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Isocategories and Tensor Functors

by Walter Noll, 1992

ABSTRACT. In this paper, I show how the concepts of an isocategory (cat-

egory all of whose morphisms are isomorphisms) and the corresponding

concept of an isofunctor can be used to improve the conceptural infras-

tructure of many branches of mathematics. The crucial new idea is that

of a natural assignment, a modification of the idea of a natural tansfor-

mation introduced by Eilenberg and Mac Lane. Isofunctors that involve

the isocategory LIS of all linear isomorphisms of finite-dimensional linear

spaces are called tensor functors, because they can be used to clarify most

uses of the word “tensor” in the literature of mathematics and physics. Of

particular importance are the “analytic tensor functors”, which can serve

to simplify and generalize the treatment of tensor fields given in future

textbooks on differentiable manifolds.
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Introduction

The term “tensor” has been used in mathematics and in physics for nearly
150 years. We know about “strain tensors”, “stress tensors”, “elasticity tensors”,
“electromagnetic field tensors”, “energy-momentum tensors”, “Riemann curva-
ture tensors”, “Ricci tensors”, etc. The meaning assigned to the term “tensor”
in the literature, howerever, is variable and the definitions given are often mud-
dled. The distinction between a “tensor” and a “tensor field” is often blurred,
at least in terminology. At any rate, I do not know of any precise definition in
the literature of a concept that could be used to cover all or at least most of the
uses of the the word “tensor” in the mathematical and physical literature. One
of the motivations of this paper was to introduce such a precisely defined con-
cept, using some of the conceptual machinery of category theory. The concept
in question is that of a tensor functor, first used in [N] in 1984, and defined
here in Sect. 4. Recently, I found that the ideas leading to the concept of a
tensor functor might have wider applications and might actually be used to im-
prove the conceptual infrastructure of mathematics in general. The basic idea
is to use categories whose morphisms are all isomorphisms, or isocategories

for short. The definitions given in Sect. 1, 2 and 3 are consistent with the ones
used in the literature on category theory, although this literature deals primar-
ily with categories that are not isocategories. However, the concept of natural

assignment introduced in Sect. 3 is a modification of the concept of a “natural
transformation” originally introduced by Eilenberg and Mac Lane (see, for ex-
ample, [M], Sect. 4 of Ch.I). These authors introduced the notion of a category
precisely because they wanted to clarify what “natural” means in the context of
mathematical constructions. (Eilenberg confirmed this to me in a conversation
in Tbilisi in November 1989.) I believe that my concept of a natural assign-
ment will lead to additional clarification. The concept of a tensor product

is understood here as a natural assignment (see Sect.5, (7) and Remark 2, and
Sect.7). I introduced the concept of an analytic tensor functor, defined in
Sect. 5 here, in an introductory graduate course on abstract differential geome-
try given in 1984 [N]. The purpose was to simplify and generalize the treatment
of tensor-fields given in standard texbooks such as [K-N] and [M-T-W] (see the
Remark in Sect. 4 below). Here, in Sect. 7, I indicate on how one can do this
and how one can apply the concept of an analytic tensor functor to the theory
of linear-space bundles, as has been carried out in detail recently by my doctoral
student Sea-Mean Chiou [CS]. (He use simply “tensor functor” for what we call
“analytic tensor functor” here.) Sect. 7 also contains brief descriptions of three
different modifications of the ideas presented earlier. The notation and terminol-
ogy of [FDS] is used in this paper. In particular, NI denotes the set of all natural
numbers including zero. Given n ∈ NI , the set of all natural numbers between
1 and n (inclusive) is denoted by n]. The set of all subsets (a.k.a. “power set”)
of a given set S is denoted by Sub(S). The domain and codomain of a given
mapping φ are denoted by Domφ and Codφ, respectively. The inverse of an
invertible mapping φ is denoted by φ←. Given any mappings φ and ψ, φ × ψ
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denotes the mapping from Domφ× Domψ to Codφ× Codψ defined by

(φ× ψ)(x, y) := (φ(x), ψ(y)) for all x ∈ Domφ and y ∈ Domψ.

Let an index set I be given. For every set S, we denote by SI the set of all
families with terms in S and indexed on I. Given a ∈ SI , we denote the term of
a with index i ∈ I by ai, and we often write a = (ai | i ∈ I ). For every mapping
φ, we denote by φ×I the mapping from (Domφ)I to (Codφ)I defined by

φ×I(ai | i ∈ I ) := (φ(ai) | i ∈ I ) for all a ∈ (Domφ)I .

We abbreviate Sn := Sn]

and φ×n := φ×n]

when n ∈ NI ; members of Sn are
called lists of length n. For linear mappings, evaluation is generally understood
without parentheses, composition is understood without ◦, and −1 is used in-
stead of ← to denote inverses. We use “lineon” as an abbreviation for “linear
transformation” in order to be able to form the adjective “lineonic”.

1. Isocategories

An isocategory is given by the specification of

(i) a class OBJ whose members are called objects,

(ii) a class ISO whose members are called isomorphisms,

(iii) a rule that associates with each φ ∈ ISO a pair (Domφ,Codφ) of
objects, called the domain and codomain of φ,

(iv) a rule that associates with each pair (φ, ψ) in ISO such that
Codφ = Domψ a member of ISO denoted by ψ ◦ φ and called
the composite of φ and ψ, with Dom (ψ ◦ φ) = Domφ and
Cod (ψ ◦ φ) = Codψ,

(v) a rule that associates with each A ∈ OBJ a member of ISO denoted
by 1A and called the identity of A,

(vi) a rule that associates with each φ ∈ ISO a member of ISO denoted
by φ← and called the inverse of φ.

The ingredients of an isocategory described above are subject to the follow-
ing three axioms.

(I1) We have
χ ◦ (ψ ◦ φ) = (χ ◦ ψ) ◦ φ

for all φ, ψ, χ ∈ ISO such that Codφ = Domψ and Codψ = Domχ.

(I2) We have
φ ◦ 1Dom φ = φ = 1Cod φ ◦ φ

for all φ ∈ ISO.
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(I3) we have
φ← ◦ φ = 1Dom φ and φ ◦ φ← = 1Cod φ

for all φ ∈ ISO.

Given φ ∈ ISO, one writes φ : A → B or A
φ
→ B to indicate that Domφ = A

and Codφ = B.

The class OBJ of an isocategory is determined by the class ISO because
every A ∈ OBJ is determined by the corresponding identity 1A. For this reason,
we will usually name an isocategory by giving the name of its class of isomor-
phisms.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be given.
We can then form the product-isocategory ISO × ISO′ with object-class
OBJ × OBJ ′ as follows:

(a) ISO × ISO′ consists of pairs (φ, φ′) with φ ∈ ISO, φ′ ∈ ISO′.

(b) OBJ × OBJ ′ consists of pairs (A,A′) with A ∈ OBJ , A′ ∈ OBJ ′.

(c) For every (φ, φ′) ∈ ISO × ISO′, we put

Dom (φ, φ′) := (Domφ,Domφ′) , Cod (φ, φ′) := (Codφ,Codφ′).

(d) Composition in ISO× ISO′ is defined by termwise composition, i.e.
by

(ψ,ψ′) ◦ (φ, φ′) := (ψ ◦ φ , ψ′ ◦ φ′ )

for all φ, ψ ∈ ISO and φ′, ψ′ ∈ ISO′ such that Dom (ψ,ψ′) =
Cod (φ, φ′).

(e) The identity of a given pair (A,A′) ∈ OBJ ×OBJ ′ is defined to be

1(A,A′) = (1A, 1A′).

(f) The inverse of a given pair (φ, φ′) ∈ ISO × ISO′ is defined to be

(φ, φ′)← := (φ←, φ′←).

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if an isocategory ISO and an index set I are given, one
can form the I-power-isocategory ISOI of ISO; its isomorphism-class consists
of all families in ISO indexed on I. In the case when I is of the form I := n], we

write ISOn := ISOn]

for short. For example, we write ISO2 := ISO × ISO. We
identify ISO1 with ISO and ISOm+n with ISOm × ISOn for all m,n ∈ NI in the
obvious manner. The isocategory ISO0 is the trival one whose only object is ∅
and whose only isomorphism is 1∅.
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We say that an isocategory ISO is concrete if ISO consists of invertible
mappings, the object-class OBJ consists of sets, and if domain and codomain,
composition, identity and inverse have the meanning they are usually given for
sets and mappings. (See, e.g. Sect. 01-04 of [FDS]). In this paper, we will assume
that a basic concrete isocategory ISO is given, and we will deal only with it and
the isocategories obtained from it by product formation, such as ISOm × ISOn

when m,n ∈ NI .

2. Isofunctors

An isofunctor Φ is given by the specification of:

(i) a pair (DOMΦ,COD Φ) of isocategories, called the domain-

category and codomain-category of Φ,

(ii) a rule that associates with every φ ∈ DOM Φ a member of COD Φ
denoted by Φ(φ),

subject to the following conditions:

(F1) We have

Cod Φ(φ) = DomΦ(ψ) and Φ(ψ ◦ φ) = Φ(ψ) ◦ Φ(φ) (2.1)

for all φ, ψ ∈ DOM Φ such that Codφ = Domψ.

(F2) For every identity 1A in DOM Φ, where A belongs to the object-
class of DOM Φ, Φ(1A) is an identity in COD Φ.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be given.
We say that Φ is an isofunctor from ISO to ISO′ and we write Φ : ISO → ISO′

to indicate that ISO = DOM Φ and ISO′ = COD Φ. By (F2), we can associate
with each A ∈ OBJ exactly one object in OBJ ′, denoted by Φ(A), such that

Φ(1A) = 1Φ(A). (2.3)

It easily follows from (I3) of Sect. 1 and from (F1) and (F2) above that
every isofunctor Φ satisfies

Φ(φ←) =
(
Φ(φ)

)←
for all φ ∈ DOM Φ. (2.4)

One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03
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and 04 of [FDS].) Thus, if Φ and Ψ are isofunctors such that COD Φ = DOM Ψ,
one can define the composite isofunctor Ψ ◦ Φ : DOM Φ → COD Ψ by

(Ψ ◦ Φ)(φ) := Ψ(Φ(φ)) for all φ ∈ DOM Φ (2.5)

Also, given isofunctors Φ and Ψ, one can define the product-isofunctor

Φ × Ψ : DOM Φ × DOM Ψ −→ COD Φ × COD Ψ

of Φ and Ψ by
(Φ × Ψ)(φ, ψ) := (Φ(φ),Ψ(ψ)) (2.6)

for all φ ∈ DOM Φ and all ψ ∈ DOMΨ. Product-isofunctors of arbitary families
of isofunctors are defined in a similar way. In particular, if an isofunctor Φ and
an index set I are given, we define the I-power-isofunctor Φ×I : (DOMΦ)I →
(COD Φ)I of Φ by

Φ×I(φi | i ∈ I ) = (Φ(φi) | i ∈ I ) (2.7)

for all families (φi | i ∈ I ) in DOM Φ. We write Φ×n := Φ×n]

when n ∈ NI .

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-functor Id : ISO → ISO of ISO is defined by

Id(φ) = φ for all φ ∈ ISO. (2.8)

We then have
Id(A) = A for all A ∈ OBJ . (2.9)

If I is an index set, then the identity-functor of ISOI is Id×I . In particular, the
identity-functor of ISO × ISO is Id × Id.

Let a specific object C ∈ OBJ be given. The trivial-functor

TrC : ISO → ISO for C is defined by

TrC(φ) = 1C for all φ ∈ ISO. (2.10)

We then have
TrC(A) = C for all A ∈ OBJ . (2.11)

One often needs to consider a variety of “accounting isofunctors” whose
domain and codomain categories are obtained from ISO by product formation.
For example, the switch-functor Sw : ISO2 → ISO2 is defined by

Sw(φ, ψ) := (ψ, φ) for all φ, ψ ∈ ISO. (2.12)

Given any index set I, the equalization-functor EqI : ISO → ISOI is defined
by

Eq I(φ) := (φ | i ∈ I ) for all φ ∈ ISO. (2.13)
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We write Eqn := Eqn] when n ∈ NI .

Let isofunctors Φ and Ψ with DomΦ = ISO = DomΨ be given. We then
identify the pair (Φ,Ψ) with the pair-formation functor

(Φ,Ψ) : ISO → COD Φ × COD Ψ

defined by
(Φ,Ψ) := (Φ × Ψ) ◦ Eq2,

so that
(Φ,Ψ)(φ) = (Φ(φ),Ψ(φ)) for all φ ∈ ISO. (2.14)

3. Natural assignments, examples.

We now assume that a concrete isocategory ISO with object-class OBJ is
given.

A natural assignment α of degree n ∈ NI is given by the specification
of:

(i) a pair (Dmfα,Cdfα) of isofunctors from ISOn to ISO, called the
domain-functor and codomain-functor of φ,

(ii) a rule that associates with every list F ∈ OBJn a mapping

αF : Dmfα(F) → Cdfα(F),

subject to the condition that

Cdfα(χ) ◦ αDom χ = αCod χ ◦ Dmfα(χ) for all χ ∈ ISOn. (3.1)

Let isofunctors Φ and Ψ, both from ISOn to ISO, be given. We say that α
is a natural assignment from Φ to Ψ, and we write α : Φ → Ψ to indicate
that Dmfα = Φ and Cdfα = Ψ.

A natural assignment α of degree n ∈ NI is called a natural equivalence

if, for every F ∈ OBJn, the mapping αF of (ii) above belongs to ISO.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments α and β be
given. If α and β have the same degree n ∈ NI and if Dmfβ = Cdfα we can
define the composite assignment β ◦ α : Dmfα → Cdfβ , also of degree n, by
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assigning to each F ∈ OBJn the mapping (β ◦ α)F := βF ◦ αF . If α has degree
k ∈ NI and β has degree m ∈ NI , one can define the product-assignment

α× β : Pr ◦(Dmfα × Dmfβ) → Pr ◦(Cdfα × Cdfβ),

of degree k+m, by assigning to each pair (F ,G) ∈ OBJ k×OBJm = OBJ k+m the
mapping (α×β)(F,G) := αF ×βG. Given a natural assignment α of degree n ∈ NI

and an isofunctor Φ : ISOk → ISOn with k ∈ NI , one can define the composite

assignment α ◦ Φ : Dmfα ◦ Φ → Cdfα ◦ Φ, of degree k, by assigning to each
F ∈ ISOk the mapping (α ◦ Φ)F := αΦ(F). The identity-assignment id : Id →
Id is defined by

idA := 1A for all A ∈ OBJ . (3.2)

We have α ◦ (id ◦ Dmfα) = (id ◦ Cdfα) ◦ α = α for all natural assignments α.
An illustration of the the use of the operations involving assignments is given
by (5.18) below.

Examples: We now consider the concrete isocategory INV consisting of all
invertible mappings. The corresponding object-class SET consists of all sets.
The subset-functor Sub : INV → INV is defined by

Sub(φ) := φ> for all φ ∈ INV, (3.3)

where φ> is the image mapping of φ (see [FDS], (03.7)). For every S ∈ SET ,
Sub(S) is the set of all subsets of S. For every S ∈ SET we denote the set of
all finite subsets of S by Fin(S). The finite-subset-functor Fin : INV → INV
is defined by

Fin(φ) := φ>

∣∣∣
Fin(Cod φ)

Fin(Dom φ)
for all φ ∈ INV. (3.4)

(See the definition of “adjustment” of a mapping in [FDS], Sect. 03.) The (finite)
cardinality # can be interpreted to be the natural assignment # : Fin → TrNI
which associates with each set S the mapping #S : Fin(S) → NI defined by

#S(A) := #A for all A ∈ Fin(S). (3.5)

The set-product-functor Pr : INV2 → INV is defined by

Pr(φ, ψ) := φ× ψ for all (φ, ψ) ∈ INV2. (3.6)

We have Pr(S, T ) = S × T for all S, T ∈ SET . A natural equivalence of degree
2 is the switch-equivalence sw : Pr → Pr ◦Sw which associates with every pair
(S, T ) ∈ SET 2 the mapping defined by

sw(S,T )(s, t) := (t, s) for all s ∈ S, t ∈ T . (3.7)

(Here, the switch -functor Sw : INV2 → INV2 is defined according to (2.12).)
The map-functor Map : INV2 → INV assigns to each pair (S, T ) ∈ SET 2
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the set Map(S, T ) of all mappings from S to T and to each pair (φ, ψ) ∈ INV2

the invertible mapping Map(φ, ψ) : Map(Domφ,Domψ) → Map(Codφ,Codψ)
defined by

(Map(φ, ψ))(f) := ψ ◦ f ◦ φ← for all f ∈ Map(Domφ,Domψ). (3.8)

We can define a natural equivalence

α : Sub ◦ Pr → Map ◦ (Id × Sub ) (3.9)

of degree 2 by assigning to each pair (S, T ) ∈ SET 2 the mapping

α(S,T ) : Sub (S × T ) → Map(S,Sub T ) (3.10)

defined by
(α(S,T )(A))(s) := {t ∈ T | (s, t) ∈ A} (3.11)

for all A ∈ Sub (S × T ) and all s ∈ S.

Remark: Most of the about 100 symbols listed in the Index of Multiple-Letter
Symbols in [FDS] can be interpreted as standing for either isofunctors or natural
assignments.

4. Tensor functors

We now fix a field FI and we consider the isocategory whose object-
class FDLS consists of all finite dimensional linear spaces over FI and whose
isomorphism-class LIS consists of all linear isomorphism from one such space
onto another or itself. We use the term tensor functor of degree n ∈ NI for
isofunctors from LISn to LIS. Here is a list of important tensor functors:

(1) The product-space functor Pr : LIS2 → LIS. It is defined by

Pr(A,B) := A × B for all (A,B) ∈ LIS2. (4.1)

We have Pr(V,W) := V × W (the product-space of V and W) for all V,W ∈
FDLS .

(2) The lin-map-functor Lin : LIS2 → LIS. It assigns to every pair
(V,W) ∈ FDLS 2 the linear space Lin (V,W) of all linear mappings from V to
W and to every pair (A,B) ∈ LIS2 the invertible linear mapping

Lin (A,B) ∈ Lis (Lin (DomA,DomB),Lin (CodA,CodB)) (4.2)

defined by
Lin (A,B)T := BTA−1 (4.3)
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for all T ∈ Lin (DomA,DomB).

(3) The duality-functor Dl : LIS → LIS. It is defined by

Dl := Lin ◦ (Id,TrFI ). (4.4)

We have
Dl(V) := V∗ for all V ∈ FDLS (4.5)

and
Dl(A) := (A⊤)−1 for all A ∈ LIS. (4.6)

(4) The lineon-functor Ln : LIS → LIS. It is defined by

Ln := Lin ◦ Eq2. (4.7)

We have
Ln(V) := Lin (V,V) for all V ∈ FDLS (4.8)

and

Ln(A)T := ATA−1 for all A ∈ LIS and T ∈ Ln(DomA). (4.9)

(5) Given k ∈ NI , the k-lin-map-functor Lin k : LISk × LIS → LIS. It
assigns to each list (Vi | i ∈ k] ) in FDLS and each W ∈ FDLS the linear space

Lin k((Vi | i ∈ k] ) ×W) := Lin k

(
×
i∈k]

Vi,W
)

(4.10)

of all k-multilinear mappings from ×
i∈k]

Vi to W, and it assigns to every list

(Ai | i ∈ k] ) in LIS and each B ∈ LIS the linear mapping

Lin k((Ai | i ∈ k] ),B) (4.11)

from Lin k

(
×
i∈k]

DomAi,DomB
)

to Lin k

(
×
i∈k]

CodAi,CodB
)

defined by

Lin k((Ai | i ∈ k] ),B)T := BT ◦ ×
i∈k]

A−1
i (4.12)

for all T ∈ Lin
(
×
i∈k]

DomAi,DomB
)
.

(6) Given k ∈ NI , the k-multilin-functor Lnk : LIS2 → LIS. It is defined
by

Lnk := Lin k ◦ (Eqk × Id). (4.13)

We have
Lnk(V,W) := Lin k(Vk,W) (4.14)
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for all V,W ∈ FDLS and

Lnk(A,B)T := BT ◦ (A−1)×k (4.15)

for all A,B ∈ LIS and all T ∈ Lin k((DomA)k,DomB).

(7) Given k ∈ NI , the symmetric-k-multilin-functor Smk : LIS2 → LIS.
It is assigns to every pair (V,W) ∈ FDLS 2 the linear sapce

Smk(V,W) := Symk(Vk,W) (4.16)

of all symmetric k-multilinear mappings from Vk to W. We have

Smk(A,B)T := BT ◦ (A−1)×k (4.17)

for all A,B ∈ LIS and all T ∈ Symk((DomA)k,DomB).

(8) Given k ∈ NI , the skew-k-multilin-functor Skk : LIS2 → LIS. It
is defined in the same manner as Smk, except that Symk(Vk,W) in (4.16) is
replaced by the linear space Skewk(Vk,W) of all skew k-multilinear mappings
from Vk to W.

(9) Given n ∈ NI , the k-linform-functor Lnfk, the k-symform-functor

Smfk, the k-skewform-functor Skfk, all from LIS to LIS. They are defined by

Lnfk := Lnk ◦ (Id,TrFI ) , Smfk := Smk ◦ (Id,TrFI ) , Skfk := Skk ◦ (Id,TrFI ).
(4.18)

Given V ∈ FDLS , we have

Lnfk(V) := Lin k(Vk, FI ), (4.19)

the space of all k-multilinear forms on Vk. We have

Lnfk(A)ωωω ◦ (A−1)×k for all ωωω ∈ Lin k((DomA)k, FI ) (4.20)

and all A ∈ LIS. The formulas (4.19) and (4.20) remain valid if Lin is replaced
by Sym or Skew and Lnf by Smf or Skf correspondingly.

Remark : In much of the literature (see [K-N], Sect. 2 of Ch.I or [M-T-W],
§3.2) the use of the term “tensor” is limited to tensor functors of the form
Tr

s := Lin ◦ (Lnfs,Lnfr) : LIS → LIS with r, s ∈ NI , or to tensor functors that
are naturally equivalent to one of this form. Given V ∈ FDLS a member of the
linear space Tr

s(V) is called a “tensor of contravariant degree r and covariant
degree s.”

5. Natural assignments in LIS, identifications
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Again, we fix a field FI and we consider the isocategory LIS described in
Sect. 4. We say that a natural assignment α of degree n ∈ is linear if, for every
F ∈ FDLSn, the mapping αF : Dmfα(F) → Cdfα(F) is linear. We give a list of
important natural assignments.

(1) The trace tr : Ln → TrFI assigns to each V the linear mapping

trV : Ln(V) → FI (5.1)

described, for example, by the Characterization of the Trace in [FDS], Sect. 26.
tr is linear.

(2) The determinant det : Ln → TrFI assigns to each V the linear mapping

detV : Ln(V) → FI (5.2)

whose values are determinants of lineons in the usual sense. Of course, det is
not linear.

Remark 1: The term lineonic invariant would be appropriate for any natural
assignment from Ln to TrFI . The literature describes special lineonic invariants
called “principal invariants”, which include tr and det. (See, for example, [FDS],
Vol 2, Ch.1.) A part of “Invariant Theory” deals with classifying all posible
lineonic invariants. The term lineonic covariant would be appropriate for
any natural assignment from Ln to Ln. Among the lineonic covariants are the
“adjugate” and the “principal covariants” described in [FDS], Vol 2, Ch.1.

(3) The transposition tp : Lin → Lin ◦ (Dl,Dl) ◦ Sw assigns to each pair
(V,W) ∈ FDLS 2 the mapping

tp(V,W) : Lin (V,W) → Lin (W∗,V∗) (5.3)

defined by
tp(V,W)(L) := L⊤ for all L ∈ Lin (V,W) (5.4)

where L⊤ is the transpose of L as defined, for example, in [FDS], Sect.21. Trans-
position is a natural equivalence.

It is useful and customary to employ certain natural equivalences as iden-
tifications in the following way: Let tensor functors Φ and Φ′ of a given degree
n ∈ NI be given. We single out a certain natural equivalence from Φ to Φ′ and
use it to treat Φ and Φ′ as if they were the same tensor functor. We write
Φ(F) ∼= Φ′(F) for all F ∈ FDLSn and Φ(F) = Φ′(F) for all F ∈ LISn. One
must be very cautious with introducing identifications because they can lead
to unexpected ambiguities or clashes. The following three identifications are
customary and useful.

(4) The biduality identification bdi : Id → Dl ◦ Dl assigns to each V ∈
FDLS the mapping bdiV : V → V∗∗ defined by

bdiV(v) := λλλv for all v ∈ V, λλλ ∈ V∗. (5.5)
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We write V ∼= V∗∗ and v = bdiV(v) for all v ∈ V, so that (5.5) reduces to
vλλλ := λλλv.

(5) The bilinearity-identification bli : Lin 2 → Lin ◦ (Id,Lin ) assigns to
each triple (V1,V2,W) ∈ FDLS 3 the mapping

bli(V1,V2,W) : Lin 2(V1 × V2,W) → Lin (V1,Lin (V2,W)) (5.6)

defined by
(bli(V1,V2,W)(B)v1)v2 := B(v1,v2) (5.7)

for all B ∈ Lin 2(V1 × V2,W) and all v1 ∈ V1, v2 ∈ V2. We write
Lin 2(V1 × V2,W) ∼= Lin (V1,Lin (V2,W)) and B = bli(V1,V2,W)(B) for all
B ∈ Lin 2(V1 × V2,W), so that (5.7) reduces to (Bv1)v2 = B(v1,v2).

(6) The dual-linmap-identification dli : Lin ◦(Dl×Dl) → Dl◦Lin assigns
each pair (V,W) ∈ FDLS 2 the mapping

dli(V,W) : Lin (V∗,W∗) → (Lin (V,W))∗ (5.8)

defined by
(dli(V,W)(M))L := trV(M⊤L) (5.9)

for all M ∈ Lin (V∗,W∗) and all L ∈ Lin (V,W). We write Lin (V∗,W∗) ∼=
Lin (V,W)∗ and M = dli(V,W)(M) for all M ∈ Lin (V∗,W∗), so that (5.9) reduces

to ML = trV(M⊤L).

The implications of the first two of above identifications are described, in
some detail, in [FDS], Ch.2.

Let tensor functors Φ1, Φ2, Ψ, all of degree n ∈ NI , be given. We say that a
natural assignment β : Pr ◦(Φ1,Φ2) → Ψ is a bilinear assignment if, for every
F ∈ LISn, the mapping

βF : Φ1(F) × Φ2(F) → Ψ(F) (5.10)

is bilinear. The following are examples.

(7) The dual-evaluation de : Pr ◦(Dl, Id) → TrFI assigns to each V ∈
FDLS the mapping

deV : V∗ × V → FI (5.11)

defined by
deV(,v) = v for all ∈ V∗,v ∈ V. (5.12)

(8) The lineonic composition lc : Pr ◦(Ln,Ln) → Ln assigns to each
V ∈ FDLS the mapping

lcV : Ln(V) × Ln(V) → Ln(V) (5.13)
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defined by
lcV(L,M) = LM for all L,M ∈ Ln(V). (5.14)

(9) The tensor product tpr : Pr ◦(Id× Id) → Lin ◦ (Dl× Id) ◦ Sw assigns
each pair (V,W) ∈ FDLS 2 the mapping

tpr(V,W) : V ×W → Lin (W∗,V) (5.15)

defined by
tpr(V,W)(v,w) := v ⊗ w for all v ∈ V,w ∈ W, (5.16)

where v⊗w is the tensor product defined according to [FDS], Def. 1 of Sect. 25,
with the identification W ∼= W∗∗ (see (4) above).

Remark 2: In accord with definitions common in the literature (see for
example [CC], Ch.3, Sect. 8), one might use the term “tensor product” for any
bilinear assignment τ : Pr ◦(Id× Id)×Φ, where Φ is a tensor functor of degree 2,
provided that the following condition is satisfied: For every pair (V,W) ∈ FDLS 2

and every bilinear mapping B with DomB = V ×W, there is exactly one linear
mapping Bτ with DomBτ = Φ(V,W) such that Bτ ◦ τ(V,W) = B. The tensor
product tpr defined in (9) satisfies this condition by [FDS], Prop.6 of Sect.26.

A special case of the dual-linmap-identification (6) can be expressed by the
formula

M⊤L = trV(ML) for all M,L ∈ Ln(V), (5.17)

valid for all V ∈ FDLS . In terms of the operations involving natural assignments
and isofunctors described in Sect.3, the fact that (5.17) is valid for all V ∈ FDLS
can be expressed by

(de ◦ Ln) ◦
((

tp ◦ (Id × Id)
)
× (id ◦ Ln)

)
= tr ◦ lc (5.18)

where tr, lc, de and tp are described in (1), (8), (7) and (3), and where id is the
idntity-assignment defined by (3.2).

6. Analytic tensor functors

We now assume that the field relative to which FDLS and LIS are defined
in Sect.4 is the field RI of real number. Given V,W ∈ FDLS , the set

Lis (V,W) :=
{
A ∈ LIS

∣∣ DomA = V,CodA = W
}

(6.1)

is then an open subset of the linear space Lin (V,W). (See, for example, the
Differentiation Theorem for Inversion Mappings in Sect.68 of [FDS].).
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Let a tensor functor Φ of degree 1 be given. For every pair (V,W) ∈ FDLS 2,
we define the mapping

Φ(V,W) : Lis (V,W) → Lis (Φ(V),Φ(W)) (6.2)

by
Φ(V,W)(A) := Φ(A) for all A ∈ Lis (V,W). (6.3)

We say that the tensor functor Φ is analytic if Φ(V,W) is an analytic mapping

for every pair (V,W) ∈ FDLS 2. We say that a natural assignment α of degree
n ∈ NI is an analytic assignment if the mapping αF is an analytic assignment
for every list F ∈ FDLSn. All the tensor functors of degree 1 and all natural
assignments listed in Sects.4 and 5 are in fact analytic. (The fact that they
are of class C∞ can easily be inferred from the results of Ch.6 of [FDS]. Proofs
that they are analytic can be inferred, for example, from the results that will be
presented in Ch.2 of Vol.2 of [FDS].)

Theorem : Let an analytic tensor functor Φ be given and associate with each
V ∈ FDLS the mapping

Φ
•

V
: Ln(V) → Ln(Φ(V)) (6.4)

defined by
Φ

•

V
:= ∇1V

Φ(V,V). (6.5)

(The gradient-notation used here is explained in [FDS], Sect.63.) Then Φ
•

is a
linear assignment from Ln to Ln ◦ Φ. We call Φ

•

the derivative of Φ.

Proof: Let (V,W) ∈ FDLS 2 and A ∈ Lis (V,W) be given. It follows from (6.3),
from axiom (F1), and from (2.4) that

Φ(W,W)(ALA−1) = Φ(A)Φ(V,V)(L)Φ(A)−1 (6.6)

for all L ∈ Lis (V,V). By (4.9) we may write (6.6) as

(
Φ(W,W) ◦ Ln(A)

)
(L) =

(
Ln(Φ(A)) ◦ Φ(V,V)

)
(L) (6.7)

for all L ∈ Lis (V,V). Taking the gradient of (6.7) with respect to L at L := 1V
yields

Φ
•

W
◦ Ln(A) = (Ln ◦ Φ)(A) ◦ Φ

•

V
. (6.8)

In view of (3.1) it follows that Φ
•

is a natural assignment from Ln to Ln ◦ Φ.
The linearity of Φ

•

follows from the definition of gradient.

We now list the derivatives of a few analytic tensor functors (see (3), (4),
and (9) of Sect.4). The formulas given are valid for every V ∈ FDLS .

(1) We have

Id
•

V
= 1Ln(V). (6.9)

15



(2) We have

Dl
•

V
= tp(V,V), (6.10)

where tp is the transposition described in (3) of Sect.5.

(3) Ln
•

V
: Ln(V) → Ln(Ln(V)) is given by

(Ln
•

V
L)M = LM − ML for all L,M ∈ Ln(V) (6.11)

(This formula is an easy consequence of (4.8) and, [FDS] (68.9).).

(4) Let k ∈ be given. In order to describe

(Lnfk)
•

V
: Ln(V) → Ln(Lin k(Vk, RI )), (6.12)

we define, for every L ∈ Ln(V) and every j ∈ k], Dj(L) ∈ (Ln(V))k by

(Dj(L))i :=





L if i = j

1V if i 6= j



 for all i ∈ k]. (6.13)

We then have

((Lnfk)
•

V
L)ωωω = −

∑

j∈k]

ωωω ◦Dj(L) for all ωωω ∈ Lin k(Vk, RI ) (6.14)

and all L ∈ Ln(V). The formula (6.14) remains valid if Lnf is replaced by Smf
or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition
(6.5) immediately lead to the following

Chain Rule for Analytic Tensor Functors

Let Φ and Ψ be analytic tensor functors. Then the composite functor Ψ ◦Φ
is also an analytic tensor functor and we have

(Ψ ◦ Φ)
•

= (Ψ
•

◦ Φ) ◦ Φ
•

, (6.15)

where the composite assignments on the right are explained in Sect.3.

For example, (6.15) shows that, for each V ∈ FDLS ,

(Ln ◦ Ln)
•

V
: Ln(V) → Ln(Ln(Ln(V)))

is given by
(Ln ◦ Ln)

•

V
= Ln

•

Ln(V)Ln
•

V
. (6.16)
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In view of (6.11) above, (6.16) gives

((
(Ln ◦ Ln)

•

V
L

)
K

)
M =

(
(Ln

•

V
L)K − K(Ln

•

V
L)

)
M

= L(KM) − (KM)L − K(LM − ML)
(6.17)

for all V ∈ FDLS , all K ∈ Ln(Ln(V)), and all L,M ∈ Ln(V).

If Φ and Ψ are analytic tensor functors so is Pr ◦(Φ,Ψ) and we have

(Pr ◦(Φ,Ψ))
•

V
= (Φ

•

V
L) × 1Ψ(V) + 1Ψ(V) × (Φ

•

V
L) (6.18)

for all V ∈ FDLS and all L ∈ Ln(V).

In the present situation, we can add an important natural assignment to
the list given in Sect.5, namely the lineonic exponential exp : Ln → Ln; it
assigns to each V ∈ FDLS the lineonic exponential

exp
V

: Ln(V) → Ln(V) (6.19)

for V as defined in [FDS], Prop.2 of Sect.612. exp is an analytic assignment of
degree 1.

Let α be an analytic assignment of degree n ∈ NI . If we associate with each
V ∈ FDLS the mapping (∇α)V := ∇(αV), the gradient of the mapping αV , then
∇α is again an analytic assignment of degree n and we have Dmf∇α = Dmfα

and Cdf∇α = Lin ◦ (Dmfα,Cdfα). We call ∇α the gradient of α.

Let tensor functors Φ1, Φ2, Ψ, all of degree n ∈ but not necessarily analytic,
be given. Each bilinear assignment β : Pr ◦(Φ1,Φ2) → Ψ is then analytic and
its gradient ∇β : Pr ◦(Φ1,Φ2) → Lin ◦ (Pr ◦(Φ1,Φ2),Ψ) is given by

(
(∇β)V(v1,v2)

)
(u1,u2) = βV(v1,u2) + βV(u1,v2) (6.20)

for all V ∈ FDLS , all v1,u1 ∈ Φ1(V), and all v2,u2 ∈ Φ2(V).

If α is an analytic assignment of degree n ∈ NI and if Φ is any isofunctor
from LISk to LISn with k ∈ NI , then α ◦ Φ is an analytic assignment of degree
k and we have ∇(α ◦ Φ) = (∇α) ◦ Φ.

7. Applications and modifications

We put :̃ = NI ∪{∞, ω} and consider ÑI to be totally ordered in such a way

that n < ∞ < ω for all n ∈ NI . Let a manifold M of class Cr, with r ∈ ÑI and
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r > 1, and a linear-space bundle B over M and of class Cs with 1 ≤ s < r be
given. The fiber-space of B at a given point x ∈ M is denoted by Bx.

Let an analytic tensor functor Φ be given. The set

Φ(B) :=
⋃

x∈M

Φ(Bx) (7.1)

has the natural structure of a linear-space bundle over M of class Cs (see [CS],
Sect.34). If B := TM is the tangent-bundle of M, then Φ(TM) is called the
tensor bundle of M associated with Φ. A cross section of Φ(TM) is called a
tensor-field of type Φ. In particular, a tensor field of type Id or Dl is called a
vector-field or covector-field, respectively. The derivative Φ

•

of Φ as defined
in Sect.6 is needed when one considers gradients of tensor-fields of type Φ or,
more generally, gradients of cross sections of Φ(B) when B is any linear-space
bundle. (See [CS], Ch.5.)

All of the considerations of Sect.4 can be applied if one replaces the iso-
category considered there by the isocategory whose object-class LS consisting of
all linear spaces over FI , finite-dimensional or not, or even the class MOD of all
modules over a given commutative ring. Some of the considerations of Sect.5 can
also be applied if this modifications is made. However, the natural assignments
(1), (2) and (6) lose their meaning and biduality assignment bdi of (4) is no
longer a natural equivalence and cannot be used for identification. Moreover,
the domain-functor of tpr in (9) must be replaced by Pr ◦(Id×Dl◦Dl) and tpr is
no longer a “tensor-product” in the sense described in Remark 2. (However, suit-
able tensor-product assignments can be constructed by the method described,
for example, in Sect.8 of Ch.2 of [CC].) The considerations of Sect.6 lose their
meaning.

All of the considerations of Sects.4, 5 and 6 can be applied if one replaces the
isocategory considered there by the isocategory whose object-class IPS consists
of all finite-dimensional inner product spaces and whose isomorphism-class OIS
consists of all orthogonal isomorphisms. In this case, there is also a natural
equivalence from Id to Dl, which can be used to deal efficiently with tensor fields
on Riemannian manifolds.

Many of the considerations of Sects.4, 5 and 6 can also be applied if one
replaces the isocategory considered there by the isocategory whose object-class
BS consists of all Banach spaces (in the sense of “Banachable” space as explained
in [L], p.4) and if one interprets LIS appropriately. The necessary details can
be destilled from [L], Ch.1. However, as in the case when FDLS is replaced by
LS the natural assignments (1), (2) and (6) of Sect.5 lose their meaning, the
biduality assignment bdi of (4) is no longer an equivalence, and (9) must be
modified. The isocategory LIS interpreted with the object-class BS can be used
to deal with infinite-dimensional manifolds in the way described in the beginning
of this section.
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