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BAYES DECISION PROBLEMS AND STABILITY∗

By JOSEPH B. KADANE
Carnegie Mellon University, Pittsburgh

and
C. SRINIVASAN

University of Kentucky, Lexington

SUMMARY. Stability of Bayes decision problems under uniform convergence of losses is

revisited and sufficient conditions for stability are obtained. The results generalize and com-

plement the earlier works of Kadane and Chuang, Chuang, and Salinetti. General conditions

are also given for the equivalence of two definitions of stability.

1. Introduction

Recent years have seen excellent progress in the ability of Bayesians to com-
pute posterior and predictive quantities of interest. This progress adds to the
importance that must be placed on what the inputs to those computations should
be, that is, what likelihood, prior and loss function to use. While there are var-
ious standpoints on these questions, the one we find most satisfying in principle
is the subjective view of Savage (1954, 1962). This requires subjective elicitation
of the inputs.

Getting serious about elicitation means to admit that elicited quantities can
not be held to be exact representations of the opinions, in the case of priors and
likelihoods, or desires, in case of loss functions, of the person being elicited. One
would like the problem to be “forgiving” (or “robust”) in the sense that small
errors in the inputs should not cause decisions to appear optimal that are very
much worse than could have been made were the inputs correct.

The theory of stability of decision problems, as formulated by Kadane and
Chuang (1978), is a way to formalize whether an elicitation problem is nonrobust.
If strong stability obtains, close enough elicitation leads to decisions with
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expected loss, evaluated correctly, nearly as small as is achievable. If weak sta-
bility obtains, a particular stabilizing decision will achieve the benefit described
above. But if neither is the case, even a very small elicitation error can lead to
discontinuously much additional expected loss.

The main focus of this paper is a detailed study of stability under uniform
convergence of losses with the purpose of deriving sufficient conditions for stabil-
ity and the equivalence of the two definitions of stability. The results obtained
here generalize the results of Kadane and Chuang (1978) and Chuang (1984) in
different directions. An important earlier work related to this paper is Salinetti
(1994). Indeed, the results presented here (see Section 4) heavily rely on some
of the tools and results from the above article.

The literature on the sensitivity analysis of Bayes decision problems with
respect to the prior and the loss is by no means limited to the papers listed above.
Early work in this direction is due to Edwards, Lindeman and Savage (1963).
Other important contributions include Stone (1963), Fishburn et al. (1967)
and Brittney and Winkler (1974). The last paper, in particular, contains an
illuminating discussion on the sensitivity of Bayes estimates to misspecification
of the loss.

As a strong form of continuity, even if stability obtains, it does not specify the
rate at which additional loss approaches zero as the extent of error approaches
zero. This and the role of stability in quantitative robustness analysis are the
subjects of subsequent papers.

Finally, the remainder of the paper is organized as follows. The two defini-
tions of stability and an example showing their non-equivalence are in section
2. In section 3, the conditions under which the definitions are equivalent are
discussed. Sections 4 and 5 contain sufficient conditions for strong stability I
and II, respectively.

2. Stability

To formulate the definitions of stability of a decision problem, suppose that
the parameter space is Θ ⊂ Rm, the decision space is D ⊂ Rm and the likelihood
is a bounded continuous function `0(θ). Let L0(θ, d) be a loss function and P0

be a prior distribution on Θ. Also, let Ln, n = 1, 2, . . . denote a sequence of loss
functions converging (in some topology) to L0 and Pn, n = 1, 2 . . . a sequence of
priors converging weakly to P0. We denote weak convergence by “Pn ⇒ P0”.

Definition I. The decision problem (L0, `0, P0) is Strongly Stable I (SSI) if
for every sequence Pn ⇒ P0 and Ln → L0

lim
ε↓0

lim sup
n→∞

[∫
Ln(θ, d0(ε))`0(θ)dPn − inf

dεD

∫
Ln(θ, d)`0(θ)dPn

]
= 0 . . . (2.1)
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for every d0(ε) such that
∫

L0(θ, d0(ε))`0(θ)dP0 ≤ inf
d∈D

∫
L0(θ, d)`0(θ)dP0 + ε. . . . (2.2)

The triple (L0, `0, P0) is said to be Weakly Stable I (WSI) if (2.1) holds for
a particular choice d0(ε).

Viewing (L0, `0, P0) as the approximate specification by the statistician and
assuming the “truth” lies along the sequence (Ln, `0, Pn), the Strong Stability I
of (L0, `0, P0) implies that “small” errors in the specification of the loss and the
prior will not result in substantially worse (in terms of the risk) decisions. If, on
the other hand, (L0, `0, P0) is unstable (i.e. not even weakly stable), even small
errors in the specification of the loss and the prior may result in worse decisions.
This essentially motivates the above definition.

A more general and stringent definition of stability is possible and is as
follows.

Definition II. The decision problem (L0, `0, P0) is Strongly Stable II if for
all sequences Pn ⇒ P0, Qn ⇒ P0, Ln → L0 and Wn → L0

lim
ε↓0

lim sup
n→∞

[∫
Ln(θ, dQn(ε))`0(θ)dPn − inf

d∈D

∫
Ln(θ, d)`0(θ)dPn

]
= 0 . . . (2.3)

for every dQn(ε) satisfying

∫
Wn(θ, dQn(ε))`0(θ)dQn ≤ inf

d∈D

∫
Wn(θ, d)`0(θ)dQn + ε. . . . (2.4)

The problem (L0, `0, P0) is Weakly Stable II if (2.3) holds for a particular
choice of dQn(ε).

The reader is referred to Kadane and Chuang (1978) for a motivation of
the second definition of stability. In the same paper, the authors studied the
stability of a decision problem under the topology of uniform convergence (i.e.
Ln(θ, d) converges to L0(θ, d) uniformly in θ and d) for the losses and obtained
sufficient conditions for stability. In particular, they noted that under uniform
convergence (2.1) is equivalent to

lim
ε↓0

lim sup
n→∞

[∫
L0(θ, d0(ε))`0(θ)dPn − inf

d

∫
L0(θ, d)`0(θ)dPn

]
= 0 . . . (2.5)

and, (2.3) and (2.4) are equivalent to

lim
ε↓0

lim sup
n→∞

[∫
L0(θ, dQn(ε))`0(θ)dPn − inf

d

∫
L0(θ, d)`0(θ)dPn

]
= 0 . . . (2.6)
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and

∫
L0(θ, dQn

(ε))`0(θ)dQn ≤ inf
d

∫
L0(θ, d)`0(θ)dQn + ε . . . (2.7)

respectively. This fact considerably simplifies the task of verifying stability.
As indicated earlier, SSII implies SSI. However, the converse is not in general

true as the following simple example shows. Chuang (1984) has also given a
similar, but more involved and somewhat artificial, example.

Example 2.1. Let Θ = D = [−1, 1] and the loss L0 be given by

L0(θ, d) =
{

1 if d 6= 0, θd ≤ 0
(θ − d)2 otherwise.

Consider the decision problem (L0, `0, P0) where `0(θ) ≡ 1 and P0 = δ{0}, the de-
generate probability distribution at θ = 0. It is easy to see that

∫
L(θ, d)dP0(θ) =

0 if d = 0 and 1 if d 6= 0. Consequently, for any 1 > ε > 0, the optimal de-
cision at ε of (L0, `0, P0) is d0(ε) ≡ 0. Now, let {Pn} be any sequence of prior
distributions on Θ such that Pn ⇒ P0. Then

inf
d

∫
L0(θ, d)dPn ≤

∫
L0(θ, 0)dPn =

∫ 1

−1

θ2dPn → 0

as n →∞. Hence

∫
L0(θ, d0(ε))dPn − inf

d

∫
L0(θ, d)dPn

≤
∫

L0(θ, 0)dPn =
∫ 1

−1

θ2dPn → 0

as n →∞. This proves (L0, `0, P0) is Strongly Stable by Definition I. Finally, to
show that (L0, `0, P0) is not Strongly Stable by Definition II, consider the two
sequences of prior distributions Pn ≡ δ{− 1

n} and Qn ≡ δ{ 1
n}. The expected loss

of any decision d under the prior distribution Qn is

∫
L0(θ, d)dQn =

{
( 1

n − d)2 if d ≥ 0
1 if d < 0

and an ε-optimal decision of (L0, `0, Qn) is dQn = 1
n . A similar calculation shows

inf
d

∫
L0(θ, d)dPn = 0

Combining these facts,
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∫
L0(θ, dQn)dPn − inf

d

∫
L0(θ, d)dPn

=
∫

L0(θ,
1
n

)dPn = L0(− 1
n

,
1
n

) = 1.

Thus (2.3) is not satisfied and, hence, (L0, `0, P0) is not Strongly Stable by
Definition II.

3. Equivalence of Definitions

In view of the example given in the preceding section, it is natural to seek
sufficient conditions for the equivalence of the two definitions. This section
contains two results which give sufficient conditions for the equivalence of the
definitions for strong stability.

The first result is applicable for general loss functions but involves the fol-
lowing differentiability assumption. For simplicity,the result is stated for the
case when the dimension m = 1. Extension to the multidimensional case is
straightforward.

Let DP
ε = {d :

∫
L0(θ, d)`0(θ)dP ≤ inft

∫
L0(θ, t)`0(θ)dP + ε}, i.e., Dε

P is
the set of all ε-optimal decisions of (L0, `0, P ).

Assumption A : (I) For some ε0 > 0, there exist a weak neighborhood
N(P0) of P0 and a compact convex set K ⊂ D such that for every P ∈ N(P0),
DP

ε0 ⊂ K.
(II) For every P ∈ N(P0),

∫
L0(θ, t)`0(θ)dP is twice continuously differen-

tiable and there exist positive constants B and δ such that for all t ∈ K

B ≥ d2

dt2

∫
L0(θ, t)`0(θ)dP ≥ δ.

A remark about the assumption is in order. The assumption (A.I) holds if
there exists a function g(t) with bounded level sets such that for every P in some
weak neighborhood N(P0),

∫
L0(θ, t)`0(θ)dP ≥ g(t) and, for each t, L0(θ, t)`0(θ)

is bounded.

Theorem 3.1. Suppose (A) holds.Then (L0, `0, P0) is Strongly Stable I if
and only if it is Strongly Stable II.

The following lemma plays a crucial role in the proof of the theorem. Though
the lemma is more generally true, the version given below is for functions with
real domain.

Lemma 3.2. Let g : R → R be a differentiable function. Suppose, for a given
ε > 0, Xε is such that g(Xε) ≤ infX∈R g(X) + ε. Then there exists Yε satisfying
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(i) g(Yε) ≤ g(Xε)

(ii) | Yε −Xε |<
√

ε

(iii) | g′(Yε) |<
√

ε.

where g′ is the derivative of g.

For a proof of this lemma see Ekeland and Temam (1979). The lemma essen-
tially asserts the existence of ‘near stationary’ ε-minimizer of g in the vicinity of
any ε-minimizer.

Proof of theorem 3.1. It suffices to prove the “only if” part. So, assume
(L0, `0, P0) is Strongly Stable I. Let {Pn} and {Qn} be two arbitrary sequences
of prior distributions converging weakly to P0. Without loss of any generality,
assume that Pn ∈ N(P0) and Qn ∈ N(P0) for all n where N(P0) is the neigh-
borhood given by the assumption (A). Now let dQn(ε) be an arbitrary sequence
of ε-optimal solutions of (L0, `0, Qn) decision problems i.e. for n = 1, 2, . . .

∫
L0(θ, dQn(ε))dQn ≤ inf

d

∫
L0(θ, d)dQn + ε. . . . (3.1)

Below it is shown that

lim
ε↓0

lim sup
n→∞

[∫
L0(θ, dQn(ε))dPn − inf

d

∫
L0(θ, d)dPn

]
= 0, . . . (3.2)

proving (L0, `0, P0) is Strongly Stable II.
Towards this, observe that by Lemma 3.2 there exists a sequence {d̃Qn(ε)}

such that

(i) | dQn(ε)− d̃Qn(ε) |< √
ε

(ii)
∫

L0(θ, d̃Qn(ε))`0(θ)dQn ≤ infd

∫
L0(θ, d)`0(θ)dQn + ε

(iii) | d
dt

∫
L0(θ, t)`0(θ)dQn |t=d̃Qn (ε)|<

√
ε

. . . (3.3)

Moreover, since (L0, `0, P0) is Strongly Stable I,

lim
ε↓0

lim sup
n→∞

[∫
L0(θ, d0(ε))`0(θ)dQn −

∫
L0(θ, d̃Qn(ε))`0(θ)dQn

]
= 0 . . . (3.4)

for every d0(ε) given by
∫

L0(θ, d0(ε))`0(θ)dP0 ≤ inf
d

∫
L0(θ, d)`0(θ)dP0 + ε. . . . (3.5)
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Expanding
∫

L0(θ, d0(ε))`0(θ)dQn about d̃Qn(ε) by Taylor Series (3.4) leads
to

limε↓0 lim supn→∞
[
(d0(ε)− d̃Qn(ε)) d

dt

∫
L0(θ, t)`0(θ)dQn |t=d̃Qn (ε)

+ (d0(ε)−d̃Qn (ε))2

2
d2

dt2

∫
L0(θ, t)`0(θ)dQn | t = d∗n

]
= 0 . . . (3.6)

where d∗n ∈ K. Now, invoking assumption (A.II), it follows from (3.3 ii) and
(3.6) that

lim
ε↓0

lim sup
n→∞

[
−|d0(ε)− d̃Qn(ε)|ε +

(d0(ε)− d̃Qn
(ε))2

2
δ

]
≤ 0. . . . (3.7)

Since d0(ε) ∈ K, d̃Qn
(ε) ∈ K,and δ > 0 this implies

lim
ε↓0

lim sup
n→∞

| d0(ε)− d̃Qn
(ε) |= 0 . . . (3.8)

Therefore, by assumption (A) and (3.8),

limε↓0 lim supn→∞ | ∫ L0(θ, d̃Qn(ε))`0(θ)dPn −
∫

L0(θ, d0(ε))`0(θ)dPn |
≤ B2 limε↓0 lim supn→∞ | d̃Qn(ε)− d0(ε) |= 0 . . . (3.9)

where B2 is a constant.
Finally, since (L0, `0, P0) is Strongly Stable I and Pn ⇒ P0, by (3.9)

limε↓0 lim supn→∞
[∫

L0(θ, d̃Qn(ε))`0(θ)dPn − infd

∫
L0(θ, d)`0(θ)dPn

]

= limε↓0 lim supn→∞
[∫

L0(θ, d̃Qn(ε))`0(θ)dPn −
∫

L0(θ, d0(ε))`0(θ)dPn

]
= 0

. . . (3.10)
The proof is now completed by observing that (3.10) along with 3.3(ii) implies

(3.2).
The next result establishes the equivalence of the two definitions for location

invariant loss functions L0(θ − d) : Rm → R+ and satisfying

(i) L(0) = 0

(ii) L(t) is continuous in t

(iii) {t : L(t) ≤ c} is convex and bounded for every c > 0.

Loss functions satisfying the conditions (i) – (iii) are known as bowlshaped
loss functions and are often used in prediction and estimation problems. The
condition (iii) deserves a comment. It implies the loss function is non-decreasing
at t →∞ in any direction and that the loss L(t) →∞ as t →∞.
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Theorem 3.3. Suppose L0(θ − d) satisfies the conditions (i) — (iii) and
L0(θ − d)`0(θ) is bounded continuous on θ for every d. Then (L0, `0, P0) is
Strongly Stable I if and only if it is Strongly Stable II.

The proof of the theorem is an immediate consequence of the following lem-
mas. In each of these lemmas, the conditions stated in Theorem 3.3 are assumed.

Lemma 3.4. Let ε > 0 and d0(ε) be an ε-optimal solution of (L0, `0, P0).
Then | d0(ε) |< B3 for some constant B3 depending only on ε.

Proof. It suffices to show that for any B > 0, the set S = {d :
∫

L0(θ −
d)`0(θ)dP0 < B} is bounded. Towards this, let K be a compact set such that∫

K
`0(θ)dP0 > 1

2 and C be the bounded set {t : L0(t) ≤ 4B}. Define | K |=
supθ∈K ‖ θ ‖ and | C |= supt∈C ‖ t ‖. Clearly, | K |< ∞, | C |< ∞ since K and
C are bounded.

Now we claim that for any d ∈ S, ‖ d ‖<| K | + | C |. To see this, assume
the contrary. Then, by triangle inequality ‖ θ − d ‖>| C | for all θ ∈ K i.e.
θ − d ∈ Rm − C for all θ ∈ K and, therefore leading to the contradiction

B >

∫

K

L0(θ − d)`0(θ)dP0 > 4B

∫

K

`0(θ)dP0 > 2B.

Lemma 3.5. Suppose (L0, `0, P0) is Strongly Stable I and Qn ⇒ P0. Then
for any ε > 0 there exists a constant B4 and an integer n0 such that for all
n ≥ n0, ‖ dQn(ε) ‖< B4 for every ε-optimal decision dQn(ε) of (L0, `0, Qn).

Proof. The strong stability I of (L0, `0, P0) and the fact L0(θ − d)`0(θ) is
bounded continuous in θ for a fixed d together imply that there exists n0 such
that for all n ≥ n0

∫
L0(θ − dQn(ε))`0(θ)dQn ≤ inf

d

∫
L0(θ − d)`0(θ)dP0 + ε

Thus the sequence {∫ L0(θ−dQn(ε))`0(θ)dQn(θ)} is uniformly bounded. Now
using the argument given in Lemma 3.4, with K such that Qn(K) > 1

2 for all
n, the result follows.

Lemma 3.6. Let Pn ⇒ P0 and K1 ⊂ Rm be a compact set. Then for any
ε > 0 there exists n0 such that for all n ≥ n0 and all d1, d2 ∈ K1

|
∫

(L0(θ−d1)−L0(θ−d2))`0(θ)dPn−
∫

(L0(θ−d1)−L0(θ−d2))`0(θ)dP0 |< ε

Proof. Since Pn ⇒ P0, there exists a compact set K such that Pn(K) >
1− ε

4B where B = 2 supd∈K1
supθ L0(θ − d)`0(θ). Clearly,
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∫

Rm−K

(L0(θ − d1)− L0(θ − d2))`0(θ)dPn <
ε

4
. . . (3.11)

for all d1, d2,∈ K, and for all n.
Let Kγ be a compact γ-neighborhood of K for some γ > 0. Since L0(t)

is uniformly continuous on compact sets, for given ε1 > 0 there exists δ1 > 0
such that for all θ ∈ Kγ , | L0(θ, x) − L0(θ − y) |< ε1 whenever x, y ∈ K1

and ‖ x − y ‖< δ1. By the compactness of K1, there exist finitely many, say
k, spheres of radius δ1, covering K1. Denote the centers of these spheres by
t1, . . . , tk. Then, for any d1, d2 ∈ K1 there exist ti, tj such that

|
∫

K

(L0(θ−d1)−L0(θ−d2))−(L0(θ−ti)−L0(θ−tj))`0(θ)dPn |< 2ε1 . . . (3.12)

for all n.
Also, by Urysohn’s Lemma (Kelly 1955) there exists a continuous function

g(θ) with the property g(θ) ≡ 1 on K and g(θ) ≡ 0 on Rm −Kγ and, therefore,
for all ti, tj and all n ≥ 1,

| ∫
K

(L0(θ − ti)− L0(θ − tj))`0(θ)dPn −
∫

(L0(θ − ti)− L0(θ − tj))`0(θ)g(θ)dPn |
<

∫
Kγ−K

(L0(θ − ti) + L0(θ − tj))`0(θ)dPn < B ε
4B = ε

4

. . . (3.13)
Finally, by the bounded continuity of L0(θ−ti)`0(θ)g(θ), i = 1, 2 . . . , k, there

exists no such that for all n ≥ n0

|
∫

(L0(θ − ti)− L0(θ − tj))`0(θ)g(θ)dPn

−
∫

(L0(θ − ti)− L0(θ − tj))`0(θ)g(θ)dP0 |

<
ε

8
. . . (3.14)

for all i, j = 1, 2, . . . , k. Combining this with 3.10 - 3.12 the result follows.

Proof of theorem 3.3. By Lemmas 3.4 and 3.5, for a given ε > 0 there
exists a compact set K1 such that for all n, dQn(ε) ∈ K1 and d0(ε) ∈ K1 where
Qn ⇒ P0. Now, since Pn ⇒ P0, by Lemma 3.6 and the triangle inequality, with
d0(ε) and dQn(ε) substituted for d2 and d1 respectively,

|
∫

(L0(θ − dQn(ε))− L0(θ − d0(ε))`0(θ)dPn

−
∫

(L0(θ − dQn(ε))− L0(θ − d0(ε))`0(θ)dQn |≤ ε
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for all n ≥ N2(ε) for some N2(ε). The second term goes to zero as n → ∞
and ε → 0 because (L0, `0, P0) is Strongly Stable I and dQn

(ε) is (L0, `0, Qn)
ε-optimal. The proof is now completed by observing

lim
ε↓0

(
lim sup

n→∞

∫
L0(θ − d0(ε))`0(θ)dPn − inf

d

∫
L0(θ − d)`0(θ)dPn

)
= 0

by the SSI of (L0, `0, P0).

The final result of this section treats convex loss functions. The next theo-
rem shows that,under very mild conditions, the two definitions of stability are
equivalent for convex losses.The following Proposition summarizes some impor-
tant properties of convex functions used in the proof of the theorem. For details
see Rockafellar (1970).

Proposition 3.1. Suppose Φn, n ≥ 1, and Φ0 are finite convex functions
defined on Rm. Then the following hold.

(i) If Φn → Φ0 pointwise, then Φn → Φ0 uniformly on compact sets.
(ii) If Φ0 has a non-empty bounded level set then all its level sets are bounded.

In addition, they are closed and convex.
(iii) The minimum set of Φ0 is non-empty and bounded if, and only if, for

some x and every y 6= 0

lim
λ→∞

Φ0(x + λy)− Φ0(x)
λ

> 0.

Lemma 3.7. Let Φn, n ≥ 1, and Φ0 be finite non-negative convex functions
defined on Rm. Assume

(a) the minimum set of Φ0 is non-empty and bounded.
(b) Φn → Φ0 pointwise.
(c) for every xε ∈ M0

ε ={x : Φ0(x) ≤ inf Φ0(y) + ε}

lim
ε↓0

lim sup
n→∞

[Φn(xε)− inf
x

Φn(x)] = 0

Then for every β > 0 there exist ε0, n0 and r0 such that
(i) for all ε ≤ ε0 and n ≥ n0

M0
ε ⊂ Mn

β = {x : Φn(x) ≤ inf
y

Φn(y) + ε}.

(ii) lim supn→∞Mn
β ⊂ B(r0) where B(r) is the sphere of radius r centered at

the origin.

Proof. Part (i) is an immediate consequence of the assumption (c).
The proof of (ii) is by contradiction. Towards this, let β > 0 and suppose

lim supn→∞Mn
β is unbounded. Then there exists a subsequence {m} ⊂ {n} and

xm ∈ Mm
β such that ‖xm‖ ↑ ∞.
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Next, by assumption (a) and the preceding Proposition, the set M0
2β is

bounded and, therefore, contained in B(r) for some r > 0. Now, let x0 be a
point in the minimum set of Φ0. Since the level sets are nested, it follows from
(i) that x0 ∈ Mm

β for all sufficiently large m. Moreover, due to the convexity
of Φm,the line segment [x0, xm] is contained in Mm

β for all sufficiently large m.
Therefore, for every m such that ‖xm‖ ≥ 3r , there exists ym ∈ [x0, xm] with the
property 2r < ‖ym‖ < 3r. Let {yk} be a convergent subsequence of {ym} with
limit y0. Note that ‖y0‖ > r and therefore Φ0(y0) ≥ 2β. Also, for all sufficiently
large k, Φk(yk) ≤ β.

But Φk(yk) → Φ0(y0) because, by the assumption (b) and the Proposition,
Φn → Φ0 uniformly on compact sets. This contradiction completes the proof.

Remark. The conclusions of the Lemma 3.7 continue to hold if the domain
Rm is replaced by an open convex subset of Rm.

Theory 3.8. Let (L0(θ, d), `0(θ), P0) be a decision problem with θ ∈ Θ and
d ∈ D, an open convex set. Suppose

(i) L0(θ, d)`0(θ) is bounded continuous in θ for each d and convex in d for
each θ.

(ii) The minimum set of
∫

L0(θ, d)`0(θ)dP0 is nonempty and bounded.
Then (L0, `0, P0) is Strongly Stable I if and only if it is Strongly Stable II.

Proof. Enough to prove the ”only if” part. Assume (L0, `0, P0) is SSI.
Let Pn =⇒ P0 and Qn =⇒ P0. The condition (i) implies that, for every n,∫

L0(θ, d)`0(θ)dPn and
∫

L0(θ, d)`0(θ)dQn are finite, continuous convex func-
tions in d. Moreover, both integrals converge pointwise, and hence uniformly on
compact sets, to

∫
L0(θ, d)`0(θ)dP0.

Since (L0, `0, P0) is SSI it follows from (ii) that the conditions of the lemma
are met by the convex functions

∫
L0(θ, d)`0(θ)dQn, n ≥ 1, and

∫
L0(θ, d)`0(θ)dP0.

Therefore, for all sufficiently large n, the sets DQn
ε consisting of the ε-optimal

decisions of (L0, `0, Qn) are uniformly bounded.
Now, to establish the Strong Stability II of (L0, `0, P0), let dQn(ε) ∈ DQn

ε be
an ε-optimal decision of (L0, `0, Qn).Then, for each ε, dQn(ε), n ≥ 1 are bounded
and, by the triangle inequality,

lim sup
n→∞

|
∫

L0(θ, dQn(ε))`0(θ)dPn −
∫

L0(θ, dQn(ε))`0(θ)dQn| = 0.

Also, since(L0, `0, P0) is SSI, it follows from the condition (ii) and another
application of the triangle inequality

lim sup
n→∞

| inf
d

∫
L0(θ, d)`0(θ)dPn − inf

d

∫
L0(θ, d)`0(θ)dQn| = 0.

A straight-forward consequence of these is
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lim sup
n→∞

[
∫

L0(θ, dQn(ε))`0(θ)dPn − inf
d

∫
L0(θ, d)`0(θ)dPn]

≤ lim sup
n→∞

[
∫

L0(θ, dQn
(ε))`0(θ)dQn − inf

d

∫
L0(θ, d)`0(θ)dQn].

≤ ε.

Finally,the result follows by letting ε tend to zero.

4. Sufficient Conditions for Strong Stability I

The verification of strong stability of a given decision problem (L0, `0, P0)
can be tedious and fairly involved. It is, therefore, natural to seek sufficient
conditions on L0, `0 and P0 which guarantee the stability of the problem. In
this section, several results are stated which give such sufficient conditions for
SSI. Focusing on decision problems which are common in statistics, the finite
decision problem followed by the estimation problem and a general decision
problem are treated.

Clearly, the notion of strong stability requires the convergence of optimal
Bayes risks of a sequence of priors converging to P0. To derive the conditions for
this in a unified manner, it is convenient to base the analysis on the following
general setting and appeal to the results therein.

Suppose ψn : D → R is a sequence of real valued functions. The sequence
{ψn} is said to be epi lower semi continuous (ELSC) at ψ0 : D → R if, for every
d ∈ D and every sequence dn → d, ψ0(d) ≤ lim infn→∞ ψn(dn).

A characterization of the convergence of infd ψn(d) to infd ψ0(d), suitable
for the present discussion, is as follows. See Attouch (1984), Attouch and Wets
(1981), Salinetti and Wets (1986), and Dupecova and Wets (1987) for more
general results in this regard.

Theorem 4.1. Let ψn : D → R, n = 0, 1, 2 . . . be a family of functions such
that {ψn} is ELSC at ψ0. Suppose ψn(d0) → ψ0(d0) for some d0 ∈ arg min ψ0.
Then infd ψn(d) → infd ψ0(d) if and only if for every ε > 0 there exists a compact
set K ⊂ D and a sequence dn(ε) ∈ K for all large n such that

ψn(dn(ε)) ≤ inf
d

ψn(d) + ε . . . (4.1)

For a proof of this theorem see Salinetti (1994).
From now on, the dn(ε) satisfying (4.1) will be called the ε-optimal solution

of ψn.
In all the applications of this theorem that follow, the roles of ψn(d) and

ψ0(d) will be played by
∫

L0(θ, d)`0(θ)dPn and
∫

L0(θ, d)`0(θ)dP0 respectively.
It is worth, therefore, noting that the theorem requires the existence of the
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optimal solution do for the problem (L0, `0, P0). Most statistically interesting
decision problems meet this condition. There are, however, situations where the
optimal solutions do not exist and, to tackle such problems, one needs more
general versions of the preceding theorem. But, for the sake of simplicity, this
is not discussed here.

Consider the standard finite decision statistical problem where Θ is an open
subset of Rm and D = {d1, . . . , dk}. Assume the loss L0(θ, d) is bounded. This
framework includes the standard finite action statistical problems like the test
of hypotheses and the monotone decision problem.

Let DL0 = {θ : θ is a discontinuity point of L0(·, di) for some di ∈ D}. The
following result relates to the SSI of (L0, `0, P0) for finite D.

Theorem 4.2. Let (L0, `0, P0) be a finite decision problem. Suppose L0(θ, d)`0(θ)
is bounded in θ for each d and P0(DL0) = 0. Under the uniform convergence of
losses, (L0, `0, P0) is strongly stable I.

Proof. Let Pn ⇒ P0. Set ψn(d) =
∫

L0(θ, d) `0(θ)dPn and ψ0(d) =∫
L0(θ, d)`0(θ)dP0. Let d0 be an optimal solution of ψ0. Plainly, since P0(DL0) =

0, ψn(d0) → ψ0(d0). Moreover, since D is finite and endowed with discrete topol-
ogy, for every d and every sequence dn → d, ψn(dn) → ψ0(d) (i.e. ψn is ELSC
at ψ0) in view of the assumption P0(DL0) = 0. Therefore the conditions of The-
orem 4.1 are satisfied and infd ψn(d) → infd ψ0(d). Also, if d0(ε) is an ε-optimal
solution of ψ0 (i.e. of (L0, `0, P0)). Again, by the assumption P0(DL0) = 0,

lim
n→∞

∫
(L0(θ, d0(ε))− L0(θ, d0))`0(θ)dPn

=
∫

(L0(θ, d0(ε))− L0(θ, d0))`0(θ)dP0 < ε

Putting these facts together it follows

lim
ε↓0

lim sup
n→∞

∫
L0(θ, d0(ε))`0(θ)dPn − inf

d

∫
L0(θ, d)`0(θ)dPn = 0.

This concludes the proof.

Typically, in monotone multiple decision problems, DL0 is either finite or a
lower dimensional set. Consequently the condition is satisfied if P0 is continuous.
However, if P0 happens to be discrete and L0(·, d0) is P0-continuous for some
optimal d0 then (L0, `0, P0) is at least weakly stable I with stabilizing decision
d0.

The condition P0(DL0) = 0 is too strong for multiple decision or ranking
problems where the parameter space is also finite. The following theorem ad-
dresses such cases.

Let D = {d1, . . . , dk} and D0 = {θ : a discontinuity point of L0(·, d0) for
some (L0, `0, P0) optimal decision d0}.
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Theorem 4.3. Assume L0(θ, d) is lower semicontinuous in θ for every d ∈ D
and P0(D0) = 0. Then (L0, `0, P0) is strongly stable I.

Proof. Let Pn ⇒ P0 and, ψn(d) =
∫

L0(θ, d)`0(θ)dPn, ψ0(d) =
∫

L0(θ, d)`0(θ)
dP0. Since P0(D0) = 0, ψn(d0) → ψ0(d0) for any (L0, `0, P0) optimal decision
d0. Moreover, by the lower semicontinuity of L0(θ, d) in θ for every d ∈ D, it
follows for every d ∈ D and dn → d

lim inf
n→∞

ψn(dn) ≥ ψ0(d) . . . (4.2)

because D, being finite, is endowed with discrete topology. Hence, by Theorem
4.1, infd ψn(d) → infd ψ0(d). Finally, for all sufficiently small ε > 0, d0(ε) ≡ d0

for some (L0, `0, P0) optimal decision because D is finite and therefore, in view
of P0(D0) = 0,

lim
n→∞

∫
(L0(θ, d0(ε))− L0(θ, d0))`0(θ)dPn = 0

This completes the proof of the theorem.

The following example involving a multiple monotone decision problem illus-
trates the difference between the Theorems 4.2 and 4.3.

Example 4.1. Consider the finite decision problem with D = {a1, a2, . . . , ak}
and Θ = R with loss L0 given by

L0(θ, ai) =
{

0 if θi−1 < θ < θi

1 otherwise

for i = 1, 2, . . . , k where −∞ = θ0 < θ1 < . . . , < θk−1 < θk = ∞ are some
distinguished points. Clearly, L0 is not continuous in θ and it is not even lower
semicontinuous because {θ : L0(θ, ai) > 1

2} = (−∞, θi−1] ∪ [θi,∞), a closed set.
Hence, Theorem 4.3 is not applicable. However, the problem (L0, `0, P0) is SSI
by Theorem 4.2 provided P0(DL0) = P{θ1, θ2, . . . θk−1} = 0.

On the other hand, if the loss were

L1(θ, ai) =
{

0 if θi−1 ≤ θ ≤ θi

1 otherwise

for i = 1, 2, . . . , k, then it is easy to see L1 is lower semicontinuous in θ and,
therefore, (L1, `0, P0) is SSI by Theorem 4.3 provided P0(D0) = 0. Here D0 is
the set of discontinuity points of L1(·, d0).

If P0(D0) > 0 then (L1, `0, P0) is not strongly stable. Indeed, if P0(D0) > 0,
one can construct, using a routine argument, a sequence Pn ⇒ P0 such that

∫
L1(θ, d0)`0(θ)dPn 6→

∫
L1(θ, d0)`0(θ)dP0
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for some d0 and this in turn implies (L1, `0, P0) is not SSI. Hence P0(D0) = 0 is
necessary and sufficient for stability, given the other assumptions.

The next result treats loss functions which arise typically in point estimation
problems. It is a straightforward consequence of a theorem due to Salinetti
(1994, Proposition 3.3).

Theorem 4.4. Suppose L0(θ, d)`0(θ) is jointly lower semicontinuous (in θ
and d) and for each d, bounded continuous in θ. Then (L0, `0, P0) is SSI if for
all Pn ⇒ P0 and for every ε > 0 there exists a bounded sequence {dn(ε)} of
ε-optimal solutions for (L0, `0, Pn).

A few comments are in order before the proof. It is not difficult to show
the existence of bounded ε-optimal solutions for bowl-shaped loss functions.
Clearly, it is enough to show that the optimal decisions {dn} of (L0, `0, Pn)
are bounded and this is indeed the case (see Lemma 3.5) for bowl shaped loss
functions. Towards the end of the section this issue is addressed and a few
sufficient conditions (on L0) are listed for the existence of bounded ε-optimal
decisions.

Proof of theorem 4.4. A brief sketch of the proof is given and the
reader is referred to Salinetti (1994) or Attouch (1986) for various technical
details. Let d0(ε) be an ε-optimal decision of (L0, `0, P0). The assumptions
L0(θ, d)`0(θ) is jointly lower semicontinuous and continuous in θ for each d imply
(L0(θ, d) − L0(θ, d0(ε)))`0(θ) is jointly lower semicontinuous, (in θ and d) and,
therefore for every d, for all dn → d and for Pn ⇒ P0

lim infn→∞
∫

(L0(θ, dn)− L0(θ, d0(ε)))`0(θ)dPn

≥ ∫
(L0(θ, d)− L0(θ, d0(ε)))`0(θ)dP0

. . . (4.3)

i.e. ψn(d) ≡ ∫
L0(θ, d)− L0(θ, d0(ε))`0(θ)dPn is ELSC at ψ0(d) ≡ ∫

(L0(θ, d)−
L0(θ, d0(ε)))`0(θ)dP0. Moreover, ψn → ψ0 pointwise in view of bounded conti-
nuity of L0(θ, d)`0(θ). Hence, by Theorem 4.1,

lim inf
n→∞

inf
d

∫
(L0(θ, d)− L0(θ, d0(ε)))`0(θ)dPn > −ε . . . (4.4)

in view of the assumption there exists a bounded sequence of ε-optimal decisions
for (L0, `0, Pn). Finally, to conclude the proof, note that SSI of (L0, `0, P0)
follows from (4.4) by letting ε → 0.

Remark. If the condition “L0(θ, d)`0(θ) is continuous in θ for every d” is
weakened by assuming “L0(θ, d0)`0(θ) is bounded continuous in θ” where d0 is
(L0, `0, P0) optimal, then one can still conclude (L0, `0, P0) is weakly stable I.

The existence of bounded ε-optimal solutions depends on the properties of
the loss function L0. It is possible to list a variety of sufficient conditions for
this, but the following general result covers most of the commonly used loss
functions.
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Proposition 4.1. Suppose L0(θ, d) satisfies the following conditions
(i) For some β > 0, for every compact C ⊂ Θ there exists a compact set

K ⊂ D such that for every d′ 6∈ K there exists d ∈ K with the property

L0(θ, d) < L0(θ, d′)− β

for all θ ∈ C.
(ii) For every compact set K ⊂ D, there exists M > 0 such that

sup
θ

sup
d∈K

L0(θ, d)`0(θ) < M.

Then for every sequence Pn ⇒ P0 there exists a bounded sequence of ε-optimal
solutions for (L0, `0, Pn).

Proof. Since Pn ⇒ P0, for γ = β
M+β+1 there exists a compact C0 ⊂ Θ.

Satisfying Pn(C0) > 1−γ, for all n. By condition (i), there is a compact K0 ⊂ D
corresponding to C0 and for any d′ 6∈ K0 there exists a d ∈ K0 such that

∫

C0

L0(θ, d)`0(θ)dPn <

∫
L0(θ, d′)`0(θ)dPn − β(1− γ) . . . (4.5)

Hence

∫
L0(θ, d)`0(θ)dPn <

∫
L0(θ, d′)`0(θ)dPn +[

∫

Θ−C0

L0(θ, d)`0(θ)dPn−β(1−γ)]

. . . (4.6)
Now, since d ∈ K0, by condition (iii) the second term in the right side of

(4.6) is bounded above by Mγ−β(1−γ) < 0. Thus, for any d′ 6∈ K0 there exists
a d ∈ K0 and

∫
L0(θ, d)`0(θ)dPn <

∫
L0(θ, d′)`0(θ)dPn

for all n. This clearly implies the existence of a bounded sequence of ε-optimal
solutions for (L0, `0, Pn).

While the condition (ii) of the proposition is easy to check, the verification
of (i) may involve some work depending on the complexity of L0. It is, how-
ever, quite straightforward to show that bowl shaped loss functions satisfy this
assumption. Finally, a useful and easy to verify property which implies the
condition (i) is as follows.

Property P: “For every compact C ⊂ Θ, there exists δ0 > 0 and a strictly
increasing unbounded positive function φ(‖ d ‖) such that

inf
θ∈C

L0(θ, d) > φ(‖ d ‖)
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for all d ∈ D with ‖ d ‖> δ0.”

Here ‖ d ‖ is the norm of d. It is well known that many of the unbounded loss
functions commonly used in decision theoretic estimation and prediction satisfy
this property.

Reverting to Theorem 4.3, the assumption “L0(θ, d) is continuous in θ for
each d” deserves some comments. Even when this assumption is violated the
theorem holds provided P0 assigns probability zero to the set of discontinuities
DL0 . On the other hand, if P0(DL0) > 0 the decision problem (L0, `0, P0) fails
to be SSI. The following example illustrates these points. Another interesting
feature of this example is the loss function, appropriate for fixed “width” cred-
ible region problem (i.e. the Bayesian analogue of fixed “width” confidence set
problem), does not satisfy the condition (i) of Proposition 4.4 and, yet, it has a
bounded sequence of ε-optimal decisions.

Example 4.2. Let Θ = D = Rm and A ⊂ Rm be a closed bounded set
with nonempty interior containing the origin. Consider the decision problem
(L0, `0, P0) where `0(θ) is a bounded continuous positive likelihood function and
L0(θ, d) = 1 − IA(θ − d). By absorbing `0(θ) into P0 and renormalizing the
resulting measure, assume without loss of generality `0(θ) ≡ 1. The loss L0 is
jointly lower semicontinuous because A is closed.

Now, let Pn ⇒ P0. The tightness of {Pn} implies that there exists a com-
pact set C with Pn(C) > 1 − ε for all n, where ε is a fixed small positive
number, and A ⊂ C. Since A has nonempty interior, it follows that there exist
{d1, d2, . . . , dk} ⊂ C so that C ⊂ ∪k

i=1{A + di}. Therefore, there is a decision
d∗ε{d1, . . . , dk} with the property Pn(A + d∗) > 1−ε

k . Note that the decision d∗

may depend on Pn but this is of no consequence. The important fact here is
d∗ ∈ C for every Pn. Finally, let K1 ⊂ K be two compact sets such that C ⊂ K1,
Pn(KC

1 ) < 1
100 ( 1−ε

k ) and d′ 6∈ K ⇒ A + d′ ⊂ KC
1 . Then, for any d′ 6∈ K,

∫
L0(θ, d′)dPn = 1− Pn(A + d′) > 1− (1− ε)

k

=
∫

L0(θ, d∗)dPn

for all n. Thus, there is a compact K ⊂ D with the property “for any d′ 6∈ K
there exists a d ∈ k satisfying,

∫
L0(θ, d)dPn ≤

∫
L0(θ, d′)dPn”. This implies,

since K does not depend on n, the existence of a bounded sequence of ε-optimal
decisions for (L0, `0, Pn). Incidentally, one can also conclude using the above
argument that (L0, `0, P0) has an optimal (i.e. Bayes optimal) decision d0.

Suppose now P0(∂A + d0) = 0, where ∂A is the topological boundary of
A. Then L0(θ, d0) is P0-continuous and, by virtue of the lower semicontinuity
of L0(θ, d), it follows ψn(d) =

∫
(L0(θ, d) − L0(θ, d0))dPn is ELSC. This, in
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conjunction with ψn(d0) ≡ 0 and (L0, `0, Pn)’s have a bounded sequence of ε-
optimal decisions, implies by Theorem 4.1 that

inf
d

∫
L0(θ, d)dPn → inf

d

∫
L0(θ, d)dP0

for every sequence Pn ⇒ P0. Furthermore, if P0(∂A + d) = 0 for all d then, in
view of (4.7), it is easy to see that (L0, `0, P0) is SSI.

Thus, there are the following three possibilities in this example.

(i) If P0(∂A + d) = 0, ∀d then (L0, `0, P0) is SSI.

(ii) If P0(∂A + d0) = 0 then (L0, `0, P0) is Weakly Stable I with stabilizing
decision d0.

(iii) If P0(∂A + d0) > 0 then (L0, `0, P0) may be Weakly Stable I but not SSI.

In conclusion, because ∂A is set of lower dimension, a credible region problem
is SSI when P0 is absolutely continuous.

5. Sufficient Conditions for Strong Stability II

The notion of Strong Stability II, as noted earlier, is fairly stringent relative
to SSI and this section gives sufficient conditions for a decision problem to sat-
isfy SSII. Following the pattern in Section 4, the stress is on decision problems
relevant to statistics.

Proposition 5.1. Suppose D is finite and P0(DL0) = 0. Then (L0, `0, P0)
is strongly stable II.

Proof. Observe that, since P0(DL0) = 0, for any sequence Qn ⇒ P0

lim
n→∞

max
d∈D

|
∫

L0(θ, d)`0(θ)dQn −
∫

L0(θ, d)`0(θ)dP0 |= 0

Consequently, if dQn(ε) is an ε-optimal decision of (L0, `0, Qn), and Pn ⇒ P0,
one can conclude

lim
n→∞

|
∫

L0(θ, dQn(ε))`0(θ)dQn −
∫

L0(θ, dQn(ε))`0(θ)dP0 |= 0 . . . (5.1)

and

lim
n→∞

|
∫

L0(θ, dQn(ε))`0(θ)dPn −
∫

L0(θ, dQn(ε))`0(θ)dP0 |= 0 . . . (5.2)

Moreover, the conditions of the proposition imply, by Theorem 4.2, that the
decision problem (L0, `0, P0) is SSI. Therefore
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limε↓0 lim supn→∞
(∫

L0(θ, dQn
(ε))`0(θ)dPn − infd

∫
L0(θ, d)`0(θ)dPn

)

≤ limε↓0 lim supn→∞
[| ∫ L0(θ, dQn(ε))`0(θ)dPn −

∫
L0(θ, d0(ε))`0(θ)dP0 |

]

≤ limε↓0 lim supn→∞
[| ∫ L0(θ, dQn(ε))`0(θ)dPn −

∫
L0(θ, dQn(ε))`0(θ)dP0 |

+ | ∫ L0(θ, dQn
(ε))`0(θ)dP0 −

∫
L0(θ, dQn

(ε))`0(θ)dQn |
+ | ∫ L0(θ, dQn

(ε))`0(θ)dQn −
∫

L0(θ, dQn
(ε))`0(θ)dP0 |

]

≤ limε↓0 lim supn→∞
[| ∫ L0(θ, dQn

(ε))`0(θ)dQn −
∫

L0(θ, d0(ε))`0(θ)dP0

]
= 0

by (5.1), (5.2) and the strong stability I of (L0, `0, P0). This proves (L0, `0, P0)
is strongly stable II.

Remarks. (1) The above proposition also establishes the equivalence of the
two definitions of stability for the finite-decision problem under the assumption
of P0(DL0) = 0.

(2) The condition P0(DL0) = 0 is also nearly necessary in the sense if d0 is
(L0, `0, P0) optimal and P0(θ : L0(θ, d0) is discontinuous) > 0 then the decision
problem is not strongly stable according to either definition.

The extensions of Proposition 5.1 to more general loss functions require the
following result due to Billingsley and Topsoe (1966), and Topsoe (1967). To
state the result, define the oscillation Wd(A) of L0(θ, d)`0(θ) on a set A by

Wd(A) = sup {| L0(θ1, d)`0(θ1)−−L0(θ2, d)`0(θ2) |: θ1, θ2 ∈ A}
Also, let Wd(θ; δ) ≡ Wd(S(θ; δ)) where S(θ; δ) is the ball of radius δ centered

at θ.

Theorem 5.1 (Billingsley and Topsoe). For every sequence Pn → P0,

lim
n→∞

sup
d∈D

|
∫

L0(θ, d)`0(θ)dPn −
∫

L0(θ, d)`0(θ)dP0 |= 0

if, and only if

(i) supd∈D Wd(Θ) < ∞
(ii) limδ↓0 supd∈D

∫
Wd(θ; δ)dP0 = 0.

See Bhattacharya and Rao (1976) for an excellent discussion about this the-
orem as well as its proof.

The following result, a generalization of Proposition 5.1 to bounded loss
functions, is an immediate consequence of Theorem 5.1.

Theorem 5.2. Suppose L0(θ, d)`0(θ) is bounded in θ and d, and limδ↓0 supd∫
Wd(θ; δ)dP0 = 0. Then (L0, `0, P0) is strongly stable II.
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Proof. Let Pn ⇒ P0, Qn ⇒ P0 and dQn(ε) be ε-optimal decisions of
(L0, `0, Qn). Then

∫
L0(θ, dQn(ε))`0(θ)dPn − infd

∫
L0(θ, d)`0(θ)dPn

= supd∈D

[∫
L0(θ, dQn

(ε))`0(θ)dPn −
∫

L0(θ, d)`0(θ)dPn

]

≤ | ∫ L0(θ, dQn
(ε))`0(θ)dPn −

∫
L0(θ, dQn

(ε))`0(θ)dQn |

+
[∫

L0(θ, dQn(ε))`0(θ)dQn − infd

∫
L0(θ, d)`0(θ)dQn

]

+ supd |
∫

L0(θ, d)`0(θ)dPn −
∫

L0(θ, d)`0(θ)dQn |

. . . (5.3)

Now taking lim sup over n it follows from Theorem 5.1 that the first and the
third terms are zero. Moreover, by the definition of dQn(ε), the second term is
bounded above by ε. Finally, let ε → 0 to complete the proof.

As a corollary to the theorem we have the following result of Kadane and
Chuang (1978; Theorem 2.7).

Corollary 5.1. Suppose L0(θ, d)`0(θ) is bounded in (θ, d) and {L0(θ, d)`0(θ) :
d ∈ D} is equicontinuous in θ at every θ ∈ Θ. Then (L0, `0, P0) is strongly stable
II for every P0.

Proof. This is an immediate consequence of the fact equicontinuity of
{L0(θ, d)`0(θ) : d ∈ D} implies limδ↓0 supd∈D

∫
Wd(θ; δ)dP0 = 0 for every P0.

For details, see Bhattacharya and Rao (1978; Corollary 2.7, Ch. 1).

Kadane and Chuang (1978) proved this result under the assumption L0(θ, d)`0(θ)
is continuous in θ uniformly in d. Clearly, this assumption implies equicontinuity.

A few remarks are in order about the condition (∗) : limδ↓0 supd

∫
Wd(θ; δ)dP0

= 0 in the above theorem. Simple continuity of L0(θ, d)`0(θ) in θ will not in
general guarantee this condition. As mentioned earlier, this condition follows
from equicontinuity of {L0(θ, d)`0(θ) : d ∈ D}.

Another sufficient condition for (∗) is a local Lipschitz continuity in the
following sense: there exist a function ζ(θ, d) and α > 0 such that for every
θ′ ∈ B(θ; ε)

| L0(θ, d)`0(θ)− L0(θ′, d)`(θ′) |≤ ζ(θ, d) ‖ θ − θ′ ‖α . . . (5.4)

and supd

∫
ζ(θ, d)dP0 < ∞.

Many of the smooth bowl shaped bounded loss functions commonly used in
estimation and prediction possess this type of Lipschitz continuity.

On the other hand, (∗) may hold for some P0 even when the loss is discontin-
uous. For example, if L0(θ, d) = 1− IC(θ−d) where C is a symmetric, bounded
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and closed convex set centered at the origin, (∗) holds provided P0 is absolutely
continuous.

The next result gives sufficient conditions for SSII in the case where the loss
is not bounded.

Theorem 5.3. Suppose L0(θ, d) satisfies the following conditions:

1. L0(θ, d) is jointly continuous in θ and d.

2. For each d, L0(θ, d)l0(θ) is bounded.

3. For every compact set C ⊂ Θ and every M > 0 there exists a compact set
K ⊂ D such that

inf
θ∈C

L0(θ, d) > M

for all d 6∈ K.

Then the decision problem (Lo, l0, P0) is strongly stable II.

Proof. Let Qn ⇒ P0 and {dQn
(ε)} be a sequence of ε-optimal solutions of

(L0, l0, Qn). The assumption (iii) implies that there exists a compact set K0 ⊂ D
such that dQn(ε) ∈ K0 for all large n. Hence, the conditions of Theorem 4.4 are
satisfied and (L0, l0, P0) is strongly stable I.

Now let Pn ⇒ P0. Then, for γ > 0 (to be chosen later) there exists a
compact set C ⊂ Θ satisfying Pn(C) > 1 − γ,Qn(C) > 1 − γ for all n. Set
B = sup

d∈K
sup

θ
L0(θ, d)l0(θ). Choose a compact set C1 such that C ⊂ C1 ⊂ Θ and

Pn(C1) > 1− γ/B and Qn(C1) > 1− γ/B for all n. Then, by the compactness
of C1 and K0, L0(θ, d) is uniformly continuous on C1 ×K0 and

sup
d∈K0

|
∫

C1

L0(θ, d)l0(θ)dPn −
∫

C1

L0(θ, d)l0(θ)dP0| → 0 . . . (5.5)

as n →∞ by Theorem 5.1. Therefore, since dQn(ε) ∈ K0 it follows

lim sup
n→∞

|
∫

L0(θ, dQn(ε)l0(θ)dPn −
∫

L0(θ, dQn(ε))l0(θ)dP0|

≤ lim sup
n→∞

|
∫

C1

L0(θ, dQn(ε))l0(θ)dPn −
∫

C1

L0(θ, dQn(ε))l0(θ)dP0|

+ B[1− Pn(C1) + 1− P0(C1)] ≤ 2γ
. . . (5.6)

Also note the above statements hold for the sequence {Qn}. Therefore by tri-
angle inequality

lim sup
n→∞

|
∫

L0(θ, dQn(ε))l0(θ)dPn −
∫

L0(θ, dQn(ε))l0(θ)dQn| ≤ 4γ . . . (5.7)

Finally, to complete the proof, observe that since γ > 0 is arbitrary, (2.3) follows
from (5.7) and Strong Stability I of (L0, l0, P0)
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It is possible to state and prove a variant of the above theorem for the case
where L0(θ, d) is jointly lower semi continuous. Such a result, however, will
involve some additional conditions.
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