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Abstract

A number of systems employdynamic taint analysisto
detect overwrite attacks in commodity software. These sys-
tems are based on the premise that low-integrity inputs
should not control values such as function pointers and re-
turn addresses. Unfortunately, there are several program-
ming constructs that can cause false positives and false neg-
atives in these systems, which are currently handled by man-
ual annotation, ad-hoc rules, or not at all.

In this work we propose to usechannel capacity, a quan-
titative measure of information flow, as a quantitative mea-
sure of control. When measuring control, we refer to this
measure asinfluence. We use influence as a theoretical tool
to formally investigate programming constructs known to be
problematic for dynamic taint analysis.

While calculating influence in arbitrary programs is un-
decidable in the general case, we propose and implement
practical techniques for automatically bounding and prob-
abilistically estimating influence in x86 programs. We show
that this tool is able to automatically find useful influence
bounds in code constructs known to be problematic in dy-
namic taint analysis. We also use it to analyze a dynamic
taint analysis alert in samba, showing that it is a false pos-
itive, and another alert in SQL Server, showing that it is a
true positive.

1 Introduction

Dynamic taint analysis has lately been a popular tech-
nique for enforcing Biba low water-mark [4] data integrity
policies in commodity software [7, 9, 20, 21, 23]. In this
work, we refer to such systems as Dynamic Taint Analysis
for Data Integrity, or DTADI, systems. The premise be-
hind DTADI systems is that low-integrity inputs, such as
data read from the network, should not exert control over
high-integrity operations, such as dereferencing a function
pointer. In such systems, low-integrity inputs are marked as
tainted. The output of every program operation is marked
as tainted if any operand is tainted, and untainted otherwise.

The systems then monitors high-integrity operations to de-
tect when they are about to use tainted data. Such systems
have been found to be useful for detectingoverwriteattacks;
for example when a buffer overflow allows an attacker to
overwrite a function pointer, that function pointer will be
marked as tainted, and the attack detected when the func-
tion pointer is dereferenced.

A challenge in implementing DTADI systems is that in
real-world programs, low integrity inputsdo legitimately
exertsomecontrol over high-integrity operations. In such
cases, the low integrity input is usually used to select from
a relatively small set of legitimate values. If a DTADI sys-
tem were to propagate the taint attribute foreveryopera-
tion where a tainted operand could affect the output value, a
large number of integrity violations would be detected that
are not actually attacks;i.e. the system would have many
false positives. For example, a function pointer may be set
to point to one of a few request-handling functions, depend-
ing on a request-type specified by a low-integrity input.

Current DTADI systems address this challenge by only
propagating the taint attribute for operations where the input
is deemed to have “a lot” of control over the output. Typi-
cally, this meansdirect assignment,i.e. data movement and
arithmetic instructions.Indirect assignments, such as via
if-then-else structures, are ignored because they typi-
cally give the input relatively little control over the value of
the assignment1. Assignment via indexing operations, such
as loading data via a tainted pointer, are also sometimes ig-
nored due to the prevalence of using an untrusted input to
calculate an offset into a relatively small table. Considering
again the case where a low-integrity input is allowed to se-
lect a function-pointer, these taint propagation policiescan
prevent false positives when the function-pointer is selected
via anif-then-else statement or loaded from a table,
while still detecting if the input is able to directly overwrite
the function pointer via a buffer overrun.

There are two fundamental problems with the taint prop-
agation policies in current DTADI systems. The first prob-
lem is that they are manually specified in an ad-hoc manner,

1Indirect assignments are also relatively challenging to track, as they
require control-flow analysis
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based on an intuitive understanding of which operands exert
“a lot” of control over the result. The resulting policies do
not work in every situation, and can grow complex as spe-
cial cases and exceptions are added to improve accuracy.
For example, most current DTADI systems recognize some
common program operations where the output does not de-
pend on the input, such as when a register isxored with
itself, or bit-masked with zero. To our knowledge, such ex-
ceptions have been added to DTADI systems manually, in
an on-demand basis when such operations are found to oth-
erwise cause inaccuracy.

The second problem with the taint propagation policies
in current DTADI systems is that they typically operate
at a very fine-grained level;e.g. individual x86 instruc-
tions, or even individual micro-code instructions that the
x86 instructions are first broken into. At this level, im-
portant interactions between instructions and cumulativeef-
fects of instructions are lost. For example, consider the
program: if (a == 0) b := 0; if (a == 1)
b := 1; ...; if (a == 255) b:= 255. At the
level of analyzing the individualconditional-jump,
jump, andmove x86 instructions that this program would
be compiled into, there is no interaction betweena andb.
At the level of examining an individualif structure,a ap-
pears to have little control over the value ofb: a effectively
selects one of two values forb. Only by looking at the
whole sequence ofif statements can we see thata is effec-
tively copied tob.

The result of these problems is that current DTADI sys-
tems suffer from both false positives and false negatives.
False positives occur when data used in a high-integrity op-
eration is derived from low-integrity inputs, after being con-
strained by arithmetic manipulation or sanity checks to en-
sure the resulting value is within an expected range. False
negatives occur when low-integrity inputs effectively con-
trol the value of another variable, but in an indirect way
such as via implicit data flows. The previous example using
if-then-else statements is such an example.

In this work we show that channel capacity, a measure
used to formally quantify how much information flows from
one object to another within a program, is also a useful tool
for formally quantifying how muchcontrol one object has
over another within a program. In the context of measuring
control we refer to this measure asinfluence. As a theo-
retical tool, influence provides a formal basis for thinking
about and evaluating current DTADI taint propagation poli-
cies. In Section 4, we use influence to formally reason about
program structures that are difficult to reason about with
current DTADI taint propagation policies.

We also demonstrate methods forautomaticallyreason-
ing about influence in binary x86 programs. Unfortunately,
calculating the exact influence of one object over another in
an arbitrary x86 program is undecidable in the general case,

and computationally expensive for large programs. How-
ever, we build a tool that can exactly measure influence in
small loop-free programs, and on general x86 programs can
be used to calculate useful lower bounds, upper bounds, and
probabilistic estimates of influence. This tool does not suf-
fer from the problems of DTADI taint propagation policies
of requiring ad-hoc manual propagation rules, and it can in
theory be evaluated over arbitrarily large program structures
instead of operating at the per-instruction level. The current
tool is too computationally expensive to calculate the influ-
ence of every low-integrity input over every high-integrity
operation in a real-world program, and does not aim to re-
place DTADI systems. However, it is practical for perform-
ing a deeper analysis of alerts generated by DTADI systems.
We use it to examine two alerts generated by a DTADI tool
on real-world x86 programs, confirming an alert in SQL
Server as an integrity violation, and showing that an alert
in Samba is likely a false positive. In Section 8 we sug-
gest future directions for using our techniques to improve
the accuracy and performance of DTADI systems.

The contributions of this work are:

• We propose channel capacity as a formal quantitative
measure of control. In this context, we refer to channel
capacity asinfluence.

• We use influence to formally investigate program
structures that are problematic for systems that use dy-
namic taint analysis to enforce data integrity (DTADI).

• We build a tool that can automatically reason about in-
fluence (and equivalently, channel capacity) in binary
x86-programs.

• We use our influence measurement tool to analyze
alerts generated by a DTADI system on real-world
software. We find that one is a false positive, and ver-
ify the other as a true positive.

2 Related Work

2.1 Dynamic taint analysis for data in-
tegrity

A number of systems have been proposed to perform dy-
namic taint analysis to enforce Biba low water-mark data
integrity policies on x86 binary programs, for the purpose
of detecting overwrite attacks [7, 9, 20, 21, 23]. While these
approaches work well for many programs, they propagate
the taint attribute at the instruction level, using ad-hoc rules
about which operands exert “a lot” of control over the result
of each operation. As a result, none employ general solu-
tions for handling sanity checks, implicit flows, or identity
functions. These systems do recognize and handle some
common-cases of these problems.
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Xu et al.[26] implement a system to rewrite the C source
code of a program to perform dynamic taint analysis. They
detect implicit flows that occur in some C-level if-then-else
structures.

2.2 Dynamic taint analysis for data confi-
dentiality

Dynamic taint analysis has also been used by several
systems to enforce Bell-LaPadula [3] dataconfidentiality
policies [6, 14, 17, 27]. The implementations of these sys-
tems are similar to taint analysis systems used to enforce
data integrity. Instead of marking low-integrity inputs as
tainted and checking whether high-integrity operations use
tainted data, these systems mark confidential data as tainted,
and check whether tainted data is written to untrusted out-
puts. These systems propagate the taint attribute based on
whether an operand leaks “a lot” of information to the result
of an operation. In practice, the taint propagation policies
in these systems are quite similar to those in DTADI sys-
tems, though they are often tuned to propagate the taint at-
tribute more aggressively. The systems proposed by Egele
et al. [14] and by McCamantet al. [17] also employ some
static analysis to account for positive implicit flows, but do
not handle negative implicit flows without manual annota-
tion.

McCamantet al. [17] use taint analysis to quantitatively
bound how much information about a secret input may have
leaked. They track the taint attribute at the bit level, as
well as keeping a global leakage counter. The global leak-
age counter is used in several ways; in particular it is in-
cremented when a branch depends on a tainted input, thus
accurately bounding leakage due to positive implicit flows.
They calculate the upper bound of the number of bits leaked
as the number of tainted bits sent to the output, plus the
global leakage counter. Negative implicit flows are not
accounted for, unless annotations are added to increment
the global leakage counter. The total information leakage
bound is kept reasonable using some manual annotations to
pre-emptively mark bits as leaked at certain program points
before their taint attribute can be propagated to a larger
number of bits.

2.3 Information flow

There is a large body of work on information-flow secu-
rity. Sabelfeldet al. provide a good survey of the field [22].

Most prior work seeks to detect or preventany flow of
sensitive data to an insecure output. Vachharajaniet al.[24]
propose and implement a system to dynamically detect un-
permitted information flows in binary programs. Venkatakr-
ishnanet al. [25] propose a provably correct system to en-
force non-interference for a small well-structured language;

they are able to track implicit flows using the structure of
their proposed language.

Denning first proposed to quantitatively measure infor-
mation flow [12], defining the amount of information trans-
ferred in a flow as the reduction in uncertainty (entropy) of
a random variable. Other seminal work in quantitative in-
formation flow was done by Millen [18] and by Gray [15].

Clark et al. [10, 11] and Malacaria [16] propose frame-
works for measuring how much information is leaked by
programs written in simple imperative languages.

3 Influence: quantifying control

Our first step is to formally define a useful quantitative
measure of control. We begin by defining a measure we
call influence, based on an intuitive understanding ofcon-
trol. We then show that the influence of one variable over
another is exactly equal to the maximum information flow,
or channel capacity, between those two variables.

3.1 Program model

LetP be a program, or program structure, that takes a set
of inputs, and deterministically computes a set of outputs.
We partition the inputs into two sets:LOW, which is the set
of (low integrity) inputs which we wish to track, andHI,
which is the set of all other inputs that the program takes.
Formally, we have:P(LOW,HI) = OUT. While we allow
the domains ofLOW andHI to be infinite, we assume that
the domain ofOUT is finite. Our goal is to characterize how
much controlLOW has overOUT.

For simplicity, we representLOW, HI, andOUT, each
as a single scalar variable thatP reads from or writes to.
Other forms of input and output can be transformed to fit
this model;e.g. socket reads and writes can be represented
as reading some range of bytes fromLOW and writing to
some range of bytes inOUT.

3.2 Influence

Intuitively, how much controlLOW has overOUT is re-
lated to the number of different values thatLOW can cause
OUT to take on. IfOUT always takes on the same value, re-
gardless of the value ofLOW, thenLOW has no control over
OUT. At the other extreme, if selecting an appropriate value
of LOW can causeOUT to take on any value in the codomain
of P , thenLOW has maximal control overOUT.

We propose to measure the control thatLOW has over
OUT asinfluence, which we denoteC. We define the influ-
ence ofLOW overOUT, given a particular assignment ofHI,
as the log of the size of the range ofP for the given assign-
ment ofHI. For convenience, we take the log base 2, which
allows us to measure influence in bits. Formally:
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C(LOW→POUT|HI = hi) =
log |{out|∃low : P(low,hi) = out}|.

To show that this is intuitively a useful measure for con-
trol, we consider a few simple examples. IfOUT takes on
the same value regardless ofLOW, the influence is zero bits.
If selectingLOW can causeOUT to take on any value in the
codomain ofP , then the influence is exactly the number of
bits needed to representOUT. In cases whereLOW is able
to freely overwriten bits of OUT, thenLOW hasn bits of
influence overOUT.

Note however that influence is more informative than
tracking a binary attribute for each bit of whetherLOW can
affect that bit, because it takes dependencies between bits
into account. For example, suppose thatLOW can cause a
32-bit OUT to have a value of all zero-bits or all one-bits,
but no other values. AlthoughLOW can affect the value of
all 32 bits ofOUT, it has much less control overOUT as a
whole than ifLOW could causeOUT to take on all232 com-
binations of ones and zeroes. The influence measure reflects
this; sinceLOW can only causeOUT to take on one of two
different values, the influence is onlylog 2 = 1 bit.

3.3 Equivalence to channel capacity

We now show that that the influence ofLOW overP when
HI ishi is exactly the maximum information flow, orchan-
nel capacity, fromLOW to P , given thatHI is hi, and that
the fact thatHI = hi is known. Intuitively, the concepts
of control and information flow are tightly linked. As we
describe in Section 2, dynamic taint analysis has been used
both to propagate the flow of control and the flow of infor-
mation. Hence, it is unsurprising that a quantitative measure
of control turns out to be a well known quantitative measure
of information flow.

Using Denning’s definition of quantitative information
flow [12], the amount of information that flows fromLOW
to OUT, given the known assignmentHI = hi, is the ex-
pected reduction of entropy ofLOW, givenOUT, and given
the known assignment ofHI:
I(LOW→POUT|HI = hi) =
H(LOW|HI = hi) − H(LOW|OUT,HI = hi).

This in turn, is equivalent to the mutual information
of LOW and OUT given HI, which can be expressed as
H(OUT|HI = hi) − H(OUT|LOW,HI = hi). Using these
relationships, and the fact that the entropy ofOUT given
LOW andHI is zero (becauseP is a deterministic function),
we find that the information flow is simply the entropy of
OUT, given the assignment ofHI:

I(LOW→POUT|HI = hi)

= H(OUT|HI = hi) − H(OUT|LOW,HI = hi)

= H(OUT|HI = hi)

Channel capacity is the maximum information flow for
all probability distributions ofLOW [12]. In this case, the
probability distribution ofLOW that maximizes information
flow is the distribution that maximizes the entropy ofOUT.

Given the standard definition of entropy of a random
variableX asH(X) =

∑
p(X = x) log 1

p(X=x) , the en-
tropy ofOUT is maximized when all possible values ofOUT
are equally likely. In that case, the entropy ofOUT is equal
to the log of the number of values thatOUT can take on,
which is exactly the influence ofLOW overOUT.

Therefore the channel capacity of the information flow
from LOW to OUT is exactly equal to the influence ofLOW
overOUT:

max ∀µ : I((LOW ∼ µ)→POUT|HI = hi)

= C(LOW→POUT|HI = hi)

3.4 Influence variations

We next consider some useful variations of influence.

3.4.1 Partial influence

There are several cases where it is useful to consider influ-
ence considering a subset of possible values ofLOW, rather
than over the entire domain ofLOW. The range ofP when
considering only a subset of its domain is, of course, a sub-
set of the actual range. Therefore, the influence calculated
over a partial domain is alower boundof the actual influ-
ence. We refer to the influence calculated over a partial do-
main as partial influence.

The most obvious reason to use partial influence is in
cases where it is difficult or impossible to calculate the in-
fluence over the entire domain ofLOW, such as some cases
where the domain ofLOW is of infinite size. We use this
technique in Section 6 to reason about influence in large
x86 programs.

Partial influence can also be used to reason about apar-
ticular value ofLOW, or a particularclassof values ofLOW.
As we have defined it, influence isindependentof any ac-
tual value ofLOW; it is a property of the programP itself.
In Section 5.2 we show how partial influence can be used to
help classify whether a particular value ofLOW exploits an
overwrite vulnerability.

3.4.2 Max influence

So far, we have only defined influence as parameterized for
a particular value ofHI. This formulation is useful whenHI
is known,e.g., when dynamically determining the influence
for a particular execution of the program in question.

For applications whereHI is unknown, such as when
performing static analysis, it would be useful to consider a
variation of influence calculated overall possible values of
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HI. Usually, it would be most useful to find themaximum
influence over all values ofHI. This is a measure of the
mostcontrol thatLOW couldhave overOUT.

4 Influence analysis of problematic program
structures

In this section, we examine several program structures
that can cause DTADI tools to give incorrect results. For
each structure we give simple concrete examples, expla-
nations of when they occur in real programs, explanations
of why they are difficult for DTADI tools to handle, and
finally we show how the influence measure handles each
case. Note that the influence measures stated in this section
are calculated by manual inspection. We describe methods
for automatically calculating influence in Section 6, and use
those methods to analyze these and other programs in Sec-
tion 7.

In each concrete example, we examine the taint propaga-
tion fromLOW to OUT, and the influence ofLOW overOUT.
LOW andOUT are both 8 bit unsigned integers. For simplic-
ity, most of these examples do not depend onHI.

4.1 Sanity checks

We first examine sanity checks implemented by condi-
tional execution: cases whereOUT is only derived from
LOW afterLOW has been found to be within some accept-
able range.

Example 1Sanity check
if LOW < 16 then
OUT:= base +LOW

else
OUT:= base

end if

In Example 1,OUT is derived fromLOW only whenLOW
has been verified to be less than 16. Taint analysis tools do
not take such sanity checks into account, andOUT will be
considered tainted.2

To calculate influence, we observe that for anyLOW,OUT
can have one of 16 values, from (base+0) to (base+15).
Therefore, the influence ofLOW overOUT is 4 bits. While
LOW has some control overOUT, it does not have a full 8
bits of control over the 8 bitOUT.

We have observed such structures in real programs. In
particular, we have verified that the gcc C compiler com-
piles someswitch statements by performing a check on

2DTADI tools may only considerOUT tainted whenLOW passes the
sanity check, since otherwise the derivation fromLOW does not take place.

theswitch variable, and then using it to calculate an ad-
dress, which is used in an indirect jump. While the sanity
check makes this structure safe, DTADI tools detect this as
a security violation when the switch variable is tainted.

As far as we are aware, the only way to work around
such cases in current DTADI is to manually annotate the
code structure,e.g. to forceLOW to be untainted after the
sanity check, or to ignore the specific integrity violations
that are detected as a result ofOUT being marked tainted.
In addition to requiring manual intervention, care must be
taken not to introduce other inaccuracies with such annota-
tions.

4.2 Arithmetic restriction

Example 2Arithmetic restriction: mask
OUT := base+ (LOW & 0x0f)

A similar problem occurs when arithmetic is used to re-
strict the range of a calculation. Example 2 is equivalent
to Example 1, but instead of restricting what inputs may be
used via control-flow, it instead simply masks off the bits
that could causeOUT to take on an undesired value. It is
possible that someswitch structures may be compiled in
this way.

All DTADI tools that we are aware of would consider
OUT to be tainted in this case, which could lead to false pos-
itives. As with Example 1, this problem can be addressed
with manual annotations.

The influence ofLOW overOUT in this example is again
4 bits, which is expected since the end result of this example
is identical to Example 1.

Example 3Arithmetic restriction: identity functions
OUT1 := LOW XOR LOW
OUT2 := LOW & 0
OUT3 := 0; OUT3 := OUT3 + LOW; ...; OUT3 := OUT3 −
LOW

Example 3 shows several examples where, while a naı̈ve
analysis may conclude thatOUT is derived fromLOW, the
final value ofOUT actually does not depend onLOW at all.
In these examples, all threeOUT variables have the value 0
at the end of the program. Hence, these kinds of structures
can lead to false positives.

DTADI tools that we are aware of detect some of the
common structures of this nature, using a precompiled list
of idioms. In particular, many compilers exclusive-or a reg-
ister with itself to initialize it to zero, and all the DTADI
tools that we are aware of mark the result of this instruction
as untainted.
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However, in the general case, detecting such cases is
non-trivial. Especially considerOUT3 in the example above.
In this case, examining either assignment in isolation makes
it seem thatOUT3 is derived fromLOW. It is only by ex-
amining the higher-level structure of the program that we
can determine that the final value ofOUT3 does not depend
on LOW at all. We further examine this challenge in Sec-
tion 6.1.

The influence ofLOW over eachOUT variable is 0 bits,
since eachOUT can take on exactly 1 value, regardless of
the value ofLOW.

4.3 Table lookup

There are several ways in which low integrity inputs can
be used toselectother data. One of the most ubiquitous
ways is via a table lookup.

Example 4Table lookup
OUT:= table[LOW]

In Example 4,LOW is used as an index into a table. We
assume for the sake of this example that the contents of this
table are untainted. DTADI tools that we are aware ofop-
tionally markOUT tainted in this case, using a rule that data
loaded via a tainted pointer is also tainted. As we demon-
strate in Section 7.1.3, enabling this rule can cause taint
analysis to have false positives, and disabling this rule can
cause taint analysis to have false negatives.

The actual influence depends on the contents of the table,
which is not shown. For example, if each entry in the table
is unique, thenOUT can take on 256 unique values, and the
influence is 8 bits. Otherwise, the influence is less than 8
bits. In the extreme case where every table entry contains
the same value, the influence is 0 bits. In programs where
the contents of the table are not constant, the table can be
considered to be part ofHI.

This case occurs frequently in real programs. This tech-
nique is often used to translate input from one character set
to another. We have observed functions such astoupper
andtolower implemented in this way. We have also ob-
served this technique used to select a request-handling func-
tion pointer in samba (see Section 7.1.3).

4.4 Implicit flows

Another way that tainted data can be used to select un-
tainted data is via control flow.

In Example 5, the final value ofOUT is equal toLOW (as-
sumingLOW is 8 bits), yet there was never a direct assign-
ment fromLOW to OUT. In the information flow and taint
analysis literature, this is referred to as an implicit flow.

Example 5 Implicit flow
if LOW == 0 then
OUT:= 0

else ifLOW == 1 then
...

else ifLOW == 255then
OUT:= 255

end if

The influence ofLOW overOUT in this example is 8 bits,
sinceOUT can take on 256 unique values.

DTADI tools do not track implicit flows, and would con-
siderOUT to be untainted, which could lead to false neg-
atives. Some taint analysis tools that are used forconfi-
dentiality rather thanintegrity [14, 17] detectpositive im-
plicit flows, which are implicit flows that result from anex-
ecutedassignment that is control-dependent onLOW. How-
ever, none that we are aware of detectnegativeimplicit
flows, which are implicit flows that result from anunexe-
cutedassignment that is control-dependent onLOW, without
the assistance of manual program annotations.

To clarify, suppose the program is executed withLOW
set to 4. In that case, the assignment (OUT:= 4) is a pos-
itive implicit flow, and all the other assignments are neg-
ative implicit flows. A bound calculated over the positive
implicit flows would approximate that the previous 4 un-
taken branches could have each leaked at most 1 bit ofLOW.
However, because of the negative implicit flows (the other
branches that are never reached) the influence over, and in-
formation leakage to,OUT is actually all 8 bits ofLOW.

These types of structures can be used to translate input
from one format to another. In particular, keyboard input
is propagated via implicit flows in the Windows keyboard
driver [6].

5 Using influence to identify attacks

As we have shown in Section 4, influence is a useful the-
oretical tool for reasoning about how much controlLOW has
overOUT. However, in the context of detecting integrity vi-
olations, there are two questions that must be addressed:
how much influence signifies an integrity violation, and
how do we use influence to determine whether aparticu-
lar value ofLOW is malicious?

5.1 Quantitative integrity policies

As we discussed in sections 1 and 4, current DTADI sys-
tems propagate a binary taint attribute at a per-instruction
granularity. Ad-hoc rules are used to specify which in-
puts of a particular instruction have enough control over
each output of that instruction to justify propagating the
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taint attribute. Using influence, it is possible to specify an
integrity policy based on a quantitative threshold of how
much influence low-integrity inputs may have over given
high-integrity operations, rather than based on a collection
of taint-propagation rules. Due to their simplicity, we be-
lieve that quantitative policies will be easier to create and
understand. Additionally, sensitivity of such policies can be
tuned by simply adjusting a numeric threshold rather than
attempting to modify or create new qualitative taint propa-
gation rules.

As an example, we consider one of the types of at-
tacks that DTADI systems are used to detect: when a low-
integrity input overwrites a function pointer or return ad-
dress. The policy used in current systems is specified
roughly as “dataderived from low-integrity inputs should
not be loaded into the program counter,” wherederivedis
defined by the collection of taint-propagation rules. Using
influence, we can specify a quantitative policy such as “low-
integrity inputs should not have more thant bits of influence
over a value loaded into the program counter,” wheret is a
simple numeric threshold.

Selecting a thresholdt for this policy is fairly straight-
forward. It is common for untrusted inputs to be able to
specify a function pointer from a small set of valid values
(e.g., handlers for different request types), so settingt to
zero would certainly result in false positives. To our knowl-
edge, though, situations where a low integrity input is able
to legitimately choose from more than a handful of pointers
are rare. Hence, settingt to a small value such as 6 bits (al-
lowing the low integrity input to select from up to26 = 64
different choices), would likely result in few false positives.
In theory, any non-zero value fort could result in false neg-
atives if a vulnerability allowed the input to overwrite only
a few bits of the target pointer. However, we are unaware of
any such vulnerabilities, and such a vulnerability would be
relatively challenging to exploit in a useful way.

Another advantage of using a threshold-based integrity
policy is that different thresholds may be set for different
high integrity operations. For example, while it is common
for a low integrity input to legitimately have a few bits of in-
fluence over a function pointer, a low integrity input should
never have any influence over a return address.

5.2 Identifying malicious values of low-
integrity inputs

Influence is a property of a program, not a property of a
particular input value. Hence, in the general case, influence
can be used to identify a vulnerability, but does not indicate
whether a particular valuelow of LOW is an attack.

One way to use influence to determine whether a partic-
ular value ofLOW is an attack is to calculate the influence
overOUT for someclassof value ofLOW, to whichlow

belongs. This is done by calculating the the influence for a
partial domain ofLOW, as described in Section 3.4.1.

For example, the security violation in most overwrite at-
tacks is that a calculated pointer used in a memory-store op-
eration points to an unintended destination;e.g. outside of
the intended buffer in the case of a buffer overflow. Lever-
aging this observation, we can determine whether the value
LOW results in a buffer overflow by calculating the influence
overOUT for the set of values ofLOW that would cause all
memory store operations to write to the same address as
low does. Whenlow is a value that results in a buffer
overflow, this influence measure will be high. Whenlow is
a value that does not result in a buffer overflow, inputs that
write outside of the intended buffer will not be considered in
the influence calculation, and the calculated influence will
be low (or zero).

6 Measuring influence in binary programs

We next investigate how to automatically measure influ-
ence in real binary programs. We show that while it is pos-
sible to leverage previous work in taint analysis and infor-
mation flow analysis, all previous approaches we are aware
of are forced to over-approximate, and in practice require
manual annotation to calculate useful bounds. We propose
a new approach, which is the first that can calculate a sound
lower-bound of influence. It can also calculate an upper-
bound that is sound for certain cases and useful in practice,
and in some cases can soundly calculate the exact influence.

6.1 Transfer-functions are forced to over-
approximate

Recall again that influence is defined as the log of the
size of the range of a programP , for some particular assign-
ment to high-integrity inputsHI. We briefly discuss several
possible approaches for calculating influence, using Exam-
ple 6 as a motivating example. In this example,OUT can
only take on one possible value: 0x0. As a result, the influ-
ence ofLOW overOUT is 0 bits.

Example 6 Inter-dependent operands
if predicate(LOW) then

a := 0x01; b := 0x10
else

a := 0x10; b := 0x01
end if
OUT:= a & b

We first consider the approach of usingtransfer func-
tions, which is the approach of all previous mechanisms
of which we are aware for calculating taint or information
flow. In these approaches, a transfer function is defined for
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each statement in the language, which defines how execu-
tion of the statement affects the tracked attribute for each
variable. One way of utilizing this approach, which is the
most analogous to previous approaches for quantitative in-
formation flow tracking, is to track the number of different
values that each variable can take on. In Example 6, analy-
sis of the if-then-else structure would determine thata andb

can each take on two different values. With only this knowl-
edge, a transfer-function of the final assignment toOUT is
forced to over-approximate thatOUT could take on2∗2 = 4
different values, which would in turn over-approximate the
influence as 2 bits.

Greater accuracy can be achieved by tracking the actual
set of values that each variable can take on, rather than only
the size of the set. One implementation of such an approach
is value-set analysis [2], which is a method for calculating
memory-alias relationships in binary programs. Unfortu-
nately, this approach is still forced to over-approximate.In
this example, analysis of the if-then-else structure would
determine thata and b can each take on the values 0x01
and 0x10. A transfer-function analysis of the final assign-
ment would conclude thatOUT can take on three different
values: 0x01 & 0x01 = 0x01, 0x10 & 0x10 = 0x10, and
0x10 & 0x01 = 0x0. As a result, this approach would over-
approximate the influence as 1.6 bits.

Example 3 in Section 4.2, in whichLOW is added to a
variable and later subtracted again, is another example of
this type of problem. A transfer-function that analyzed each
operation independently would conclude that the influence
is non-zero, when in fact it is zero.

Because of these types of problems, transfer-function-
based approaches are not able to compute a sound lower
bound of information flow, and in practice often require
manual annotations to compute a useful upper bound.

6.2 Our approach: end-to-end analysis

To avoid over-approximation, we analyze the end-to-end
derivation ofOUT as a whole, rather than analyzing each
individual step along the way. Our high-level strategy is to
soundly convert some or all of the program to a formula, and
then use a decision procedure to reason about the range of
OUT, given the particular assignment ofHI. For programs
with a finite number of possible execution paths, and given
enough computation time, this approach can theoretically
compute theexactinfluence with guaranteed accuracy. The
challenge to this approach is to calculate useful bounds of
the influence on real programs, in a reasonable amount of
time.

6.2.1 Converting the program to a formula

The first step is to generate a formula that accurately models
the program, and which a decision procedure can reason

about. We here briefly describe the techniques we use to
generate such formulas. The details of these techniques are
described in our previous work [1,5,19].

At a high level, we first convert some or all of the IA-32
binary program to an intermediate representation (IR) with
a smaller instruction set, which makes all side-effects (such
as setting and checking condition flags) explicit. If neces-
sary, we convert the program to be loop-free by unrolling
loops up to a maximum of some fixed number of times. Fi-
nally we compute the weakest precondition [13] over the
program. Where we are unable to model the entire behav-
ior of the program, guards are inserted to ensure soundness,
effectively constraining the domain ofLOW to those values
which the formula can reason about with guaranteed accu-
racy.

Generating a formula that accurately models an entire
binary program can be quite challenging. Indirect jumps
make it difficult to statically determine all possible con-
trol flow paths. Modeling loops that could execute an un-
bounded number of times requires finding loop invariants,
which is an open research problem. While system calls can
be modeled statically, using a providedHI to specify aux-
iliary inputs, doing so requires significant implementation
effort.

As in our previous work [5, 19], we address these prob-
lems by only modeling the execution paths weare able
to analyze, and using guards to reject formula inputs that
would execute an unmodeled execution path. For large pro-
grams, we currently model exactlyoneexecution path- the
path taken in an actual execution of the program. We lever-
age an execution trace obtained from the TEMU dynamic
taint analysis tool [1, 14, 27] to greatly simplify the prob-
lem. The execution trace contains the address of each ex-
ecuted instruction, the instruction itself, the values of each
operand of each instruction, and the taint attribute of each
operand of each instruction.

The resulting formula accurately relates the program in-
puts to the program outputs, for inputs that would follow
the same execution path. Thus, the formula domain is lim-
ited to such inputs, and contains guards to reject inputs out-
side of this domain. The formula is of the desired form:
P(LOW,HI) = OUT. HI is obtained from the execution
trace.LOW corresponds to inputs that were marked tainted
in the execution trace.OUT may be an intermediate or final
value of any program state, the value of program output, or
any combination.

6.2.2 Determine how many valuesOUT may take on

The next step is to find how many valuesOUT may take on.
We are not aware of any existing tools that can solve this
problem directly. We have developed some strategies for
reasoning about how many valuesOUT may take on using
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current decision procedures.
We first give the formula to the decision procedure. We

then pose queries to the decision procedure, which consist
of predicates over the free variables; in our caseLOW and
OUT. The decision procedure responds to these queries ei-
ther that the predicate isvalid, indicating that it holds for all
values ofLOW andOUT, or responds with a counterexample:
an assignment toLOW andOUT that causes the predicate to
be false.

Given this interface, we have developed the following
query strategies:

• Ask for examples ofOUT. The most straight-forward
technique is to simply query the decision procedure for
a value ofOUT that satisfies the formula, then query for
another value ofOUT that satisfies the formula and has
not already been found, continuing to query the deci-
sion procedure either until no more values ofOUT can
be found (which will take many queries for high influ-
ence values), or until we have found enough values to
establish that the influence is higher than some given
threshold.

• Positive range queries. We expect that values that
OUT may take on will often occur in contiguous
ranges. Once we have found a value thatOUT may
take on, we can perform binary searches to establish
the left and right boundaries of such a range. Queries
posed to the decision procedure will be of the form
“All values from proposed-left-boundary to proposed-
right-boundary ofOUT are satisfiable.” Each boundary
can be found using a number of such queries less than
the log of the size of the co-domain. Note that this
type of query requires a universal quantifier, which is
unsupported by many decision procedures.

• Negative range queries.Similarly, once we have es-
tablished a value ofOUT maynot take on, we can per-
form a binary search to find the left and right bound-
aries of the encompassing contiguous range of values
thatOUT may not take on. Unlike the positive range
query approach, this approach does not require univer-
sal quantifiers, allowing it to be used on more decision
procedures.

• Partitioning. We can reason about parts ofOUT in-
dependently to help establish an upper bound of influ-
ence. For example, ifOUT is 32-bits, we can establish
whether each individual bit can take on values of both
0 or 1 in at most 64 queries. The influence ofOUT as
a whole can be no more than the number of bits that
can take on both 0 and 1 values. Tighter bounds can
be achieved at greater execution cost by using larger
granularities, such as analyzing each byte instead of
each bit.

• Random sampling. Another approach is to choose
random values ofOUT, and query the decision proce-

dure whether it is possible to satisfy the formula with
each of those values. We can then use the fraction of
these values that are satisfiable to estimate what frac-
tion of values in the whole codomain ofP are satisfi-
able. This technique is useful when a significant frac-
tion of the codomain ofP is satisfiable;i.e. when the
influence is large. For example, when analyzing a po-
tential overwrite attack, if the attacker has 30 bits of
influence over a 32 bitOUT, 25% of the codomain is
satisfiable, and only a few samples are needed for a
statistically significant result. However, when the in-
fluence is only a few bits, too many random samples
would be needed to achieve a tight influence estimate,
though we could still use this approach to set a proba-
bilistic upper bound of influence.

We currently implement the strategies of asking for ex-
amples, and negative range queries. We first attempt to get
up to some thresholdt number of example values ofOUT.
If the decision procedure is not able to find any more ex-
amples after findingx examples, then we are done, and the
influence is exactlylog x with respect to the formula, and
at leastlog x with respect to the program. In cases where
the formula is complete;i.e. models all relevant parts of the
program; then the influence is exactlylog x with respect to
the program.

If we find t examples, we stop asking for individual ex-
amples. At this point, we have established that the influence
is at leastlog t both with respect to the formula and with
respect to the actual program. We next compute an upper
bound using the negative range query strategy to find the
lowest valueOUT can take onvl, and the highest valueOUT
can take onvh. We then know that the influence is no more
thanlog(vh − vl).

7 Evaluation

We have implemented the method of calculating influ-
ence described in Section 6. We currently query for up to
64 values ofOUT, meaning that we find the exact influence
when the influence is up to 6 bits (6 = log 64), and other-
wise establish a sound lower bound of 6 bits of influence.

We first apply it to example programs from Section 4.
Each of these programs was written as a C program and
compiled using gcc. For these experiments we used 32-
bit variables forLOW andOUT instead of 8-bit variables.
We then use the tool on larger constructs known to cause
problems for DTADI systems: aswitch statement, and a
case-conversion using thetoupper function. Finally, we
demonstrate the scalability and usefulness of our approach
on two real programs: samba, and Microsoft SQL server.
Using our influence measurement, we are able to verify that
an alarm generated by the TEMU [1,14,27] DTADI system
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alarm in samba is a false positive, and that an alarm in SQL
server is a true positive.

7.1 Results

We summarize our results in Table 1. For each exper-
iment we list the program or program-construct evaluated,
and how many execution paths are accounted for in the for-
mula. Where possible, we construct a formula including all
paths. In these cases, both the lower and upper influence
bounds are sound. In other cases, we model only the exe-
cution path taken in a given execution trace, as described in
Section 6. We next list the time spent performing decision-
procedure queries, the measured exact influence or influ-
ence bounds, and the lowest and highest value thatOUTmay
take on. Finally, as a point of comparison, we list the actual
influence as established by manual inspection.

7.1.1 Baseline experiments

The first two experiments are provided as a baseline refer-
ence. In the “No propagation” experiment,OUT does not
depend onLOW at all. In the “Direct copy” experiment,
LOW is simply copied toOUT. Our measured results are as
expected: the influence is found to be exactly 0 in the first
case, and between 6 and 32 in the latter case.

The next group of experiments are analogous to the ex-
amples from Section 4. In the table lookup test, each of the
four bytes ofLOW are masked with 0x0f and used as an in-
dex into a table with values 0x10 to 0x1f. For each of these
experiments, we are able to calculate the exact influence or
useful bounds of the influence within a few seconds.

7.1.2 Sanity checked data: switch statements

The gcc compiler, and probably many other compilers,
compiles someswitch statements to compute a pointer
from theswitch variable, and then use that pointer as an
indirect jump target. Sanity checks ensure that this opera-
tion is safe, but this results in a false positive for taint anal-
ysis tools when the table lookup policy is enabled and the
switch variable is tainted. We confirm that TEMU raises
an alarm for this case. However, our influence measure-
ment verifies thatLOW’s actual influence over the indirect
jump target is only a few bits.

7.1.3 Solving the taint analysis table lookup catch-22

As we described in Section 4, whether data loaded via a
tainted pointer should be marked tainted is a configurable
policy in most DTADI tools. In real programs, this typically
happens when tainted data is used as an index into an un-
tainted table. We next demonstrate that enabling the table-
lookup policy can cause DTADI tools to have false posi-

tives, that disabling the table-lookup policy can cause them
to have false negatives, and that the influence measurement
can be used to accurately reason about these problematic
cases.

Table-lookups are often used to convert data from one
character set to another. As a result,disabling the table
lookup propagation policy in DTADI tools can lead to false
negatives: tainted data translated in such a way is marked
as untainted. We evaluate the gnu libctoupper function
as an example of such a translation. In this experiment, we
translate each of the four bytes ofLOW via toupper, and
evaluate the taintedness and influence of the result. When
collecting the execution trace for this experiment, we pro-
vide the input “aaaa”. As expected, when the table-lookup
policy is disabled, TEMU marks the result as untainted. Our
influence measurement confirms that the input has at least
6.1 bits of influence over the resulting value, and could have
up to 28.6 bits of influence of the resulting value for the ex-
ecution path examined. The actual influence is higher, due
to the unanalyzed execution path where the input bytes are
not lower case characters. Nonetheless, the measured influ-
ence bounds are sufficient to show that the result is heavily
influenced byLOW.

Table-lookups can also be used to select from a small set
of values, by restricting the index to a small set of values,
or by having duplicate entries in the table. As a result,en-
abling the table lookup propagation policy in DTADI tools
can lead to false positives. In particular, we have observed
this to be the case in samba, which we evaluate in Sec-
tion 7.1.4.

7.1.4 Real-world programs

We next use our influence measurement tool on two real-
world programs.

Samba is an open-source implementation of the Win-
dows SMB protocol. Samba uses data from a network re-
quest to calculate an index into a table of function pointers,
which causes a false positive in TEMU when that function
pointer is called. Using our influence measurement tool, we
are able to verify that the sanity checks in the program make
this operation safe: the input has only a few bits of influence
over the function pointer. As a further verification step, we
verified that all of the values that the function pointer can
take on are within the code segment of the program.

Microsoft SQL server is a closed-source database, and
was the target of the well known Blaster worm. Our tool
verifies that the alarm generated by TEMU when SQL
server is attacked by the Blaster exploit is a true positive.
Specifically, we find that the input has at least 6 bits of in-
fluence over a return address, and could have as much as a
full 32 bits of influence over the return address:i.e., total
control. As far as we are aware, the true influence is indeed
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Program Paths Run Measured Influence Measured Value Actual Influence
Analyzed Time (s) (bits) bounds (bits)

No propagation all (1) .07 0.0 0x0 to 0x0 0
Direct copy all (1) 1.1 6.0 to 32.0 0x0 to 0xffffffff 32
Sanity checked (Ex. 1) all (2) .54 4.0 0x0 to 0xf 4
Masked (Ex. 2) all (1) .28 4.0 0x0 to 0xf 4
Plus-minus (Ex. 3) all (1) .23 0.0 0x0 to 0x0 0
Table lookup (Ex. 4) all (1) 5.5 6.1 to 27.9 0x10101010 to 0x1f1f1f1f 16
Implicit flow (Ex. 5) all (6) .57 2.8 0x0 to 0x6 2.8
switch (ijmp) 1 (of 1) 1.9 4.2 0x401078 to 0x4010de 4.2
toupper 1 (of 2) 94 6.1 to 28.6 0x41414141 to 0x5a5a5a5a 31.4
samba (fn ptr table) 1 (of many) 73.6 3.3 0x807de90 to 0x8088ea0 3.3
SQL server (ret addr) 1 (of many) 17346 6.0 to 32.0 0x0 to 0xffffffff ∼ 32

Table 1. Influence measurement results.

32 bits.

8 Discussion and future work

8.1 Accounting for unknown HI

In Section 3.3, we showed that influence ofLOW over
OUT is equal to the maximum information flow, or chan-
nel capacity, fromLOW to OUT, whenHI is known. This
assumes that the provider of the untrusted inputLOW (the
potential attacker), knows the complete state of the rest of
the program. This is a pessimistic assumption.

In cases whereHI is unknown, the influence ofLOW over
OUT does not change;P still has the same range. However,
the information flow fromLOW toOUT may belessthan the
influence ofLOW overOUT. In practical terms, this comes
about whenLOW can influenceOUT to take on different val-
ues, but some uncertainty remains aboutwhich valueOUT
will take on for a given value ofLOW.

A notable real-world example is the use ofpointer en-
cryption [8]. The idea in pointer encryption mechanisms is
to store pointers in an encrypted form, and decrypt them just
before dereferencing them. Hence, an attacker who is able
to overwrite the encrypted pointer cannot predict the value
of the unencrypted pointer, generally causing the program
to crash when the pointer is unencrypted and dereferenced.
If an overwrite vulnerability exists that allows an attacker
to overwrite a 32 bit encrypted pointer, then the influence
of LOW overOUT will be 32 bits. However, without some
knowledge of the encryption key (which is part ofHI), the
maximum information flow fromLOW to OUT is 0 bits.

In general, we believe that the difference between influ-
ence and channel capacity ofLOW overOUT whenHI has
some uncertainty can be considered a measure of theun-
predictabilityof LOW’s influence overOUT. Further work is
needed to investigate this relationship.

8.2 Improving performance and accuracy
of DTADI systems

As we showed in Section 4, the inaccuracies of DTADI
systems stem largely from manually generated, ad-hoc taint
propagation policies, defined over one instruction at a time.
We believe that these problems can be addressed by us-
ing the techniques presented in this work toautomatically
generate taint propagation policies, based oninfluence. In
other words, we may be able to combine the advantages of
our current end-to-end calculation approach with the perfor-
mance advantages of the transfer-function-based approach
described in Section 6.1.

The premise of this approach is to identify blocks of
code, such as a function, that have a single entry point and
single exit point. For each such block of code, themaximum
influence(See Section 3.4.2) of each variable read could be
computed for each variable written. When the DTADI sys-
tem is about to enter one of these pre-computed code blocks
at run-time, the summary can be used to determine what
the taint value of each written variable should be when the
block exits.

This approach could improve the accuracy of current
DTADI systems, since interactions within the block, such
as sanity checks, implicit flows, and arithmetic interactions,
would be accounted for. If desired, this approach could
also be used to propagate a quantitative or stratified taint at-
tribute instead of a binary taint attribute, which would help
keep track of cumulative effects between blocks, and allow
for quantitative integrity policies (Section 5.1).

This approach can also improve the performance of
DTADI systems, since the taint propagation summary for
a block may be less expensive to execute than propagating
a taint attribute for each instruction within the block.

There are, however, several challenges that must be ad-
dressed before this approach can be implemented. Some of
these challenges, and potential solutions are:

• The code of the target program must be analyzed stati-
cally. Code that cannot be found or analyzed statically,
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such as dynamically generated code, must still be in-
strumented at run-time (though these summaries can
of course be saved for subsequent program runs).

• For our current influence-calculation techniques to
work, we must be able to transform the code block to
an equivalent loop-free program, and we must be able
to resolve the set of possible targets of indirect jumps.
An imperfect analysis may suffice though, using run-
time guards to detect if a loop executes more times than
the static analysis unrolled it, or if an indirect jump
transfers control to an unaccounted-for destination.

• Execution of the block must be atomic, or equivalent
to atomic. For example, suppose a pre-emptive thread
scheduler transfers control to a different thread while a
block is executing. The taint status of each variable is
at that point not in a well-defined state. When control
returns to the first thread, any assumptions made in the
static analysis may have been invalidated. Note that
this is only a problem if the threads share data; oth-
erwise the block execution can be modeled as atomic.
Some approaches to addressing this problem are to ei-
ther forceatomicity,e.g. by disabling interrupts, or to
implement a recovery mechanism for when an unex-
pected control transfer occurs.

• We do not statically know which inputs to the block
will have been influenced byLOW, and we need to ac-
count for all possible values of the uninfluenced inputs.
Depending on the desired accuracy of the influence
calculation,e.g. if we want a sound lower or upper
bound, it is unclear how to statically account for all of
the possible combinations in a scalable way.

Despite these challenges, we believe that this approach is
a promising direction for improving the accuracy and per-
formance of DTADI systems.

9 Conclusion

In this work we have proposedinfluenceas a quantita-
tive measure of how much control one variable has over an-
other. We have shown that influence is a useful theoretical
tool for reasoning about control. We have proposed and
implemented an end-to-end technique for measuring influ-
ence in binary programs. We have used our influence mea-
surement technique on a number of synthetic and real-world
programs, demonstrating its usefulness and practicality.

We believe that influence can be used to greatly improve
the state of using dynamic taint analysis to enforce data in-
tegrity policies. As a theoretical tool, it can be used to help
reason about policies. As a practical tool, we have demon-
strated that influence can be used to perform a deeper anal-
ysis of generated alerts, thus vetting false positives. We

believe that our techniques can also be extended to sup-
plement or replace the manually written taint propagation
rules used in today’s DTADI systems with automatically
generated propagation rules that improve the system’s per-
formance and accuracy.
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