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Abstract In this paper, we take several steps towards achiev-
ing this goal. We introduce thkogic of Secure Sys-
We initiate a program to develop a principled the- tems(LS?), a logic for reasoning about security prop-
ory of secure systems. Our main technical result is a erties of systems at the architecture level. The logic is
formal logic for reasoning about a network of shared designed around a programming language with two dis-
memory, multi-user systems. The logic is inspired by tinctive features. First, the language includes standard
an existing logic for security protocols. It extends the process calculus style communication primitives as well
attacker model and adds shared memory, time, and lim-as imperative constructs for reading and updating mem-
ited forms of access control. We prove soundness for theory. This (somewhat non-standard) design choice is mo-
proof system in the presence of an attacker who controlstivated by our goal to (a) have a language in which the
the network and has partial control over shared memory representation of the system is close to its actual imple-
onindividual machines. We illustrate the use of the logic mentation, and (b) to develop simple, high-level reason-
by proving a relevant security property of a part of the ing principles for such systems. Using the replication
Trusted Computing Group’s remote attestation protocol. operator from process calculus would, while providing
a way to encode state, defeat these goals. Second, the
) language includes primitives for modelingemory pro-
1. Introduction tection a fundamental building block for secure sys-
tems [27], at a high-level of abstraction. The opera-
This paper initiates a program to develop a theoreti- tional semantics defines the set of traces produced by a
cal basis for the design and analysis of secure systemsprogram. Adversaries are modeled as programs in the
For the purpose of this paper, we defingyatenas aset  same language. The adversary controls the complete
of concurrent, interacting threads with shared mutable network and can write to any unprotected memory lo-
state. Interaction may take place locally through reads cation. Traces are augmented by associating time with
and writes to shared memory or over a network. This events. We use a dense total order to model time (i.e.
definition is motivated by our target application domain, between any two time points, there exists another) and
which includes a number of deployed and industrial- require that successive events on a trace have monoton-
standard contemporary systems such as OS kernels, virically increasing time values associated with them. The
tual machine monitors (VMMSs), and co-processor-based extension to a timed model is motivated by the need to
systems such as those utilizing the Trusted Computingspecify meaningful properties of secure systems. While
Group’s Trusted Platform Module (TPM) [31]. atemporallogic such as LTL [25] may suffice for certain
Our long-term goal is to develop a formal framework applications, we expect that a model of real time may be
for modeling and analysis of secure systems at two lev- needed to analyze some systems of interest [21, 28, 29].
els of abstraction-system architecturand system im- LS? draws its lineage from a logic for network pro-
plementationA specific issue that we plan to address in tocol analysis Protocol Composition Logic (PCL¥—
developing and using this framework is to provide rigor- 13, 16, 26]. It extends PCL by incorporating time in all
ousdefinitions of securitandadversary modelsa rel- formulas, and by introducing new axioms for reasoning
atively unexplored area in system security. In addition, about shared memory, memory protection and machine
we hope to identifylesign principlegor secure systems, resets. It retains other features of PCL, such as predi-
as well as a core set of badinilding blocksrom which cates for reasoning about signatures and their verifica-
complex systems can be constructed via secure compotions. A major departure from PCL is the basic style
sition. of reasoning: PCL associates pre-conditions and post-



conditions with each action in a process; the presenceversions of the attestation protocol which differ based
of time in LS allows us to reason globally about the on the point at which measurement begins. In this
program (the order of events is captured by the natu- paper, we focus on the standard Static Root of Trust
ral order on time). This difference results in significant for Measurement (SRTM) protocol which begins mea-
differences in the judgments of the two logics. The cen- surement at system boot. This protocol relies on the
tral judgment of the logic i, tp, te - [P]x A, which intu- TCG’s Platform Configuration Registers (PCRs) and
itively means that iiX executes the programbetween  TPMExt end command. PCRs are protected registers
time t, andte while starting from a configuration that that can only be written by two special instructions, one
locks all locations inl for X (so that onlyX has write for resetting and one for extending stored values. We
access to these locations), then the forrfutelds. The  denote the PCRs of a machinmeby m.PCR(i) wherei
proof system fot.S? allows us to derive such judgments. ranges over natural numbers. The instructieBet m
It consists of about 20 generic rules for reasoning aboutputs the special value 0 in all the PCRs of machine
secure systems and 10 application-specific rules for rea-m. It is assumed that this instruction is executed only
soning about trusted computing systems. We prove awhen a machine is rebooted, and that a PCR cannot ob-
soundness theorefor the proof system. We illustrate tain this special value in any other way. The instruc-
the use of the logic by proving a relevant security prop- tion extend mPCRK), m.loc modifies the content of
erty of a part of the Trusted Computing Group’s remote m.PCRK) to be a hash of the concatenation of its cur-
attestation protocol. Our proofindicates in a precise way rent value with a hash of the contents of the memory
certain security issues with the protocol (see Section 5.2locationm.loc (m.loc denotes an abstract memory loca-
for details). tionloc on machinam). In pseudocode, the effect of this
The rest of the paper is organized as follows. Sec- instruction may be summarized as follows:
tion 2 presents an example of a trusted computing sys-
tem protocol that we use as a running example through- ~ MPCRK) < HASH(m.PCRK)|[HASH(m.loc))
out the paper. The full definition of the syntax and oper- )
ational semantics of the programming language as wellWe ~ often —use the notation seqO,vy,...,Vn)
as the timed trace model is given in Section 3. Section 4(n = 0) to denote the contents of a PCR which
describes the syntax and semanticd.8f. Section 5  Started with 0 and has subsequently been ex-
presents a proof system foe?, its soundness theorem tended with the sequence values,...,v,.  For-
and the application to the trusted computing protocol. Mally, seq0) = 0 and seqO,vi...,Vn,Vni1) =
Conclusions appear in Section 7. Detailed proofs are in HASH(seq0,v1, ..., va)[[HASH(Vn:1)).

the appendices.
A Modified SRTM Protocol. As an illustrative exam-

L. ple, we describe a simplified version of the SRTM at-
2. Motivating Example testation protocol in Figure 1. Subsequent sections de-
scribe an analysis of this protocol using the proof system
As an illustration of our logic and proof method, of LS.
we prove the correctness of a simplified version of the  The SRTM protocol is a three agent protocol, each
Trusted Computing Group’s (TCG’s) remote attestation agent executing a different process. The three processes
protocol. The protocol runs between a platform and are: (1) Bootingm), executed by the machine itself
a remote verifier. The objective of the protocol is to (called M), that measures the boot loader and operat-
convince the remote verifier of the integrity of the ing system, and communicates with the remote veri-
platform’s boot sequence. fier, (2) Signefm), executed by the TPM ofn, that
signs the PCR containing code measurements, and (3)
Trusted Platform Module.  To achieve this goal, Verifier(m), executed by a remote verifier who wants to
a platform utilizes a secure co-processor called the verify the integrity ofm's boot sequence.
Trusted Platform Module (TPM). Conceptually, the The correctness of the SRTM protocol relies on a
TPM provides cryptographic primitives, shielded loca- number of non-trivial facts. First, it depends on the
tions, protected capabilities, and a starting point for the fact that a PCR can only be extended, and never over-
measurement process called the Core Root of Trust forwritten in any other way, and hence always contains a
Measurement (CRTM). In today’s systems, the CRTM record of everything that was written to it since the last
may be in the BIOS rather than in the TPM, hence we reboot. Second, this protocol (implicitly) depends on
use CRTM and BIOS interchangeably. There are two write-protection in memory. For instance, it is critical



Bootingm) = extend mMPCRs),m.bl_loc; Extend bootloader’s code inRCR(s)

b =read m.bl_loc; Read bootloader’s code

callb; Call the bootloader

extend MPCR(s), m.osloc; Extend operating system’s code irRER(S)

0=read m.osloc; Read the operating system

call o; Call the operating system

unlock locsgm); Unlock all locations

send (); SignalSignerm) to signm.PCR(s)

S=receive ; Receive signature fror8ignem)

send S Send signature tderifier(m)
Signerfm) = _=receive; Receive signal fronBootingm)

w = read mPCR(S); ReadPCR(s)

S=signw; Sign the value iPCR(s)

send S Send signature tBooting'm)
Verifier(m) = s=receive; Receive signe?CR(s) from Bootingm)

verify s,sed0, BL(m)7OS(m))7TPI\A/I(m) Verify the signature

Figure 1. A Modified SRTM Protocol

that the code of the boot loader remain the same betweer8 Modeling Secure Systems
the time it is measured into a PCR by and invoked. Prov-
ing the protocol correct, therefore, requires a formalism
that can deal with both PCRs and shared memory with
write locks.

In this section, we present the syntax and operational
semantics for our programming language. In addition,

we define precisely how time is added to the traces ob-
We have simplified the protocol significantly fromits  tained by executing programs.

actual specification. For example, in our presentation,
both the boot loader and the operating system are loaded

by the BIOS (as opposed to the actual protocol in which 3.1
the operating system is loaded by the boot loader). As a
result, we do not have to model the exact code of the  Figure 2 summarizes the syntax of our process cal-
boot loader, and also avoid having to model function culus. We assume a fixed sef of machines (denoted
calls in our formalism. While we believe that our logic m), and a fixed ser. of memory locations spanning all
can be extended to handle such branching code, we havenachines (denotelj. We write machingl) to denote
not worked out the extension in full detail yet. the machine on which is located. Often, we explic-

Other simplifications we make are: (1) We do not itly qualify a location with the name of the machine on
model software loaded after the operating system, andWhich it is located by writingn.I. We use the notation
assume that only one PCR is used for all hashes. Adding! to denote aetof locations, andocs(m) to denote the
further layers of software, or using more PCRs does Set of all locations on machirre.
not change the structure of the proof of correctness, it ~ There is a special set of locations on each mactrine
merely repeats steps. (2) We ignore a nonce that is in-denoteanCR(x), representing the platform configura-
tended to avoid replay attacks in the actual protocol. tion registers (PCRs) on machimg(x is the index of the
This change weakens the guarantee that is available td®CR). PCRs cannot be read or written in the usual way;
verifier. We can easily model this nonce in our formal- instead they can only be extended or reset.
ism, but its addition does not highlight any new tech- Each machine may execute a number of concurrent
nigue or method. (3) We do not model the transmission threads. There are send and receive primitives that allow
or verification of a certificate or a measurement list con- message based communication between threads. How-
taining the list of programs whose hashes are includedever, communication is undirected and insecure — any
in the PCRs. We also assume that the TPM is genuinemessage sent by any thread may be received by any other
and that the measured programs are known a priori. thread, even perhaps on a remote machine.

Process calculus



Machine m
Location |
Agent/Public Key K, X,Y

Unique thread identifier n

Thread id X,Y = (X,n,m)
Value/expression e v = n Number
| K Agent/Public Key
| VvV Pair
|  HASH(\v) Hash ofv
| SIGH{|vl} Valuev signed byK's private key
| ¢ Code that can be called
| X Variable
Action a = extend PCRX),I ExtendPCR(x) with value at locatior
|  readl Read location
|  writel,v Write v to locationl
| callc Call the codec
| sendvV Sendv as a message
| receive Receive a message
| signv Signv with private key
| verifysvK Verify thats= SIG; {|v[}
| lockl Obtain write lock on locatiot
|  unlockl Release write lock on locatidn
Process PQ = Xg=ay;...;Xn = an
Thread T,S = (X,P)
Store (function) g L — Values
Lock map (function) 4 L — (Thread ids)u {_}
Configuration C = (,0FTy...|Th

Figure 2. Syntax of the process calculus

We also assume a set of ageKtsY, K, etc. thatex-  expressions are typed. The types include numbers, keys,
ecute programs, possibly many at one time on severalpairs, signatures, hashes, and code. For the purposes of
machines. Each agent has a unique public or verifica-this paper, we do not need to distinguish between values
tion key, which is identified with the name of the agent. and expressions.

The private or signing key of an agextis represented A salient point is that machine names and locations
by the notationrX 1. Some agents may participate in a are not expressions. In particular variables can't range
given protocol, others may be intruders and yet others over them, nor can they be passed in messages or stored
may be non-interfering observers. All these agents arein locations. This restriction is necessary to be able
modeled the same way. We stipulate for each machineto accurately track machine names and locations in our
ma special agent called, Which owns any threads run-  proof system.

ning on behalf of the machine itself. Formally, processes are (possibly empty) sequences

Each thread is identified by a unique id, denoted of actions. Eactaction(a) performs either communica-

X. The id of a thread is actually a 3-tup{X,n,m) tion, or changes the state of memory (on the local ma-
whereX is the name of the agent on behalf of whom chine), or performs some evaluation such as signature
the thread rung) is a unique thread identifier (used to computation or signature verification. All actions return
distinguish multiple threads of the same agent), end  a result, which immediately binds to a variable (written
is the machine on which the thread runs. We define x; in the figure). The bound variablgis in scope in the
machingéX) = mif X = (X,n,m). part of the process following the action. We freely allow

The program of a thread is calledpaocess(P, Q, renaming of bound variables.
etc.). Processes are written in functional style, with-vari For an action such as reading a memory location or
able names denoting expressions and values (deeoted receiving a message, the value returned is the obvious
andv, respectively), and reduction rules substituting val- one obtained by performing the action. For actions such
ues for variables. We implicitly assume that values and as writing to memory or sending a message, the value



returned is a dummy (one may assume it to be zero). In 3. For any thread(X,P) in the configuration,

the latter case, we often omit the variable bound by the
action, writing_ in its place. The special actiarall ¢
describes a function call to the function whose code is

In our calculus, this call does nothing, exceptrecording a

reduction on the trace, which can then be reasoned about

in the logic. The actiondock | andunlock | acquire
and release a write-lock on locatibn

A thread denotedS, T, is formally a pair(X,P),
whereX andP represent the id and the process of the
thread, respectively.

A snapshot of all threads running on all machines at
a point of time is called @onfiguration denotedC. In
addition to threads, a configuration contains two other
pieces of information: (1) Atore o that maps each lo-
cation in L to the value stored in it, and (2) lack map
( that maps each location ih to the id of the thread that
has a lock on it. If no thread has a lock on a location, the
location is mapped to the special symborhe locks we
consider in this paper are write-locks; a location locked

mustlockedP) C locked X,{). This ensures that
an unlock action always succeeds.

4. The process of each thread(X,P) mentions
locations contained imachingX) only. This
means that remote locations cannot be accessed by
threads.

In the rest of the paper, we assume that all config-
urations are well-formed, without explicit reference to
this fact. The reader may check that our reduction rules
preserve well-formedness of configurations.

Honesty. We call an agenX honest, if the agent does
not leak its private (signing) key. In our logic, we write
this as the predicatlonest(X). We assume that for

each agent it is known whether the agent is honest
or not, and that this fact remains unchanged as the
configuration evolves. For an honest agent, we may

optionally specify the possible proces$&€> denotes a

by a thread may still be read by other threads, but it may Set of processes) that threads owned by it may execute.

be written only by the thread that holds the lock.

(Itis relatively straightforward to conceive a different
process calculus with locks that restrict both writing and
reading. However, we do not consider such locks in this
paper.)

For any threadX, we define lockedX,{) as
the subset of L that contains exactly the loca-
tions which are locked byX according tog, i.e,
locked X, Q) = {l € L|{(I) = X}. Similarly, we define
unlocked() = {l € £|{(l) = _}. In reality, both the
store and the lock map would be maintained on a

In our logic this is written using the binary predicate
Honest(X,P). Such information is often useful for
reasoning about the actions of the process.

Reduction Rules. The reduction rules for configura-
tions are shown in Figure 3. We use the notatfin— v
to mean the store, with the change thdtcontains the
valuev. Similarly, {[| — X] means the map, with the
exception that is locked byX (if X = _, thenl is un-
locked).

The reduction rules (with the exception of (reset)) are

machine by machine basis. Our notation is equivalent associated with actions in processes. Each action corre-
to this real situation, since the machine associated with SPONds to one rule. Rules (extend) to (unlock) capture

any location can be obtained simply by examining it.

Well-formed configurations. Not all configurations are
well-formed. For well-formedness, we require the fol-
lowing four syntactic conditions. LemustlockedP)

be the set of locations that occur fhin actions of the
formunlock |, that are not preceded by a corresponding
lock . Intuitively, these are the locations that must be
locked beforeP is started.

internal reductions within a thread.

The rule (comm) captures synchronous communica-
tion between two threads, one willing to send a value
and the other willing to receive a value. There is no re-
striction on communication; arbitrary threads may syn-
chronize with each other.

The rule (reset) represents the action of resetting a
machinem. An important point is that this rule does
not correspond to any action in the process calculus; we
assume that any machine can be reset at any time sponta-

1. The processes of all threads are closed, i.e., withoutneously. Resetting a machine kills some threads that are

free variables.

. No thread in the configuration should try to lock a
location that it already has a lock on. This property
can be checked syntactically by examining the pro-

on the machine. The reason for not killing all threads is

that some threads which are modeled in the configura-
tion at the time of reset may not actually have started by
then, and may be waiting to start later. We stipulate that
any threads holding locks be necessarily killed.

cess of the thread since locations cannot be bound The notation(Ty | ... | T,) — {m} denotes an arbi-

as variables.

trary subset of threads iR | ... | Ty, the only removed



— = X],oF(X

V)][l = Vnta] F (X, - = extend mPCRX),I; P) | ...
NV, Vi) ][l = Vg B (OXP) | .
mandm.PCRx) € locked X, {) Uunlocked())

— 0]l — V|

- (X, Plv/x) | ...
— Lol =V (X,P)] ...

€ locked X, {) Uunlocked())
— (o (X,P)] ...

— {,0F (X,P]
— {,o-{X,P)| ...

P ...

— U~do - OGP

(To| ... | Ta) — {m} | (X,Bootingm))

(extend) {,0[m.PCRX) — sedO,vi,...,
— {,0[m.PCRX) — seqO,vy,...
(wheremachingX) =
(read) ¢,0]l = V] (X, x=readl; P)]| ...
(write)  g,0[l = V]F(X,_=writel,v;P) | ...
(wheremachingéX) = mandl
(call) (, o (X,_=callcP)]| ...
(sign) {,0F(X,x=signVv;P)| ...
(verify) {,0F (X,_=verifysv,K;P) | ...
(i )
(lock) Il — J,0F(X,_=1lockl;P)| ...
(unlock) [l — X],0F (X,_=unlockl;P)| ...
(comm) {,0F (X,_=sendV;P) | (Y,x=receive;Q) | ..
— (,0F (X,P) | (Y,Q[v/X]) | ...
(reset) ¢,0FTi|...|Th
— {Jlocsg(m) — X],c[locgm) — O] -
(whereX = (h,n, m) andn is fresh

Figure 3. Reduction Rules of the Process Calculus

threads being situated on machime A special thread,
X, owned byniis started orm after a reset. This thread
runs a fixed procesBootingm), which represents the

actions needed for booting the machine.

may contain an expression of the fo&h(%({|v|} only
if X actually sent it in a message. This is necessary to
prove the correctness of some protocols. Condition (3)

The exactis a technical condition needed to prove soundness. One

details of this process depend on the way machines aremay assume that all PCRs initially contain the value 1.

modeled (which we keep abstract). For the illustrative
example that we consider in this paper, this process isAdversary Model.
In addition, resetting machime

defined in Figure 1.

Adversaries are modeled as addi-
tional threads in a configuration. There is no constraint

acquires locks on all locations on the machine for the on adversaries, except that they must respect conditions

new threadK (captured by the notatiotflocgm) — X])

and sets all locations on the machine, including PCRs, (2) of initial configurations.

to 0 (captured by the notatiar{locs(m) — 0J).

Initial configurations. A configuration is called initial
if it satisfies the following conditions:

(1) and (4) of well-formed configurations and condition
In particular, adversaries
do not have to be honest, and they may intercept any
communication, read any memory location, and write
any unlocked location. An important point to observe
here is that, owing to a restricted syntax of expressions,
adversaries are limited in what they can do with inter-

1. No value in the range of the store contains a sub- cepted messages. For example, there is no construct

expression of the forrB1Gg {|v]}, if X is honest.

2. For each agenX, no thread of qgen}( contains
a value of the formSIGy{v]} if X #Y andY is
honest.

3. Each PCR, on every machine, contains a value

other than 0 that cannot be writtenldASH(v) for
anyv.

for projecting the components of a pair. However, the
restricted syntax of expressions is merely a matter of
presentation; there is no new technical difficulty in
working with a bigger syntax of expressions.

3.2 Timed Traces and Matching

A traceis a sequence of configuratio@s, ..., Cy,

Conditions (1) and (2) state that in an initial con- such that (1) is an initial configuration, and (2) for
figuration, messages signed by honest agents shouldkach, G reduces t&;i 1 using one of the reduction rules
neither be known to other agents, nor stored in memory. of the process calculus.

Together they imply that, starting from an initial config-

uration with honesK, a process of a different agevit

A timed trace(denotedT) is a trace, in which a time
point (real number) is associated with each reduction



step. This time point represents the time at which the corresponding to the action happened on the trace at the
reduction occurs. We require that the time points be specified time point.

monotonically increasing. We often write a timed trace  Other predicates (denoted) capture other proper-

as (1 < ... < tn are the reduction time points): ties of the traceMemContents(t,|,v) means that loca-
tion | contains valuer at timet. Reset(m,t,X) means
|51 th . . .
Co—=Ci... =Gy that machinenwas reset at timg creating a new thread

with id X (using the reduction rule (reset)). The two
Let6,¢ denote substitutions mapping program variables predicates of different arity namétbnest capture hon-
to ground expressions, aR8 denote the result of apply-  esty invariants described earlier. The preditate’ rep-
ing 8 to P. We say that a timed tracE matches the tuple  resents algebraic ordering between time poirets: €
(I,to,te, X, P) with substitutiord if the reductions oX’s represents syntactic equality between expressions. We
process in some subtracebfmatch the sequence of ac-  giso allow equality between time points. Together, the
tions inP6, all these reductions happen during the semi- yy0 time comparison operatoks and= are enough to
open interva[tb,te)L and at the start of the first action in  gefine all the other comparison operators: <, > and
P, each location inh is locked forX. The reason for us- £ between time points. In the sequel, we use these op-
ing semi-closed intervals such fig te) instead of open  erators as if they were part of the formal syntax.
or closed intervals is mainly technical convenience. Formulas, denoted, B, etc, are either predicates

Formally, we say that > (I,tp,te, X, P) | 6 (read *I or constructed using connectives of first-order classical

mat_ches(T,tb,te,x,P> with substitution6”) if the fol- logic. The quantifiersx.A and3x.A may range over ex-
lowing hold: pressions, thread ids, locations, and time points, but not

1. For some G € T and process O, over proce_sses or machln.es.. _ |

7 o - (X.(P-O)8 The subjects of deduction in the logic are judgments,
CI Zlao-l < a( !Q) >| 2 . . .
J. LS has two new judgments that are intuitively ex-
2. locked X, %) 2T plained below:
3. For somei’ > i, Gy € 7, and substitutiond, - T)to,te - [P]x A If, starting in a configuration that

Cr =Gy, 0r (X, (Q0)9) | locks all locations inl for X, all reductions ofX

4. The time associated with each reductiorXobe- betweert, andte matchP, thenA holds.

tweenC; andC; lies in the intervalty, te).

- Tty te Y [a]x A: If, starting in a configuration that
locks all locations irf for X, the process oX exe-
cutes exactly one action matchipg- a betweerty,
andte, thenA holds.

If P does not contain any actions, we trivially have
T > (I th,te, X, P) | 8 for any substitutior®, if in T, X
does not perform any reduction in the interftglte).

For_ an action a, we define
T > (l,tp,te, X,y,0) | O, vy if T > (I tp,te, X, (y =

2)) | 8 and in addition, the actioain 7 produces. As an invariant, logical deduction keefpsandte para-

metric. The only free variables allowed Marety, te,
o ) and any variables free iR. In the second judgmeng
4 LS%: Syntax and Semantics may also mentiory. This departs from PCL, in which
A may also mention variables boundmn This choice
In this section, we describe the syntax and semanticsis purely a matter of style, one could reconstriugt al-
of the logicLS?. lowing bound variables d? to occur inA.

o
4.1 Syntax of LS 4.2 Semantics of LS

The formulas ofLS?, together with their intuitive
meanings, are shown in Figure 4. Action predicates, de- We define the formal semantics & by defin-
notedR, capture reductions of the timed trace. There is ing satisfaction of formulas and judgments over timed
one action predicate for each possible action. The sec-traces. We writeZ |= J to mean that7 satisfies the
ond argument of each action predicate specifies a timejudgment]. If J= (- A), we often abbreviatg = J to
point for the action. The predicate holds if a reduction T = A.



Action Predicates R

Other Predicates M
Formulas AB =
Judgments J i

Extend(X,t,PCRX),V) | Read(X,t,1,v) | Write(X,t,l,v) | Call(X,t,c)
Receive(X,t,V) | Sign(X,t,v) | Verify(X,t,v,K) | Lock(X,t,1) | Unlock(X,t,1)
MemContents(t,|,V) | Reset(m,t,X) | Honest(X) | Honest(X,P) | t>t' | e=¢
RIM|AAB|AVB|ADB|-A|VxA| XA

FA | Tipter [Plx A | Dttt [a]x A

Figure 4. Syntax of LS

Action Predicates

An action predicate is satisfied by if 7 contains a re-
duction matching the corresponding action.

7 = Extend(X,t,PCRX),v,V) if in T, X executed the
action_ = extend PCRX),| at timet, | containeds and
PCRx) contained/ before the action.

T = Read(X,t,l,v) if in 7, X executed the action
X = read | at timet, receivingv from locationl into x.

T = Write(X,t,1,v,V) if in T, X executed the action
_=writel,vattimet andl contained/ before the ac-
tion.

7 = Call(X,t,c) if in 7, X executed the action
_=call cattimet.

T E Send(X,t,v) if in 7, X executed the
_=send Vv at timet.

action

T k= Receive(X,t,v) if in 7, X executed the action
X =receive attimet, receivingvinto x.

7 k= Sign(X,t,v) if in 7, X executed the
X = signVat timet, receivingSIGg {|v[} into x.

T E Verify(X,t,v,K) if in 7, X executed the action
-=verifysvK attimet, ands= SIG; {|v]}.

T E Lock(X,t,l) if in 7, X executed the
_=1lock| attimet.

action

action

T k= Unlock(X,t,1) if in 7, X executed the action

_=unlock| at timet.

Other Predicates

let T =Co L ...
tg = —o. Then,

I, Cn. For uniformity, define

T = MemContents(t,l,v) if tj <t <tj1 for some 0<
i <nandinG;, o(l) =v, ort >ty and inCy, o(l) = v.

T E Reset(m,t,X) if in 7, the reduction (reset) hap-
pened on machinen at timet, creating a new thread
with id X and procesBootingm).

T |= Honest(X) if X is assumed to be honest.

7 |= Honest(X, P) if X is honest, and i@, each process
of XisinP.

T Et>tift >t (algebraically)

7T | e= ¢ if eand¢€ are syntactically equal.

Formulas

Satisfaction for formulas built with the connectives of
first-order logic is defined in the obvious way. For ex-
ample,

TEAABIf T EAand7 EB.

Judgments

Satisfaction for judgments captures their intuitive mean-
ing described earlier.

TE(FA)IfTEA

T = (to,te F [Plx A) if for any ground time
points t;, and t, 7> (I,t{ t.X,P)|6 implies
T = (AB)[th/to] [te/te]

T = (Itote Y [alx A) if for any ground time
points ), and ti, T > (It} t, X,y,a) | 8,v/y implies
T = (AB)[v/¥th/to][te/te]

4.3 SRTM: Correctness Property

We formalize a correctness property for the modified
SRTM protocol described in Figure 1. Later, in Sec-
tion 5.2, we use the logic’s proof system to actually es-
tablish this property. Suppose that the verifier’s thread,
V, executes the codéerifier(m) in the time interval
[tv,te). Then, the following four properties are guaran-
teed: (1) At some point of time (tr < te), the machine
mwas reset, (2) At some time poigt (tr < tre < te), the
TPM of m readsed0,BL(m),OSm)) from m.PCR(s),

(3) At some point of timég_ (tr < tg|. < tre), the correct



boot loadeBL(m) was called omm, and (4) Machinen NoReset(m,t,t’) to mean thatm was not reset be-

was not reset betwedp andtre tweent andt’ (t included), i.e., as an abbreviation
Formally, let us define the following four formulas for vt”.vY. (t <t” <t’) D —Reset(m,t”,Y). A slightly
corresponding to these four properties. weaker property writteloReset"(m,t,t’) does not in-
clude the time point. NoReset”(m,t,t") = WVt".VY. (t <
1. A1(tr,X) = Reset(m,tg, X) t < t/) S ﬁReset(m,t”,Y).

We briefly describe the important rules and axioms.
Rule (Seq) states that we can reason about a process
x = a; P, all of whose actions happened betwégand
3. As(teL, X) = Call(X, tg., BL(M)) te, by assuming a time poin,, such that actiom hap-

pened beforéy, and all other actions iR happened af-
4. As(tr,tre) = VL.VY. (Ir <t <tre) D —Reset(t,mY) terward, and combining the facts deduced from the two
components. Rules (Lock) and (Unlock) are similar, ex-
cept that the locations locked for the thread change as
we move from the conclusion to the premises.

Rules (Honesty) and (Reset) allow us to reason with
invariants: if it is known that a threax can only be exe-

2. As(tre) = ITPM(m). Read(T PM(m),tre, MPCR(S),
sed0,BL(m),0Sm))

Then, we establish the following judgment (called
JsrTMmin the sequel):

S, te F [Verifier(m)]v dtr, tre taL, X.

(tr <tBL <tre<te) A cuting a fixed set of processe@ootingm)} in case of
A1 (tr, X) A Ax(tre) A (Reset)), and on every prefix of these processéslds,
As(taL, X) A As(tr, tre)) then A must hold. Axiom (Act) states that if thread

executes action betweert, andte, then there is exactly
Several desirable properties of the protocol do not ac- 0ne time point in that interval on whicka occurred.

tually hold. These are discussed in Section 5.2. Axiom (Mem1) states that if the only action &fin
the intervallty,te) does not write, extend or unlod¢kat
5 LS Proof System tp, | containeds, X has a write lock oh, and the machine

does not reset ifty,te), then throughout the intervél
_ o has valuev. Axioms (Mem2) and (Mem3) generalize
The proof system is presented in Figures 5 and 6 re- (Mem1) when the action ok writes or extends. In
spectively. In addition to these rules and axioms, we as-these cases, there is a time pdinp to whichl contains
sume a full axiomatization of first-order classical logic s old valuev, and after which contains the new value
With explicit equality on ter_ms. We omit these axipms_, written by the action. Axioms (Mem4) — (Mems6) are
since any presentation _sufﬁceg We also assume _('mp“C'simiIar to axioms (Mem1) — (Mem3), but they are used
itly) that the order on time points is total, i.e, it is re- o reason about a thread which is started after a reset.
flexive, transitive, anti-symmetric, and that for any two Axiom (VER) states that if a thread of ageXtsuc-
time pointst; andty, (t > tp) V (2 > ta) (totality). For  cessfully verifies another honest agéfis signature,
the purpose of reasoning in the proof system, we do notihen at some earlier time some threadkogither sent
need to assume that time points form a dense set, buthe signature in a message, or stored it in memory. Ax-
we peed this property for proving sogndness (hence thejgm (PCR1) says thatif a PCR contasex(0, Vi, ..., Vi)
choice of real numbers for representing time). _ atsome point of time, then at some earlier time, it must
We use some notation to simplify our presentation. 5i59 have containese0, V1, ...,Vn_1), and that there

If P=(x¢ = au;...xn = &) is & process, we define the \yas no reset in between (which would have set the PCR
initial sequence®f P, written IS(P), as the set of se- ¢, 0). Axiom (PCR?2) is similar.

guences of the formy = a1;...x = &, where 0<i <n.
This also includes the empty sequence. This easily gen-
eralizes to sets of processéS(P) represents the set of
prefixes of all processes R The main technical result of our work issaundness

If a is an action, R(X,t,x,a) denotes its corre- theorem: every judgment provable in the proof system
sponding action predicate, with as the first argu-  of LS? is satisfied by every timed trace. We prove a more
ment, t as the second, and the remaining argumentsgeneral result. Lef denote a set of formulas, and let
taken fromx = a. For example, ifa = writel,v, I = J mean that] can be proved assuming that each
then R(X,t,x,a) = Write(X,t,l,v). Similarly, if a = formula inT is provable. Let” = J mean that every
read |, then R(X,t,x,a) = Read(X,t,l,x). We write trace which satisfies each formulalinalso satisfies.

5.1 Soundness



[ty tm FY [alx Ar I tm,te - [Plx A2 a# lock I’ unlock I’ (tm fresh)
[ty te F [y = & Plx 3tm.3y-((tp < tm < te) A Ap A A)

(Seq

Doty [lock ']x A1 T+{'}tmteF [Plx Ay (tm fresh)
[ tp,te F [y = Lock I, Px 3tm.3y.((ty < tm < te) A Ag A Ag)

(Lock)

T+ {"} tp,tmHY [unlock I']x Ay TtmteF [Plx A2 (tm fresh)

— y (Unlock)
|+{| }7tb7te|7 [y:unlockl ,P]X Htmﬂy((tb <tm <te) /\Al/\Az)
A (Nec)) _A (Nec2
[thteF [Plx A [thte Y [alx A
T tp,te - [P]x A T tp,te - [P]x A I th,te HY [alx A T tp,te HY [a]x A
b,te j Ix A1 b,te - [P]x 2 Conjl) b,te H[ Ix A1 b,te =Y [a]x 2 Coni2)
[ to,te - [Plx Ap D A [ to,te - [Plx A [ to,te Y [alx AL D A Ity te HY [alx A
bler | ]X_’l 2 b te - [Plx L imp1) byle Y [ ]x# 1D A2 tp,te Y [a]x L jmp2)
lvtb7te }_ [P]X A2 |7tb7te }_y [a]x A2
vp e IS(P). (mustlockedp), tp, te - A Vp € IS(Bootingm)). (locs(m), tp,te - A
peISP). ®)tote X A) o p € 1S(Booting(m). (0csm).to e Dl A) (o

F Honest(X, P) D Vte. A[—o0/tp)] F Reset(mt,X) D Vte. (te > t) D Alt/ty]

Figure 5. Proof system (Rules) for LS

The following theorem states thBt—> J impliesT” &= Suppose that thread completely executes the pro-
J. Proof of the theorem proceeds by induction over the cessVerifier(m) in the intervall[t,,te). Then, since
derivation of the given judgment,(see Appendix A). this process contains a verification step (last line),
o there must be a time point; (ty < tg) such that
Theorem 1 (Soundness)I" = J impliesl” |=J. Verify(V,tV,vo,TPl\7I(m)). By axiom (VER), there is

some threadl PM(m) of agentT PM(m) such that ei-

5.2 SRTM: Proof of Correctness ther TPM(m) WrOEe)SlGTPM(m){|V°|} (to)some location
We now illustrate the proof system of the logic by in memory, or sentit in a message.

proving the correctness propediairTm(Section 4.3) for

the SRTM protocol. In order to prove the property, we

have to make some assumptions. The assumptions ar

stated as a s€tsrTM

Next, we use the (Honesty) rule on threBBM(m),
since we know fronT sgrmthat it can only be execut-
?ng the procesSignefm). We show that: (1] PM(m)
never writes any location, and (2) Whenever it sends the
Fsrrm = (V ;ATPI\A/I(m)), Honest(T PI\7I(m),Signe|(m)) messagéSIGTP!\h(m){|w|}, it reaglsw from m.PCI?(s). It

follows from this, and our earlier deduction that at some
The first assumption says that the verifier is not the sametime pointtge (tre < tv), m-PCR(s) containeds. Using
as the TPM ofn, while the second assumption states that axioms (PCR1) and (PCR2), we deduce that there is a
the TPM does not leak its signing key, and executes only time pointtr (tr < tre) such that the machine was reset
the procesSignefm). We prove the following theorem: ~ attimetg and not reset betweer andtre

Theorem 2 (Correctness of SRTM). If ['sgrmdenotes Finally, we use the (Reset) rule to incorporate another

the set defined above, angk}wis the judgment defined invariant: for the procesBootingm) started immedi-
in Section 4.3, theRsrTm— JSRTM ately after a resetn.PCR(s) can contairsed0, b,c,...)
' at a later point only if in the interimh was called. This

A complete proof of the above theorem is described uses axioms (Mem1) — (Mem®6) and critically relies on
in Appendix B. We describe here, in brief, the ma- the write locks oom.PCRs) and m.bl_loc. It follows
jor steps in the proof. Letg = seq0,BL(m),OSm)). from this fact that at some timig_ (tr < tgL < tre),
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(Act)
(—Act)
(=Act)
(Verify)
(Sign)
(Mem=)
(Mem1y*
(Mem1’)

(Mem2)

(Mem3)

(Mem4)**
(Mem4’)

(Memb5)

(Mem6)

(VER)

(READ)
(PCR1)

(PCR2)

(Hon)

It teY [a]x 3t. (th <t <te) AR(X,t,y,a) A
(W (L £V) A (to <1 <te)) > R, y,a))
It teHY [a]x Vt. (th <t < te) D —R(X,t,x,&)
Itp,tek []x V. (th <t <te) D =R(X,t,x,a)
[t te HY [verify s,v,K]x s= SIG; {|V[}
[ tp,te Y [sign V]x y = SIGg {|V[}
t (MemContents(t,l,v) A MemContents(t,l,V)) D (v=V)
(1,1),tp,te FY [a]x (MemContents(ty,l,v) A NoReset(m,ty,te))
D VL. (tp <t <te D MemContents(t,l,V))
(1,17),tp,te - [ ]x (MemContents(ty,|,v) A NoReset(m, tp, te))
DVt (tp <t <te D MemContents(t,l,Vv))
(1,17) tp,te Y [urite |,V]x (MemContents(ty,|,V) A NoReset(m,tp,te))
DIt (th<t<te) A
(Vt'. (t <t' <te) D MemContents(t’,,V)) A
(Vt'. (tp <t’ <t) D MemContents(t’,1,V)))
(1,17),ty,te Y [extend |,V]x (MemContents(ty, |, seqV)) A NoReset(m,ty,te))
DIt (th<t<te) A
(Vt'. (t <t/ <te) D MemContents(t’,l,sedV,V'))) A
(Vt'. (tp <t’ <t) D MemContents(t’,|,seqV))))
(1,17),tp,te Y [a]x (Reset(m,tp,X) A NoReset™(m, tp, te))
D VL. (tp <t <te D MemContents(t,,0))
(1,17) t,te - [ ]x (Reset(m,ty, X) A NoReset¥(m,tp,te))
D VL. (tp <t <te D MemContents(t,1,0))
(1,17, tp,te HY [urite |,V]x (Reset(m tp,X) A NoReset"(m,ty,te))
DIt (th<t<te) A
(Vt'. (t <t' <te) D MemContents(t’,,V)) A
(Vt'. (tp < t’ <t) D MemContents(t’,1,0)))
(1,17) tp,te Y [extend |,V]x (Reset(mtp, X) A NoReset™(m, tp, te))
DIt (th <t<te) A
(Vt'. (t <t' <te) D MemContents(t’,I,seq0,V))) A
(Vt'. (tp <t’ <t) D MemContents(t’,1,0)))
- (Verify(X,t,v,K) A (X # K) A Honest(X))
D 3IK.I. (' <t) A (Send(K,t/,SIG{[V[}) Vv 3. Write(K,t',1,SIG: {|v]}))
F Read(X,t,l,v) D MemContents(t, I, V)
F MemContents(t,m.PCR(s),sed0,Vv1,...,Vn))
D 3t (t’ <t) A MemContents(t’,m,seq0,v1,...,Vh—1)) A NoReset(t',t)
F MemContents(t, m.PCR(s),0)
D 3t".3X. (' < t) A Reset(m,t’,X) A NoReset"(m,t',t)
+ Honest (X, P) D Honest(X)

** Side conditiona # write |,V anda# extend |,V anda # unlock |

Figure 6. Proof system (Axioms) for LS
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BL(m) was called. This completes the proof. ular program in these approaches, but then proving in-
It is known that the SRTM protocol is vulnerable to variants would involve an induction over the steps of the
Time-Of-Check-To-Time-Of-Use (TOCTTOU) attacks honest parties programs and the attacker. On the other
where code is modified after being measured, but beforehand, inLS? (as in PCL), invariants are established only
it is loaded [30]. We identify four such attacks based on by induction over the steps of honest parties programs,
our analysis. First, write locks are crucial for correct- thereby considerably simplifying the analysis.
ness. In the proof, this shows up in the last part, where In previous work, Abadi and Wobber used an autho-
we use the axioms (Mem1) — (Mem6) to infer invariants rization logic to describe the basic ideas of NGSCB, the
about the roldBootingm). In actual practice, memory predecessor to the TCG [1]. Their formalization docu-
is not locked during booting, making the protocol sus- ments and clarifies basic NGSCB concepts rather than
ceptible to attacks. proving specific properties of systems utilizing a TPM.
Second, the protocol does not guarantee that the op-Gurgens et al. used a model checker to analyze the se-
erating system was loaded, merely that it was measuredcurity of several TCG protocols [14]. Millen et al. em-
Formally, this shows up in the last part of the proof, ployed a model checker to understand the role and trust
where it is impossible to prove a stronger invariant for relationships of a system performing a remote attestation
Bootingm), since between the measurement and load- protocol [24]. Our analysis withS? is a complementary
ing of the operating system (Figure 1, lines 4 and 6), approach: It provides provable guarantees beyond those
another thread on the machine may signal the TPM to provided by model checkers, but with a less fine-grained
produce a signature and send it to the verifier. This prob-model. Chen et al. developed a formal logic tailored
lem extends to the actual protocol, where, there can beto the analysis of a remote attestation protocol and sug-
no guarantee that the last piece of code measured wagested improvements [3].S? is designed to be a more
actually loaded. One way to fix this problem is to use general logic with TCG protocols providing one set of
read-write locks, thus preventing the TPM from signing applications. Lin [23] used a theorem prover and model
the PCR until the lock is released. finder to analyze of the security of the TPM against in-
Third, the machine can be reset after the TPM signs valid sequences of API calls. Proving the security of
the PCR. This shows up in the first part of the proof, systems with complex APIs such as the TPM is an ac-
where, by verifying the signature, all that the verifier can tive area of research and a possible future application of
deduce is that at some point of time in the past, the TPM LS? [17].
generated th_e signature. Therq is no information about7_ Conclusion and Future Work
recency. This makes our version of the protocol sus-
ceptible to man-in-the-middle replay attacks. The actual ~ As a first step towards developing a theoretical basis
SRTM protocol includes a nonce intended to prevent this for secure systems, we introdut&?, a logic for rea-
gap. However, even with the nonce, one can only prove Soning about security properties of systems with shared
that the machine was running the measured softaare memory that communicate over a network. Our techni-
the time of generation of the nonce cal contributions include a precise definition of a pro-
Finally, the proof of the protocol relies on the fact that gramming language for modeling such systems, a logic
PCRs can be reset only during the boot process (axiomfor specifying properties, and a sound proof system for
(PCR2)). However, current hardware does not enforcereasoning about such systems. We apply the logic to

this, and this makes the protocol insecure [20]. establish a non-trivial property of a part of the TCG re-
mote attestation protocol. Our analysis clearly identifies
6. Related Work P y y

the ways in which the protocol may fail, thereby pro-
As mentioned beforel.$? shares a number of fea- viding a formal justification for previously discovered
tures with PCL [9] and therefore with other logics of attacks [20, 30].
programs [2,15,18]. One central difference from PCL is  In future work, we plan to use this logic to carry out
thatLS? considers shared memory systems in addition to a detailed analysis of the TCG’s SRTM and sealed stor-
network communication. Although concurrent separa- age protocols and extensions of these protocols [19]. In
tion logic [2] also focuses on shared-memory programs a complementary effort, we are currently investigating
with mutable state, a key difference is that it does not semantically well-founded methods for modeling and
consider network communication. Furthermore, concur- analysis of secure system implementations. Our long
rent separation logic and other approaches for verifying term goal is to develop a coherent framework for anal-
concurrent systems [22] typically do not consider an ad- ysis of secure system architectures and implementations
versary model. An adversary could be encoded as a regty meaningfully combining the two efforts.
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A Proof of Soundness

Case (Nec2)Similar to above case.

In this appendix we prove soundness. The readerCases (Conjl), (Conj2), (Imp1), (Imp2).These follow

may recall that we are trying to prove thBt—- J
impliesT” = J. We do this by induction on derivation

of ' = J in the proof system. We analyze cases of

from the definition of satisfaction foA; A A and
A1 D A

the last rule in the proof, and show some representativeCase (Honesty).

cases below.

Case (HYP).This is the case whereé —- A because
AeTl. We need to show thaf =T implies7 = (- A).
This follows becaus@& € T".

Case (Seq).

T to, tm - [alx A1 [ tm,te - [Plx Az
a# lock!’,unlock |’ (tm fresh)

rvtbvte Fy=a;P]x Jtm.3y.((tb <tm <te) ANAL A A2)

Suppose for some ground time poirf and
t, T > (Y,t,X, (y=aP)) |6 By definition,
in 7, there is a configuratiorC; containing the
thread (X,(y = a;P;Q)6), and in some laterC/
(reached at some time less thdl, there is a thread
(X, (QB)(¢[y — V])). Clearly, then at some time point
ta betweenC; and C/, there is a reductiofC, LN C,
that reducesy = a and substitutesr for y, and the
remaining reductions oP produced. Lett, be the
time at which the next reduction befotg occurs in
X. (If there is no such reductio, is empty; choose
th =te.) Now taket), = (ta+t},)/2. Clearly, therlZ >
(Yt X,y,a) | 8,v/y and T > (1t t4, X, P) | 8,v/y.
Hence, by i.h., T = (A8)[v/yl[t,/tb][th/tm], and
T = (AB)V/Ylth/tmlts/tel.  Thus, T = (AL A
A2)0)[v/Yl[th /to][tr/tm][te/te].  We immediately have
T ): ( Ftm3y.((t <tm <te) AALA Az))e[té/tb] [té/te],
as required, sincg < t, <t.

Cases (Lock) and (Unlock).Similar to the above case.

Case (Necl).

FA

=———(Nec))

I,to, te F [P]x A

Suppose for somig, t4, 7 > (It} t. X, P) | 6. We need
to show that7 = (AB)[t; /to][ts/te]. However, since
F A, A must be closed. Henc@\8)[t]/ty][ts/te] = A.

Thus it is enough to show thaf = A. This follows
immediately from the induction hypothesis.
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Vp € IS(P). (mustlockedp), ty,te - [p]x A)
F Honest(X, P) D Vte. A[—00/ty)]

(Honesty

We have to show’ = Honest(X,P) O Vte. A[—oo/ty].
So, suppose thatI }= Honest((X),P), and pick

any ground time point,. It suffices to show that

T | Al—o/tp][t./te]. Now takeany threadX in Cy

that belongs toX. If there is no such thread, we can
assume an empty process. Then the process of this
thread is inP. Let P be this process, and suppose
that up to timete (but not including it), a prefix?’
(possibly empty) has reduced, i.,= P;P” and P’
reduces in the intervgl-o,t). It follows immediately

that 7 > (mustlockedP’),—oo,t,, X,P) | . (The

fact thatmustlockedP) is locked forX follows from
well-formedness of configurations.) Cleai®,c IS(P).
Hence, by i.h.T = A[—o /ty)[ts/te], as required.

Case (Reset).

Vp € IS(Bootingmy)). (locs(m),tp,te - [p]x A)
F Reset(m,t,X) D Wte. (te > t) D Alt/ty]

(Reset

This is similar to the above case, except that instead of
—oo, We use.

Case (Act).

[ tp,teFY [a]x 3t. (th <t <te) AR(X,t,y,a) A
M. (tA)A (tp <t/ <te)) D -R(X,t',y,a))

Suppose that for some t}.t, T >

(Yt X,y,a) | 8,v/y. We have to show that
T E3t (4 <t<t) ARXtya) A M. ((t £

t) At <t <te)) D -R(X,t',y,a))8[v/y]. By the
definition of the match, there has to be a time point
t (th <t <t,) such thata® happened at (hence
R(X,t,y,a)8[v/y] holds), and that no other action Xf
happened at any other time in the interjgalty). This is
what we had to show.
Cases {-Act) and (—Act’). These are similar to the
previous case.



Cases (Verify) and (Sign).These follow directly from
the reduction rules.

Case (Mem=). We must show that7 [
(MemContents(t,l,v) A MemContents(t,l,V)) D
(v=V). So suppose thal = MemContents(t,l,v)
andT | MemContents(t,l,V/). By definition, at time
t,in 7, o(l) =vando(l) = V. Buto is a function, so
v=V.

Case (Mem1).

(1,17),ty,te Y [a]x (MemContents(ty, |, V) A
NoReset(m,tp, te))
D WL (tp <t <te D MemContents(t,l,V))

Suppose  that for  some t],t, T >
(L), 8 2, X, y,a) | 8,V/y. Assume that
T E MemContents(tp, |, V)8V /y][t; /to][te/te]
and 7 [ NoReset(mty,te)0)V /Y[t]/to][te/te]-
These imply that7 | MemContents(t],l,v) and
7T k= NoReset(m,t;,tg).
in 7, at timet;, o(l) = v. Now, there are only three

The first of these means that

some other thread wrote it to the location. In either
case, some other thread either sent the signatuke to
or wrote it to memory at an earlier time. If this thread
belongs toK, we are done, else we can repeat the
argument on thread.

Case (READ).Follows from definition of reduction.

Case (PCR1). Suppose 7 E
MemContents(t,m.PCR(s),seq0,v1,...,vn)). Then at
timet, the contents om.PCR(s) weresedO0,V1,...,Vn).

Now a straightforward induction on the number of
reductions in the trace shows that eith@rPCR(S)
containedsedO,vs,...,Vvn) in the initial configuration,

or 0 =sedO0,vy,...,Vvn), Or at some earlier point of
time m.PCR(s) containedseqO, vi,...,Vn-1), and there
was no subsequent reset. The first two possibilities are
ruled out by the definition of the initial configuration,
and the fact that 0 is special and cannot equal a hash (a
fundamental assumption made about PCRs). Thus the
third possibility must be the case, as required.

Case T E

(PCR2). Suppose

ways to change the value in a memory location: extend MemContents(t,m.PCR(s),0). So at timet, mPCR(s)
it, write to it, or reset the machine. However, we know contained 0. Since in the initial configurationPCR(s)

from the side condition that the only action ¥f in
t),ts), namelya, neither writes, nor extends Also
from the conditionNoReset(t],ts,m), the machine was
not reset in the same interval. Furthermore, sindg, at
| is locked forX, anda does not unlock it, it follows

cannot contain 0, and no extension can place 0 in it, the
only way this happened was by a reset. There may have
been many resets; we choose the last one beéfaed

the timet’ of this reset satisfies our required property.

that no other thread could have changed the value inCase (Hon).Follows from definition of honesty.

[. Thus the earliest point at whidhcould be changed
is tz, and hence in the intervéy, te], | must containv,
or equivalentlyyt. (t, <t <te D MemContents(t,l,Vv)).

Cases (Meml’) — (Mem®6). These are similar to the
above case.

Case (VER).

F (Verify(X,t,v,K) A (X # K) A Honest(X))
D IKI. (t' <t) A (Send(K,t',SIG{|V]})
v 31, Write(K, t',1, SIGg {IV[})

SupposeT |= Verify(X,t,v,K). It follows that at time
t, X executes the actionerify SIG;{|v[},v,K in 7.
Since in the initial configurationX cannot contain
SIG:{|v]} (becauseK is honest, anK # K, at some
earlier time pointSIG; {|v|} must have appeared K's

thread for the first time. This could only have happened

in two ways: either some other thread sent itXtpor

X read it from a memory location. In the latter case,
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B Proof of Correctness of SRTM Protocol

A complete proof of the correctness of the SRTM
protocol is shown in Figure 7. We remind the reader that
the judgment we are trying to prowisrtm Was defined
in Section 4.3 as:

Sty te [\/erifier(m)]v Jtr,tre tBL, X.
((tR <tgL <tre< te) A
A]_(tR,X) A Az(tRe) A
As(tsL, X) A A4(tr, tre))
whereA; — A4 are defined as follows:
1. Ai(tr, X) = Reset(m,tg, X)

2. Ao(tre) = ITPM(m). Read(T PM(M), tre, M.PCR(S),
sed0,BL(m),0Sm))

3. As(teL, X) = Call(X,tgL, BL(m))



4. A4(tR,tRe) =Vt.VY. (tr <t <tre) D —Reset(t,m,Y)

We assume that the following formulas are provable:
Fsrrm = (V # TPM(m)), Honest(T PM(m), Signefm))

Figure 7 shows the 10 major steps used in the proof,
together with the rules needed to conclude them. Each
major step concludes a judgment of the form,te -

[Verifier(m)ly A, whereA is shown in the third column
of the table.
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Axioms/Rules Formul®in - ty,te - [Verifier(m)jy A (vo = seq0, BL(m),0Sm)))

Act Tty. (tv <te) A Verify(V,ty,vo, TPM(m))
VER 3. (' <te) A (ITPM(m). Send T PM(m),t’, SlGTPM(m) {Ivol}) V 3. Write(T PM(m),t’,1,vp))
Honesty, Act Yt (—oo <t <te) D (VI.VV. “Write(TPM(m),t,1,v))
—Act, -Act’ A (YW Send(TPM(M),t, SIG gy {IW})
D Jtre ((tRe < t) A Read(T PM(m),tre MPCR(S),W)))
(2), (3), Necd, Jtre (tRe<te) A ((3TPM(m). Read(T PM(m),tre MPCR(S),Vp)) = A2(tre))
Imp1, Conjl
READ Jtre (tRe < te) A A2(tRe) A MemContents(tre, M.PCR(S), Vo)
PCR1 Ttre to,t1. (11 <t2 <tre<te) A Az(tre) A

MemContents(tre, M.PCR(s),seq0, BL(m),OSm))) A
MemContents(to, m.PCR(s),seq0,BL(m))) A
MemContents(t;,m.PCR(s),seq0)) A

NoReset(m, t1,tRe)

PCR2 Jtre t2,t1,1R, X. (Ir <11 <tz <tre<te) A A2(tre) A
MemContents(tre, MPCR(S),seq0,BL(m),OSm))) A
MemContents(tp,m.PCR(s),sed0,BL(m))) A
MemContents(t;, m.PCR(s),seq0)) A
Reset(m,tr, X) A
NoReset"(m,tr,tre)

Reset, Jtre tr, X. (tr <tre < te) A A2(tre) A
Mem1 — Mems6, MemContents(tre, M.PCR(S),sed0,BL(m),0Sm))) A
Act, -Act, Mem= Reset(m,tr,X) A

NoReset"(m,tgr,tre) A
VL. (NoReset"(m,tr,t;) A Reset(m,tg, X))
SVt,b,0. (tr <t < 1)
D (—(MemContents(t,m.PCR(s),seq0,b,d)))
V (3teL. (tr < tgL < t) A Call(X,tgL,b)))

Setté =t =1tre Jtre tr, X. (tr <tre < te) A A2(tre) A
0=08m), MemContents(tre, M.PCR(S),sed0,BL(m),0Sm))) A
b=BL(m) Reset(m,tr, X) A

NoReset"(m,tgr,tre) A
(NoReset"(m,tr,tre) A Reset(m,tg, X))
D (tr <tre<tRe)
D (=(MemContents(tre, M.PCR(s),sed0,BL(m),0Sm))))
V (3teL- (tr <tBL < tre) A Call(X,tgL, BL(M))))
Simplify Jtr, tRe tBL, X. (tr <tL < tre < te) A A2(trRe) A
Reset(m,tr, X) = A1(tr, X)) A
NoReset"(m,tr,tre) = A4(tr,tre)) A
Call(X,tg, BL(m)) = Az(tgL, X))

o~ o~ —

Figure 7. Proof of correctness for the SRTM protocol
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