Equation (4.3) says that the function fn must be homogeneous of degree 1
in its arguments so that scaling up all the gambles by the same amount will
scale the normalization by that amount as well. Second, since we are not
concerned with the order in which gambles are made, we require

fn(x1, . . . , xn) = fn(y1, . . . , yn), for all n, x1, . . . , xn (4.4)
and all permutations (y1, . . . , yn) of (x1, . . . , xn).

Third, in keeping with the use of normalization to measure the sizes of bets,
we require that, if a gamble is replaced by one with higher size, the total
size should not go down:

fn(x1, . . . , xn) is nondecreasing in each of its arguments. (4.5)
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If a gamble has 0 size, we assume that the total size is determined by the
other gambles:

fn+1(x1, . . . , xn, 0) = fn(x1, . . . , xn), for all x1, . . . , xn and all n. (4.6)

Part of the definition of a norm (in normed linear spaces) is that the whole
be no larger than the sum of its parts. We also impose such a requirement,
namely

fn(x1, . . . , xn) ≤
n∑

i=1

xi, for all n and all x1, . . . , xn. (4.7)

Small changes in the component gambles should only produce small changes
in the size, so we require that

fn is continuous for every n. (4.8)

Finally, since the arguments of fn are the sizes of the individual gambles, we
require

f1(x) = x. (4.9)

So, if {αi(Xi−pi)}n
i=1 is a collection of gambles, an fn(e(α1, X1, p1), . . . , e(αn,

Xn, pn)) satisfying (4.3)–(4.9) is called a normalization for the collection of
gambles. Every sequence of functions {fn}∞n=1, each of which satisfies (4.3)–
(4.9), together with a function e leads to its own way of defining normaliza-
tion. Such a sequence is called a normalizing sequence. Each function in the
sequence is a normalizing function.

We can find a fairly simple form for all normalizing sequences. Com-
bining (4.9), (4.5) and (4.6), we see that fn(x1, . . . , xn) ≥ max{x1, . . . , xn}.
From (4.4), we conclude that fn is a function of the ordered values x(1) ≤
x(2) ≤ . . . ≤ x(n) of x1, . . . , xn. That is, fn(x1, . . . , xn) = fn(x(1), . . . , x(n)).
Combining these results with (4.7), we get

0 ≤ fn(x(1), . . . , x(n)) − x(n) ≤
n−1∑
i=1

x(i). (4.10)

Let λn(x(1), . . . , x(n)) = (fn(x(1), . . . , x(n)) − x(n))/x(n) so that

fn(x(1), . . . , x(n)) = x(n)

(
1 + λn(x(1), . . . , x(n))

)
. (4.11)

In order to satisfy (4.6), we need λn(0, x(2), . . . , x(n)) = λn−1(x(2), . . . , x(n)).
In order to satisfy (4.3), λn must be invariant under common scale changes
for all of its arguments. That is

λn(cx(1), . . . , cx(n)) = λn(x(1), . . . , x(n)).
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Every such function can be written as

λn(x(1), . . . , x(n)) = γn

(
x(1)

x(n)
, . . . ,

x(n−1)

x(n)

)
.

In order to satisfy (4.5), we must have γn nondecreasing in each of its argu-
ments. In order to satisfy (4.10), we must have

0 ≤ γn(y1, . . . , yn−1) ≤
n−1∑
i=1

yi.

In summary, every normalizing sequence satisfies

fn(x1, . . . , xn) = x(n)

[
1 + γn

(
x(1)

x(n)
, . . . ,

x(n−1)

x(n)

)]
, (4.12)

for some sequence γ1, γ2, . . . of continuous functions where γ1 ≡ 0 and for
n > 1 the functions satisfy the following properties:

• γn(y1, . . . , yn−1) is defined and continuous for 0 ≤ y1 ≤ y2 ≤ · · · ≤
yn−1 ≤ 1,

• γn is nondecreasing in each argument,

• 0 ≤ γn(y1, . . . , yn−1) ≤
∑n−1

i=1 yi,

• γn(0, y2, . . . , yn−1) = γn−1(y2, . . . , yn−1),

• x[1 + γn(y1/x, . . . , yn−1/x)] is nondecreasing in x for all y1 ≤ · · · ≤
yn−1 ≤ x.

(The last condition is equivalent to fn being nondecreasing in x(n).) It
is straightforward to show that every sequence that meets this description
satisfies (4.3)-(4.9), hence we have characterized normalizing sequences.

One simple collection of normalizing sequences consists of all sequences
in which γn(y1, . . . , yn−1) = γ

∑n−1
i=1 yi for some common constant γ ∈ [0, 1].

In this case, we get a family of normalizing functions:

fγ,n(x1, . . . , xn) = x(n) + γ
n−1∑
i=1

x(i), (4.13)

for each 0 ≤ γ ≤ 1. Another example is γn(z1, . . . , zn−1) = zn−1 for n > 1.
This one makes the total normalization equal to the sum of the two largest
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individual gamble normalizations. Other functions are possible, but we focus
on fγ,n for 0 ≤ γ ≤ 1. It is easy to see that the two extreme normalizing
functions correspond to γ = 0 and γ = 1:

f0,n(x1, . . . , xn) = x(n),

f1,n(x1, . . . , xn) =
n∑

i=1

xi.

Notice that, since every normalizing function fn is between f0,n and
f1,n, the maximum and minimum possible rates of incoherence correspond
to these two extreme normalizing sequences.

5. Continuity

This section provides conditions under which the extent of incoherence
I(·) is a continuous function of the gambles under consideration and their
previsions.

Discussion of continuity of I(·) requires a topology on the domain H. We
extend the difference measure that led to Definition 1 to a metric topology
on H. If H1, H2 ∈ H have different cardinalities, define d′(H1, H2) = ∞.
If H1, H2 ∈ H have the same cardinality, let P(H1, H2) be the set of all
one-to-one correspondences q between H1 and H2. That is, q ∈ P(H1, H2)
if and only if q is a one-to-one function from H1 onto H2. For convenience,
denote q(X, p) = (q(X, p)1, q(X, p)2). Define

d′(H1, H2) = inf
q∈P(H1,H2)

∑
(X,p)∈H1

[
sup

s
|X(s) − q(X, p)1(s)| + |p − q(X, p)2|

]
.

Clearly, d′(H1, H2) = ∞ whenever the cardinality of H1∆H2 is more than
countable. (Here ∆ denotes the symmetric difference between two sets.)
Consider the potential metric

d(H1, H2) =
d′(H1, H2)

1 + d′(H1, H2)
. (5.1)

If H1 and H2 have the same cardinality, if q ∈ P(H1, H2), and if α ∈ ℵ0, we
define αq as follows

αq(X, p) =
{

α(q−1(X, p)) if (X, p) ∈ H2,
0 otherwise.

(5.2)
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Lemma 1. The function d defined in (5.1) is a metric.

Proof. Clearly, d ≥ 0 and it is symmetric. Also, d(H1, H2) = 0 if and
only if H1 = H2. The triangle inequality remains. It is well known that
the triangle inequality holds for d if it holds for d′, so we will prove the
triangle inequality for d′. Let H1, H2, H3 ∈ H. We must show d′(H1, H2) ≤
d′(H1, H3) + d′(H2, H3). If not all three subsets have the same cardinal-
ity, then the right-hand side of the inequality is ∞. Indeed, if one of
Hi∆Hj has uncountable cardinality, then the right-hand side is ∞. As-
sume then that all three subsets have the same cardinality and that Hi∆Hj

is countable for all i and j. If Hi ∩ Hj �= ∅, then it is easy to see that∑
(X,p)∈Hi

[sups |X(s) − q(X, p)1(s)| + |p − q(X, p)2|] is smaller when q(X, p)
= (X, p) for all (X, p) ∈ Hi ∩ Hj than otherwise. So, we may set H =
(H1∆H2)∪ (H1∆H3)∪ (H2∆H3), which is a countable set. Then for all i, j

d′(Hi, Hj) = inf
q∈P(Hi,Hj)

∑
(X,p)∈H

[
sup

s
|X(s) − q(X, p)1(s)| + |p − q(X, p)2|

]
.

Let ε > 0, and for i = 1, 2, let qi,ε ∈ P(H3, Hi) be such that

∑
(X,p)∈H

[
sup

s
|X(s) − qi,ε(X, p)1(s)| + |p − qi,ε(X, p)2|

]
≤ d′(Hi, H3) + ε.

For each (X, p) ∈ H, we know that

sup
s

|q1,ε(X, p)1(s) − q2,ε(X, p)1(s)| + |q1,ε(X, p)2 − q2,ε(X, p)2|
≤ sup

s
|X(s) − q1,ε(X, p)1(s)| + |p − q1,ε(X, p)2|

+ sup
s

|X(s) − q2,ε(X, p)1(s)| + |p − q2,ε(X, p)2|.

We also know that

d′(H1, H2)

≤
∑

(X,p)∈H

[
sup

s
|q1,ε(X, p)1(s) − q2,ε(X, p)1(s)| + |q1,ε(X, p)2 − q2,ε(X, p)2|

]
.

Hence, d′(H1, H2) ≤ d′(H1, H3) + d′(H2, H3) + ε. Since this is true for all ε,
the triangle inequality holds. �

Let e : ℵ × XP → [0,∞) be a normalization for single gambles. Let
{fn}∞n=1 be a normalizing sequence. For each α ∈ ℵ and H ⊆ XP , if {(X, p) ∈
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H : α(X, p) �= 0} = {(X1, p1), . . . , (Xn, pn)}, assume that

N(α, H) = fn(e[α(X1, p1), (X1, p1)], . . . , e[α(Xn, pn), (Xn, pn)]). (5.3)

Let α0 ∈ ℵ be the constant function that equals 0 for all (X, p). ℵ0 = ℵ\{α0}.
Define the function k1 : S ×H× ℵ0 → IR by

k1(s, H, α) =

∑
(X,p)∈H α(X, p)[X(s) − p]

N(α, H)
.

Also define the following two derived functions:

k2(H, α) = sup
s

k1(s, H, α),

k3(H) = inf
α∈ℵ0

k2(H, α).

If N(α, H) > 0, we see that

I(H) = min{0,−k3(H)}.

The main continuity result is the following theorem:

Theorem 1. For each H ∈ H, define ℵ(H) = {α : k2(H, α) < 0}. Let
H1 ∈ H and suppose that there exists c > 0 such that

N(α, H1) ≥ c max
(X,p)∈H1

|α(X, p)|, for all α ∈ ℵ(H1). (5.4)

Assume that ℵ(H1) �= ∅ and that

sup
α∈ℵ(H1)

∑
(X,p)∈H1

|α(X, p)|
N(α, H1)

< ∞. (5.5)

Also assume that, for every ε > 0, there exists δ > 0 such that if H2 has the
same cardinality as H1 and if q ∈ P(H1, H2) and if

∑
(X,p)∈H1

[
sup

s
|X(s) − q(X, p)1(s)| + |p − q(X, p)2|

]
< δ,

then for every α ∈ ℵ0

|N(α, H1) − N(αq, H2)| < ε max
(X,p)∈H1

|α(X, p)|, (5.6)

where αq is define in (5.2). Then k3 is continuous at H1.
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The proof of this theorem relies on the following lemma.

Lemma 2. Let g and h be bounded functions. If supx |g(x) − h(x)| ≤ ε,
then ∣∣∣∣sup

x
g(x) − sup

x
h(x)

∣∣∣∣ ≤ ε,∣∣∣inf
x

g(x) − inf
x

h(x)
∣∣∣ ≤ ε.

Proof. The inequality supx |g(x) − h(x)| ≤ ε implies g(x) ≤ h(x) + ε
and h(x) ≤ g(x) + ε for all x. It follows that

sup
x

g(x) ≤ sup
x

h(x) + ε,

sup
x

h(x) ≤ sup
x

g(x) + ε.

Together these imply | supx g(x) − supx h(x)| ≤ ε. The proof for inf is
similar. �

Proof of Theorem 1. Let L = k3(H1), which must be negative since
ℵ(H1) �= ∅. Let 0 < ε < −L/2. Let M ′ be the supremum in (5.5). Let δ
be the value that guarantees (5.6) for ε replaced by min{cε/[6MM ′], c/10}.
Let ε′ = min{cε/3, δ/2}. Let H2 be such that d(H1, H2) < ε′/(1 + ε′). Then
d′(H1, H2) < ε′. This implies that H1 and H2 have the same cardinality. Let
q ∈ P(H1, H2) be such that

∑
(X,p)∈H1

[
sup

s
|X(s) − q(X, p)1(s)| + |p − q(X, p)2|

]
< d′(H1, H2) + ε′ < δ.

For each α ∈ ℵ(H1), define αq by (5.2). We now have

|k1(s, H1, α) − k1(s, H2, αq)|
≤ 1

N(α, H1)

∑
(X,p)∈H1

[
|α(X, p)|

{
sup

s
|X(s) − q(X, p)1(s)|+

|p − q(X, p)2|
}]

(5.7)

+
∣∣∣∣ 1
N(α, H1)

− 1
N(αq, H2)

∣∣∣∣ ∑
(X,p)∈H2

|αq(X, p)| sup
s

|X(s) − p|
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For every α ∈ ℵ0, |α(X, p)|/N(α, H1) ≤ 1/c for all (X, p) ∈ H1 and∣∣∣∣ 1
N(α, H1)

− 1
N(αq, H2)

∣∣∣∣ =
|N(α, H1) − N(αq, H2)|

N(α, H1)N(αq, H2)
≤ ε

6MM ′N(αq, H2)
.

Since sups |X(s) − p| ≤ 2M , it follows that∣∣∣∣ 1
N(α, H1)

− 1
N(αq, H2)

∣∣∣∣ ∑
(X,p)∈H2

|αq(X, p)| sup
s

|X(s) − p| ≤ ε

3
.

So, the expression on the right side of (5.7) is no greater than

1
c

∑
(X,p)∈H1

[
sup

s
|X(s) − q(X, p)1(s)| + |p − q(X, p)2|

]
+

ε

3

≤ d′(H1, H2)
c

+
ε

3
+

ε

3
< ε. (5.8)

Now apply Lemma 2 with g(s) = k1(s, H1, α) and h(s) = k1(s, H2, αq). Since
(5.8) holds for all s, and α ∈ ℵ(H1), we obtain. |k2(H1, α)− k2(H2, αq)| ≤ ε
for all α ∈ ℵ(H1).

Next, we show that

inf
α∈ℵ(H1)

k2(H2, αq) = inf
β∈ℵ(H2)

k2(H2, β). (5.9)

We do this by showing that each β that makes k2(H2, β) sufficiently close to
the infimum on the right of (5.9) must be equal to αq for some α ∈ ℵ(H1).
Let V = infα∈ℵ(H2) k2(H2, α). Since (5.8) holds with ε < −L/2, we have
that V < −L/2. Let β ∈ ℵ0 satisfy |k2(H2, β) − V | < −L/10. Let q be
as earlier in the proof, and let α be such that αq = β. We must show that
α ∈ ℵ(H1). We know that∣∣∣∣∣∣sup

s

∑
(X,p)∈H1

α(X, p)[X(s) − p] − sup
s

∑
(X,p)∈H2

αq(X, p)[X(s) − p]

∣∣∣∣∣∣
≤ max

(X,p)∈H1

|α(X, p)|2cε

3
≤ −L

3
N(α, H1).

We also know that

sup
s

∑
(X,p)∈H2

αq(X, p)[X(s) − p] ≤
(

L

2
− L

10

)
N(αq, H2) = 0.4LN(αq, H2),
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and

N(αq, H2) ≥ N(α, H1) − c

10
max

(X,p)∈H1

|α(X, p)| ≥ 0.9N(α, H1).

Combining these last three inequalities (recall L < 0) yields

sup
s

∑
(X,p)∈H1

α(X, p)[X(s) − p] ≤ 0.36LN(α, H1) − L

3
N(α, H1) < 0.

It follows that k2(α, H1) < 0 and α ∈ ℵ(H1). Hence (5.9) holds.
Finally, apply Lemma 2 with g(α) = k2(H1, α) and h(α) = k2(H2, α),

which implies that |k3(H1) − k3(H2)| ≤ ε. �

Continuity of I will hold at all H where the conditions of Theorem 1 hold.
Notice that ℵ(H1) �= ∅ is equivalent to H1 containing incoherent previsions,
since α ∈ ℵ(H1) if and only if α makes Dutch book against H1. Also, (5.5) is
immediate whenever the normalizing sequence is fn(x1, . . . , xn) =

∑n
i=1 xi.

For smaller normalizing sequences, (5.5) continues to hold if (5.4) holds and
if H1 is a finite set.

For the other conditions, first, consider normalizations based on e3.
These satisfy (5.4) with c = 1 and the left side of (5.6) is always 0. Next,
consider normalizations based on e1. These satisfy (5.4) for each H such
that for every (X, p) ∈ H, if p is a lower prevision then infs X(s) < p and if
p is an upper prevision then p < sups X(s). In such cases, c can be taken as
the minimum of the gaps between p and infs X(s) for lower previsions and
between p and sups X(s) for upper previsions. For (5.6), δ can be taken to
equal ε. Finally, consider normalizations based on e2. These satisfy (5.4)
for each H such that for every (X, p) ∈ H, if p is a lower prevision then
p < sups X(s) and if p is an upper prevision then infs X(s) < p. In such
cases, c can be taken as the minimum of the gaps between p and sups X(s)
for lower previsions and between p and infs X(s) for upper previsions. For
(5.6), δ can be taken to equal ε.

To summarize, assume either that fn(x1, . . . , xn) =
∑n

i=1 xi or that H
is a finite set. Then all normalizations based on e3 are continuous at H.
Normalizations based on e1 are continuous at those H such that for every
(X, p) ∈ H, if p is a lower prevision then p < sups X(s) and if p is an upper
prevision then infs X(s) < p. Normalizations based on e2 are continuous
at those H such that for every (X, p) ∈ H, if p is a lower prevision then
p < sups X(s) and if p is an upper prevision then infs X(s) < p.
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6. Dominance

Let H and H ′ be two subsets of H that differ only in the previsions
assigned. That is, (X, p) ∈ H if and only if there exists p′ such that (X, p′) ∈
H ′. Throughout this section, whenever α is a strategy chosen by the gambler,
we assume that α(X, p) = α(X, p′) whenever (X, p) ∈ H and (X, p′) ∈ H ′.

Definition 2. Say that H dominates H ′ with respect to α if for each
state s ∈ S,

∑
(X,p)∈H α(X, p)[X(s) − p] >

∑
(X,p′)∈H′ α(X, p′)[X(s) − p′].

Definition 3. For an ε > 0, say that H ε-dominates H ′ with respect to
α if for each state s ∈ S,

∑
(X,p)∈H α(X, p)[X(s) − p] ≥ ∑

(X,p′)∈H′ α(X, p′)
[X(s) − p′] + ε.

Suppose that the previsions in H are incoherent and that H dominates
H ′ with respect to α. Then the gambler is certain of a larger gain when
the strategy α is employed against H ′ than when it is employed against H,
regardless which state s ∈ S occurs. Moreover, if H ε-dominates H ′ with
respect to α, the gambler’s sure gain playing α against H ′is at least ε greater
than the gain against H.

We are interested in determining which indices of incoherence respect
dominance, as just defined. Recall that an index of incoherence for a set of
previsions is defined by identifying a normalization N and then setting

I(H) = max


0,− inf

α:N(α,H)≤1
sup

s

∑
(X,p)∈H

α(X, p)[X(s) − p]


 ,

Consider the related quantity which we shall call a partial index:

I(H, α) =
max

{
0,− sups

∑
(X,p)∈H α(X, p)[X(s) − p]

}
N(α, H)

.

The partial index I is defined only when not both the numerator and de-
nominator are 0.

None of our indices is suitable for making distinctions between coherent
previsions. Indeed, the possibility of Dutch book must exist before we really
care about how one set of previsions dominates another.

Definition 4. Suppose that H dominates H ′ with respect to α and
α makes Dutch book against H ′. We say that the partial index I reflects
the dominance of H over H ′ with respect to α if I(H ′, α) > I(H, α). Say
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that I reflects dominance if, for every α and every H and H ′ such that H
dominates H ′ with respect to α and α makes Dutch book against H ′, I
reflects the dominance of H over H ′ with respect to α.

Theorem 2. Let the previsions in H and H ′ be incoherent, and suppose
that H dominates H ′ with respect to α. Let I(H) = k > 0. Assume that the
partial index I reflects the dominance of H over H ′ with respect to α.

(a) Suppose that I(H, α) = k, so that the gambler’s strategy α achieves the
infimum for the I-index. Then I(H ′) > k.

(b) Suppose that {αn}∞n=1 is a sequence of strategies for the gambler with
the property that

lim
n→∞ I(H, αn) = k,

and that H ε-dominates H ′ with respect to each αn. Then I(H ′) ≥
k + ε.

Proof. The two conclusions are immediate from the definitions above.
For part (a) note that partial index I reflects dominance with respect to α.
Since H dominates H ′ with respect to α, I(H ′) ≥ I(H ′, α) > I(H, α) = k.
Similarly for part (b), note that as I(H ′, αn) ≥ I(H, αn) + ε then, since
I(H ′) = supα I(H ′, α), we have

I(H ′) ≥ lim
n→∞ I(H, αn) + ε = I(H) + ε = k + ε. �

The next result identifies conditions when each of our different partial
indices reflects dominance. The example illustrate some conditions when
several do not.

Theorem 3. Let I be the partial index of incoherence using any nor-
malization based on e3. Then I reflects dominance.

Proof. Assume that H dominates H ′ with respect to α. Then, as∑
(X,p)∈H

α(X, p)[X(s) − p] >
∑

(X,p′)∈H′
α(X, p′)[X(s) − p′],

for each s ∈ S, then

I(H, α) = −
sups

∑
(X,p)∈H α(X, p)[X(s) − p]

N(α, H)

< −
sups

∑
(X,p′)∈H′ α(X, p′)[X(s) − p′]

N(α, H)
= I(H ′, α). �



measuring incoherence 577

Theorem 4. Let I be the “rate of loss” partial index using for its nor-
malizer: N(α, H) =

∑
(X,p)∈H max {0,− infs α(X, p)[X(s) − p]}. Suppose

that there is at least one (X, p) ∈ H such that X is not a constant and
α(X, p) �= 0. Also, assume that, for each (X, p) ∈ H, infs α(X, p)[X(s)−p] <
0. (That is, none of the gambles are guaranteed winners for the bookie.) If
H dominates H ′ with respect to α and α makes Dutch book against H ′ and
N(α, H) > 0, then I reflects the dominance of H over H ′ with respect to α.

We begin with a lemma about the partial index I.

Lemma 3. Suppose that N(α, H) > 0 and that there exists at least one
(X, p) ∈ H such that α(X, p) �= 0 and X is not constant. Then I(H, α) < 1
for “rate of loss.”

Proof. If at least one of the random variables is not constant, then it
follows by elementary considerations of inf and sup that

− sup
s

∑
(X,p)∈H

α(X, p)[X(s) − p]

<
∑

(X,p)∈H

max
{

0,− inf
s

α(X, p)[X(s)−p]
}

= N(α, H).

Then the lemma is immediate from the assumption that N(α, H) > 0. �

Proof of Theorem 4. Let H and H ′ be two sets of random variables
and previsions that differ only in the previsions and let α be a strategy for
the gambler that makes Dutch book against H ′. Suppose that H dominates
H ′ with respect to α. If α does not make Dutch book against H, then
I(H, α) = 0 < I(H ′, α), and we are done. For the remainder of the proof,
assume that α makes Dutch book against both H and H ′.

For every s,∑
(X,p)∈H

α(X, p)[X(s) − p] −
∑

(X,p′)∈H′
α(X, p′)[X(s) − p′]

=
∑

(X,p)∈H

α(X, p)(p′−p)>0, (6.1)

because H dominates H ′ with respect to α. Since none of the gambles is a
guaranteed winner for the bookie,

N(α, H ′) − N(α, H)
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=
∑

(X,p′)∈H′
− inf

s
α(X, p′)[X(s) − p′] −

∑
(X,p)∈H

− inf
s

α(X, p)[X(s) − p]

=
∑

(X,p)∈H

α(X, p)(p′ − p).

For convenience, let G = sups

∑
(X,p)∈H α(X, p)[X(s) − p]. Since α makes

Dutch book against H ′, we have

I(H ′, α) =
− sups

∑
(X,p′)∈H α(X, p′)[X(s) − p′]

N(α, H ′)

=
−G +

∑
(X,p)∈H α(X, p)(p′ − p)

N(α, H) + N(α, H ′) − N(α, H)

=
−G +

∑
(X,p)∈H α(X, p)(p′ − p)

N(α, H) +
∑

(X,p)∈H α(X, p)(p′ − p)
. (6.2)

Lemma 3 tells us that

I(H, α) =
−G∑

(X,p)∈H α(X, p)(p′ − p)
< 1. (6.3)

If we add the positive number∑
(X,p)∈H

α(X, p)(p′ − p)

to both the numerator and denominator of the expression for I(H, α) in
(6.3), the ratio gets closer to 1 (increases) and we obtain the ratio in (6.2).
Hence, I(H ′, α) > I(H, α). �

Next, we show by example that the “rate of loss” index does not reflect
dominance when the normalization uses the maximum (rather than the sum)
of the individual normalizations. That is, for the next example let

N(α, H) = max
(X,p)∈H

max
{

0,− inf
s

α(X, p)[X(s) − p]
}

.

Example 2. Let S = {s1, s2,s3} and let Xi (i = 1, 2, 3) be the indicator
for si. Let H = {(X1, 0.5), (X2, 0.5), (X3, 0.5)} and let H ′ = {(X1, 0.9), (X2,
0.4), (X3, 0.4)}. Let the gambler’s strategy be α = (1, 1, 1). Then

∑
(X,p)∈H

α(X, p)[X(si) − p] = .5, and
∑

(X,p′)∈H′ α(X, p′)[X(si) − p′] = .7 for each
state si. Hence, H dominates H ′ with respect to α. Also, N(α, H) = .5,
whereas N(α, H ′)) = .9, so that I(H, α) = .5/.5 = 1 > .7/.9 = I(H ′, α),
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contrary to the ranking required to reflect dominance. In addition, based
on Theorem 6 (part 2), we see that this example also fails the conclusion
to Theorem 2 (part 1) even though H dominates H ′ as in the hypothesis of
Theorem 2.

Last, we establish conditions under which the “rate of profit” index re-
flects dominance between sets of prevision.

Theorem 5. Let I be the “rate of profit” index of incoherence using for
its normalizer N(α, H) =

∑
(X,p)∈H max {0, sups α(X, p)[X(s) − p]}. As-

sume that, for each (X, p) ∈ H, sups α(X, p)[X(s) − p] > 0. (That is, none
of the gambles are guaranteed winners for the gambler.) If H dominates H ′

with respect to α and α makes Dutch book against H ′ and N(α, H) > 0, then
I reflects the dominance of H over H ′ with respect to α.

Proof. As in the proof of Theorem 4, let H and H ′ be two sets of
random variables and previsions that differ only in the previsions, and let α
be a strategy for the gambler that makes Dutch book against H ′. As before,
if α does not make Dutch book against H, then I(H, α) = 0 < I(H ′, α). So
assume for the rest of the proof that α makes Dutch book against both H
and H ′. Equation (6.1) still holds in this case. Since none of the gambles is
a guaranteed winner for the gambler, we have that

N(α, H ′) − N(α, H)

=
∑

(X,p′)∈H′
sup

s
α(X, p′)[X(s) − p′] −

∑
(X,p)∈H

sup
s

α(X, p)[X(s) − p]

=
∑

(X,p)∈H

α(X, p)(p − p′).

As before, let G = sups

∑
(X,p)∈H α(X, p)[X(s) − p]. Now write

I(H ′, α) =
− sups

∑
(X,p′)∈H′ α(X, p′)[X(s) − p′]

N(α, H) + N(α, H ′) − N(α, H)

=
−G +

∑
(X,p)∈H α(X, p)(p′ − p)

N(α, H) +
∑

(X,p)∈H α(X, P )(p − p′)} . (6.4)

Since
∑

(X,p)∈H α(X, p)(p′ − p) > 0, the numerator of (6.4), is greater than
−G and the denominator is less than N(α, H), so the ratio is greater than
−G/N(α, H). As I(H, α) = −G/N(α, H), we have I(H ′, α) > I(H, α). �
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7. Some Special Cases

In this section, we provide some theorems that calculate I(H) for some
specific cases of interest. These cases concern three different normalizations
e1, e2 and e3 and a single collection H consisting of the elements of a par-
tition of S together with incoherent upper or lower previsions. For each
normalization e, we shall use the same normalizing sequence {fn}∞n=1 de-
fined by fn(x1, . . . , xn) =

∑n
i=1 xi and define N(α, H) by (5.3). In each of

the next three theorems {Ai}n
i=1 is a partition of S into nonempty sets. We

let q1, . . . , qn stand for upper previsions for A1, . . . , An and we let p1, . . . , pn

stand for lower previsions. Each function α is equivalent to an n-tuple
(α1, . . . , αn), which we shall denote α in these proofs. We also let p(1) ≤
· · · ≤ p(n) be the ordered values of the lower previsions and define

s+ =
n∑

i=1

qi, s− =
n∑

i=1

pi.

Assume that all pi and qi are nonnegative. Finally, in all of the proofs, we
will let g stand for the function

g(α) = sup
s

n∑
i=1

(IAi − xi),

where either xi = pi for all i or xi = qi for all i. This then makes

I(H) = max
{

0,− inf
α

g(α1, . . . , αn)
}

.

So the proofs consist of minimizing g subject to N(α, H) ≤ 1.

Theorem 6. For the bookie’s escrow e1,

(a) Let H = {(IA1 , q1), . . . , (IAn , qn)}, and assume that s+ < 1. Then

I(H) =
1 − s+

n − s+
,

and αj all equal to each other achieves this value. If 0 < qi < 1 for all
i, then the α1, . . . , αn that achieve the value of I(H) are unique.

(b) Let H = {(IA1 , p1), . . . , (IAn , pn)}, and assume that s− > 1. Then

I(H) =
s− − 1

s−
,

and all αj equal to each other achieves this value. If 0 < pi < 1 for all
i, then the α1, . . . , αn that achieve the value of I(H) are unique.
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Proof. For part (a), we can write g(α) = max{α1, . . . , αn} − c, where
c =

∑n
i=1 αiqi. Let αj = max{α1, . . . , αn}, so that g(α) = αj − c. Then

g(αj , . . . , αj) = αj − c +
∑
i�=j

(αi − αj)qi ≤ g(α) (7.1)

since αi ≤ αj for all i �= j and qi ≥ 0. Also,

N(αj , . . . , αj , H) = N(α, H) +
∑
i�=j

(αi − αj)(1 − qi) ≤ N(α1, . . . , αn, H),

since αi ≤ αj for all i �= j and 1 − qi ≥ 0. It follows that g is minimized
(subject to N(α, H) ≤ 1) by setting all αi equal to each other and rescaling
them to make h = 1. Uniqueness in the case 0 < qi for all i = 1, . . . , m
follows from the fact that the inequality in (7.1) is strict if all qi > 0 and the
αi are not all equal.

For part (b), let c =
∑n

i=1 αipi. Then

g(α) = max{α1, . . . , αn} − c.

Clearly, having all αi = 0 does not achieve the value of I(H), so assume
that at least one αi > 0. In such cases, N(α, H) =

∑m
i=1 αipi = c > 0.

Clearly, if c < 1, we can make g(α) smaller (strictly smaller if all pi > 0)
by scaling up the αi to make c = 1. So assume that c = 1. Now, g(α) =
max{α1, . . . , αm} − 1. We minimize g by making the largest αi as small as
possible subject to

∑m
i=1 αipi = 1. If the αi are not all equal, then it is easy

to see that we can lower the largest ones by raising the smallest ones while
maintaining the constraint

∑m
i=1 αipi = 1. If 0 < pi for all i = 1, . . . , m,

then this maneuver strictly lowers g. This implies that g is minimized by
choosing all of the αi equal to the same value, which must, by the constraint,
be the value 1/

∑m
i=1 pi. Plugging this value for all αi into the formula for

g yields the value of I(H) stated in the theorem. Uniqueness in the case
0 < pi for all i = 1, . . . , m follows from the series of strict decreases in g that
occurred in the above discussion. �

Theorem 7. For the gambler’s escrow e2,

(a) Let H = {(IA1 , q1), . . . , (IAn , qn)}, and assume that s+ < 1. Then

I(H) =
1 − s+

s+
,

and αj all equal to each other achieves this value.
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(b) Let H = {(IA1 , p1), . . . , (IAn , pn)}, and assume that s− > 1. let k∗ be
the first k such that p(n−k) ≤ (

∑n
i=n−k+1 p(i) − 1)/(k − 1) (k∗ = n if

the inequality is never satisfied). Then

I(H) =

∑n
i=n−k∗+1 p(i) − 1∑n

i=n−k∗+1(1 − p(i))
.

To achieve this value, set all αi corresponding to p(n−k∗+1), . . . , p(n)

equal to the same positive number and all other αi = 0.

Proof. For part (a), we see that

g(α) = max{α1, . . . , αn} − c,

where c =
∑n

i=1 αiqi. Notice that N(α, H) = −c, It is clear that N(α, H) =
0 implies g = 0, which is not the smallest possible value. If 0 < N(α, H) < 1
we can scale up all the αi to make N(α, H) = 1 and make g smaller, so
assume that c = −1. This makes g equal to the largest αi plus 1. Set
βi = −αi for each i and maximize min{β1, . . . , βn} subject to

∑n
i=1 βipi = 1.

If the βi are not all equal, then we can raise the lowest ones and lower the
highest ones while maintaining the constraint. It follows that g is minimized
by setting all αj equal to −1/s+.

For part (b), write

g(α) = max{α1, . . . , αn} −
n∑

i=1

αipi.

It is clear that N(α, H) =
∑n

i=1 αi(1 − pi). Note that N(α, H) = 0 implies
g = 0, which is not the smallest possible value. Hence, we can assume that∑n

i=1 αi(1− pi) > 0. This allows us to replace the constrained minimization
problem by the minimization of R(α) = g(α)/N(α, H). For each i such that
αi is not the largest value, consider the effect on R of replacing αi by αi + ε.
Let ei be the unit vector with 1 in the ith coordinate and 0 elsewhere. Then

R(α + εei) =
g(α) − εpi

N(α) + ε(1 − pi)
. (7.2)

It is straightforward from (7.2) that R(α+ εei) is smaller than R(α) if ε > 0
and pi/(1− pi) > −R(α) or if ε < 0 and pi/(1− pi) < −R(α). So, we make
R smaller by raising all αi corresponding to large pi and by lowering all αi

corresponding to small pi. To see where the break between large and small
pi occurs, assume that p1 ≤ · · · ≤ pn. Clearly, the largest values of i should
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have the largest values of αi. Also, in order for R(α) < 0, we need enough
nonzero αi so that the sum of the corresponding pi is greater than 1. So, start
with the first k such that

∑
i=n−k+1 pi > 1. Set αn = · · · = αn−k+1 = 1 and

α1 = · · · = αn−k = 0. Then −R(α) = (
∑n

i=n−k+1 pi − 1)/
∑n

i=n−k+1(1− pi).
Notice that pi/(1−pi) > −R(α) if and only if pi > (

∑n
i=n−k+1 pi−1)/(k−1).

If pn−k > (
∑n

i=n−k+1 pi − 1)/(k − 1), we should set αn−k = 1, otherwise
leave αn−k = 0. Also, notice that, if pn−k > (

∑n
i=n−k+1 pi − 1)/(k − 1),

then (
∑n

i=n−k pi − 1)/k > (
∑n

i=n−k+1 pi − 1)/(k − 1). So, we should let
k∗ be the first k such that pn−k ≤ (

∑n
i=n−k+1 pi − 1)/(k − 1) and then set

αi = 1/
∑n

j=n−k∗+1(1 − pj) for i ≥ n − k∗ + 1 and αi = 0 for i ≤ n − k∗. �

Theorem 8. For the neutral escrow e3,

(a) Let H = {(IA1 , q1), . . . , (IAn , qn)}, and assume that s+ < 1. Then

I(H) =
1 − s+

n
,

and αj all equal to each other achieves this value.

(b) Let H = {(IA1 , p1), . . . , (IAn , pn)}, and assume that s− > 1. let k∗ be
the first k such that p(n−k) ≤ (

∑n
i=n−k+1 p(i) − 1)/k (k∗ = n if the

inequality is never satisfied). Then

I(H) =

∑n
i=n−k∗+1 p(i) − 1

k∗ .

To achieve this value, set all αi corresponding to p(n−k∗+1), . . . , p(n)

equal to the same positive number and all other αi = 0.

Proof. For part (a), define βi = −αi for i = 1, . . . , n. Then

g(α) = −min{β1, . . . , βn} +
n∑

i=1

βiqi.

Here N(α, H) =
∑n

i=1 βi. We need to minimize g subject to
∑n

i=1 βi ≤
1. If there is j such that βj > min{β1, . . . , βn}, we can replace βj by
min{β1, . . . , βn} which will lower g and lower N(α, H). Then scale up all the
βi so that N(α, H) = 1 and this will lower g even more. Hence we need all βi

equal to a common value. Setting all αi = −1/n makes I(H) = (1− s+)/n.
For part (b), write

g(α) = max{α1, . . . , αn} −
n∑

i=1

αipi.
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We need to minimize this subject to N(α, H) =
∑n

i=1 αi = 1 with all αi ≥ 0.
Since setting all αi = 0 clearly does not provide the minimum, we can assume
that

∑n
i=1 αi > 0. This allows us to replace the constrained minimization

problem by the minimization of R(α) = g(α)/N(α, H). For each i such that
αi is not the largest value, consider the effect on R of replacing αi by αi + ε.
Let ei be the unit vector with 1 in the ith coordinate and 0 elsewhere. Then

R(α + εei) =
g(α) + εpi

N(α) + ε
. (7.3)

It is clear from (7.3) that R(α + εei) is smaller than R(α) if ε > 0 and
pi > −R(α) or if ε < 0 and pi < −R(α). So, we make R smaller by raising
all αi corresponding to large pi and by lowering all αi corresponding to small
pi. To see where the break between large and small pi occurs, assume that
p1 ≤ · · · ≤ pn. Clearly, the largest values of i should have the largest values of
αi. Also, in order for R(α) < 0, we need enough nonzero αi so that the sum
of the corresponding pi is greater than 1. So, start with the first k such that∑

i=n−k+1 pi > 1. Set αn = · · · = αn−k+1 = 1 and α1 = · · · = αn−k = 0.
Then −R(α) = (

∑n
i=n−k+1 pi − 1)/k. If pn−k > (

∑n
i=n−k+1 pi − 1)/k we

should set αn−k = 1, otherwise leave αn−k = 0. Also, notice that, if pn−k >
(
∑n

i=n−k+1 pi − 1)/k, then (
∑n

i=n−k pi − 1)/(k + 1) > (
∑n

i=n−k+1 pi − 1)/k.
So, we should let k∗ be the first k such that pn−k ≤ (

∑n
i=n−k+1 pi − 1)/k

and then set αi = 1/k∗ for i ≥ n − k∗ + 1 and αi = 0 for i ≤ n − k∗. �

Example 3. Consider three different incoherent lower previsions for the
elements of a partition of S into three events: (0.5, 0.5, 0.5), (0.6, 0.7, 0.2),
and (0.6, 0.8, 0.1). In all three cases, s+ = 1.5. For the first case, all three
of our theorems say that I(H) is maximized by setting α = (1, 1, 1). For
the second case, both Theorems 6 and 8 say that I(H) is maximized at α =
(1, 1, 1), but Theorem 7 says that I(H) is maximized at α = (1, 1, 0). For
the third case, only Theorem 6 says that I(H) is maximized at α = (1, 1, 1),
while the other two say that I(H) is maximized at α = (1, 1, 0).

For general finite sets of gambles defined on finite partitions, one can
construct a linear programming problem whose solution provides both the
rate of incoherence and the set of bets required to achieve that rate. Willis
(1964) constructs such a linear programming problem to determine a gam-
bler’s strategy at a race track that posts incoherent pari-mutuel odds.
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Fig. 1. Sets of bookie’s previsions for which the gambler uses two or three
events depending on the normalization. The black simplex is the set of co-
herent previsions. In the light gray shaded regions, the gambler bets on
all three events, regardless of normalization. In the dark Gray shaded re-
gions, the gambler bets on all three events for the neutral and bookie-escrow
normalizations, but bets on only two events for the gambler-escrow normal-
ization. In the line-shaded area, the gambler bets on only two events for the
neutral and gambler-escrow normalizations. The three previsions in Exam-
ple 3 are indicated in the plane where s+ = 1.5. Also, the figure illustrates
the simplex where three individually coherent previsions sum to 2.5.

8. Discussion

In this paper we have introduced a collection of three (families of) in-
dices for gauging the incoherent sets of one-sided and two-sided previsions,
using different (families of) normalizations to standardize the gains from a
Dutch Book. Within each family, an index is based on a common escrow
for an individual wager, though the normalizations within a family differ on
the normalization for a set of wagers. Within each family, based on the 7
conditions of adequacy proposed in Section 4, the smallest normalization is
the maximum of the individual escrows, and the largest normalization is the
sum of the individual escrows.
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One index family uses the bookie’s escrow for a single wager (the bookie’s
maximum possible loss on that wager) as the basis for the normalization,
and leads to what we call the “rate of loss” index. A second family uses
the gambler’s escrow as the basis for the normalization, and leads to what
we call the “rate of profit” index. A third index family uses a neutral point
of view, where in the case of simple bets, the normalization is based on the
magnitude of the total stake of the bet.

In Section 5 we investigate those indices that are a continuous function
of the gambler’s previsions and the random variables for which these are
previsions. We show that the index family based on the neutral point of
view is continuous, as is the rate of loss index when the random variables
are not constant. The index corresponding to the rate of profit is continuous
when each (one or two-sided) prevision is coherent on its own.

In Section 6 we consider which of our indices reflects dominance among
incoherent sets of (one and two-sided) previsions. We establish that the
index-family based on the neutral point of view reflects dominance. The rate
of loss index also does for non-constant previsions when the normalization is
the largest from that family, using the sum of the bookie’s escrows. The rate
of profit likewise reflects dominance when individual previsions are coherent
and using the same (sum-of-escrows) normalization.

In Section 7 we illustrate the gambler’s strategies for achieving the re-
spective indices. We use the simple case of incoherent previsions for events
(indicator functions) that form a finite partition. The gambler’s optimal
strategies for these indices are distinct even for the case of incoherent (lower)
previsions on a three-element partition, as illustrated in Figure 1.

This paper reports some of the basic findings for a theory of rates of in-
coherence. Other results, including rates of incoherence when some gambles
are called-off, can be found in Schervish, Seidenfeld and Kadane (1997). We
have already applied the rate of loss index to assess the well known incoher-
ence of Classical Neyman-Pearson testing of a simple null hypothesis versus
a simple alternative at a fixed level of type-1 error, regardless of the sample
size (Schervish, Seidenfeld and Kadane, 2002). We do this by comparing the
risk functions of different tests under different conditions. Such comparisons
are generally accepted by classical statisticians concerned with admissibility.
In future work, we hope to use the indices presented here to gauge the degree
of incoherence of other, well known Classical Statistical procedures.
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