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Abstract The systems then monitors high-integrity operations to de-
tect when they are about to use tainted data. Such systems
A number of systems empldynamic taint analysiso have been found to be useful for detectovgrwriteattacks;

detect overwrite attacks in commodity software. These sysfor example when a buffer overflow allows an attacker to
tems are based on the premise that low-integrity inputs overwrite a function pointer, that function pointer will be
should not control values such as function pointers and re- marked as tainted, and the attack detected when the func-
turn addresses. Unfortunately, there are several program- tion pointer is dereferenced.
ming constructs that can cause false positives and false neg A challenge in implementing DTADI systems is that in
atives in these systems, which are currently handled by man+eal-world programs, low integrity inputdo legitimately
ual annotation, ad-hoc rules, or not at all. exertsomecontrol over high-integrity operations. In such

In this work we propose to usdannel capacitya quan- cases, the low integrity input is usually used to select from
titative measure of information flow, as a quantitative mea- a relatively small set of legitimate values. If a DTADI sys-
sure of control. When measuring control, we refer to this tem were to propagate the taint attribute &meryopera-
measure amfluence We use influence as a theoretical tool tion where a tainted operand could affect the output value, a
to formally investigate programming constructs known to be large number of integrity violations would be detected that
problematic for dynamic taint analysis. are not actually attacks;e. the system would have many

While calculating influence in arbitrary programs is un- false positives. For example, a function pointer may be set
decidable in the general case, we propose and implemento point to one of a few request-handling functions, depend-
practical techniques for automatically bounding and prob- ing on a request-type specified by a low-integrity input.
abilistically estimating influence in x86 programs. We show  Current DTADI systems address this challenge by only
that this tool is able to automatically find useful influence propagating the taint attribute for operations where theain
bounds in code constructs known to be problematic in dy-is deemed to have “a lot” of control over the output. Typi-
namic taint analysis. We also use it to analyze a dynamic cally, this meanslirect assignment,e. data movement and
taint analysis alert in samba, showing that it is a false pos- arithmetic instructions.Indirect assignments, such as via
itive, and another alert in SQL Server, showing thatitis a i f -t hen- el se structures, are ignored because they typi-
true positive. cally give the input relatively little control over the vawf

the assignmeht Assignment via indexing operations, such
as loading data via a tainted pointer, are also sometimes ig-

1 Introduction nored due to the prevalence of using an untrusted input to
calculate an offset into a relatively small table. Condiulgr
again the case where a low-integrity input is allowed to se-
lect a function-pointer, these taint propagation policas
prevent false positives when the function-pointer is gekbc
via ani f - t hen- el se statement or loaded from a table,
while still detecting if the input is able to directly oventer
the function pointer via a buffer overrun.

There are two fundamental problems with the taint prop-
agation policies in current DTADI systems. The first prob-
lem is that they are manually specified in an ad-hoc manner,

Dynamic taint analysis has lately been a popular tech-
nigue for enforcing Biba low water-mark [4] data integrity
policies in commodity software [7, 9, 20, 21, 23]. In this
work, we refer to such systems as Dynamic Taint Analysis
for Data Integrity, or DTADI, systems. The premise be-
hind DTADI systems is that low-integrity inputs, such as
data read from the network, should not exert control over
high-integrity operations, such as dereferencing a foncti
pointer. In such systems, low-integrity inputs are marked a
tainted. The output of every program operation is marked  1pgirect assignments are also relatively challenging dokr as they
as tainted if any operand is tainted, and untainted otherwis require control-flow analysis




based on an intuitive understanding of which operands exertand computationally expensive for large programs. How-
“a lot” of control over the result. The resulting policies do ever, we build a tool that can exactly measure influence in
not work in every situation, and can grow complex as spe- small loop-free programs, and on general x86 programs can
cial cases and exceptions are added to improve accuracybe used to calculate useful lower bounds, upper bounds, and
For example, most current DTADI systems recognize someprobabilistic estimates of influence. This tool does not suf
common program operations where the output does not defer from the problems of DTADI taint propagation policies
pend on the input, such as when a registeras ed with of requiring ad-hoc manual propagation rules, and it can in
itself, or bit-masked with zero. To our knowledge, such ex- theory be evaluated over arbitrarily large program stmastu
ceptions have been added to DTADI systems manually, ininstead of operating at the per-instruction level. Theeutrr

an on-demand basis when such operations are found to othtool is too computationally expensive to calculate the influ
erwise cause inaccuracy. ence of every low-integrity input over every high-integrit

The second problem with the taint propagation policies operation in a real-world program, and does not aim to re-
in current DTADI systems is that they typically operate place DTADI systems. However, it is practical for perform-
at a very fine-grained levek.g. individual x86 instruc-  ing adeeperanalysis of alerts generated by DTADI systems.
tions, or even individual micro-code instructions that the We use it to examine two alerts generated by a DTADI tool
x86 instructions are first broken into. At this level, im- on real-world x86 programs, confirming an alert in SQL
portant interactions between instructions and cumulative ~ Server as an integrity violation, and showing that an alert
fects of instructions are lost. For example, consider thein Samba is likely a false positive. In Section 8 we sug-
program: if (a==0) b :=0; if (a == 1) gest future directions for using our techniques to improve
b:=1; ...; if (a == 255) b:= 255. Atthe the accuracy and performance of DTADI systems.
level of analyzing the individuatondi t i onal - j unp, The contributions of this work are:

j unp, andnove x86 instructions that this program would
be compiled into, there is no interaction betweeandb.
At the level of examining an individualf structurea ap-
pears to have little control over the valuetnfa effectively
selects one of two values fdr. Only by looking at the e We use influence to formally investigate program
whole sequence off statements can we see thas effec- structures that are problematic for systems that use dy-
tively copied tob. namic taint analysis to enforce data integrity (DTADI).

The result of these problems is that current DTADI sys-
tems suffer from both false positives and false negatives.
False positives occur when data used in a high-integrity op-
eration is derived from low-integrity inputs, after beingne
strained by arithmetic manipulation or sanity checksto en- e We use our influence measurement tool to analyze
sure the resulting value is within an expected range. False alerts generated by a DTADI system on real-world

e We propose channel capacity as a formal quantitative
measure of control. In this context, we refer to channel
capacity asnfluence

e We build a tool that can automatically reason about in-
fluence (and equivalently, channel capacity) in binary
x86-programs.

negatives occur when low-integrity inputs effectively eon
trol the value of another variable, but in an indirect way
such as via implicit data flows. The previous example using

i f-then- el se statements is such an example. 2

software. We find that one is a false positive, and ver-
ify the other as a true positive.

Related Work

In this work we show that channel capacity, a measure
used to formally quantify how much information flows from 2.1 Dynamic taint analysis for data in-
one object to another within a program, is also a useful tool tegrity
for formally quantifying how muctcontrol one object has
over another within a program. In the context of measuring A number of systems have been proposed to perform dy-
control we refer to this measure asfluence As a theo-  namic taint analysis to enforce Biba low water-mark data
retical tool, influence provides a formal basis for thinking integrity policies on x86 binary programs, for the purpose
about and evaluating current DTADI taint propagation poli- of detecting overwrite attacks [7,9, 20, 21, 23]. While thes
cies. In Section 4, we use influence to formally reason abOUtapproaches work well for many programs, they propagate
program structures that are difficult to reason about with the taint attribute at the instruction level, using ad-hdes
current DTADI taint propagation policies. about which operands exert “a lot” of control over the result
We also demonstrate methods fartomaticallyreason-  of each operation. As a result, none employ general solu-
ing about influence in binary x86 programs. Unfortunately, tions for handling sanity checks, implicit flows, or idewtit
calculating the exact influence of one object over another infunctions. These systems do recognize and handle some
an arbitrary x86 program is undecidable in the general casecommon-cases of these problems.



Xu et al.[26] implement a system to rewrite the C source they are able to track implicit flows using the structure of
code of a program to perform dynamic taint analysis. They their proposed language.

detect implicit flows that occur in some C-level if-theneels Denning first proposed to quantitatively measure infor-

structures. mation flow [12], defining the amount of information trans-

ferred in a flow as the reduction in uncertainty (entropy) of

2.2 Dynamic taint analysis for data confi- a random variable. Other seminal work in quantitative in-
dentiality formation flow was done by Millen [18] and by Gray [15].

Clark et al.[10,11] and Malacaria [16] propose frame-

Dynamic taint analysis has also been used by severaWorks for measuring how much information is leaked by
systems to enforce Bell-LaPadula [3] damanfidentiality ~ Programs written in simple imperative languages.
policies [6,14,17,27]. The implementations of these sys-
tems are similar to taint analysis systems used to enforce3 Influence: quantifying control
data integrity. Instead of marking low-integrity inputs as
tainted and checking whether high-integrity operatiores us  Quir first step is to formally define a useful quantitative
tainted data, these systems mark confidential data asdainte measure of control. We begin by defining a measure we
and check whether tainted data is written to untrusted out-call influence based on an intuitive understandingaoin-
puts. These systems propagate the taint attribute based oftol. We then show that the influence of one variable over
whether an operand leaks “a lot” of information to the result another is exactly equal to the maximum information flow,

of an operation. In practice, the taint propagation padicie or channel capacitybetween those two variables.
in these systems are quite similar to those in DTADI sys-

tems, though they are often tuned to propagate the taint at3.1  Program model
tribute more aggressively. The systems proposed by Egele

etal.[14] and by McCamaneét al.[17] also employ some Let P be a program, or program structure, that takes a set
static analysis to account for positive implicit flows, bat d  of inputs, and deterministically computes a set of outputs.
not handle negative implicit flows without manual annota- \we partition the inputs into two seteOW which is the set
tion. _ _ o of (low integrity) inputs which we wish to track, ard ,
McCamantet al. [17] use taint analysis to quantitatively which is the set of all other inputs that the program takes.
bound how much information about a secret input may have pormally, we haveP(LOWHI ) = OUT. While we allow
leaked. They track the taint attribute at the bit level, as the domains of. OWandHI to be infinite, we assume that
well as keeping a global leakage counter. The global leak-the domain ofoUT is finite. Our goal is to characterize how
age counter is used in several ways; in particular it is in- much control. ONhas ovelOUT.
cremented when a branch depends on a tainted input, thus gqy simplicity, we represertOW HI , and OUT, each
accurately bounding leakage due to positive implicit flows. as a single scalar variable th&treads from or writes to.
They calculate the upper bound of the number of bits leakedother forms of input and output can be transformed to fit
as the number of tainted bits sent to the output, plus thethis modele.g. socket reads and writes can be represented

g|0ba| |eakage counter. Negative Imp|ICIt flows are not as reading some range of bytes frar®Wand Wr|t|ng to
accounted for, unless annotations are added to incremengome range of bytes i@UT.

the global leakage counter. The total information leakage
bound is kept reasonable using some manual annotationst@ 2 Influence
pre-emptively mark bits as leaked at certain program points

before their taint attribute can be propagated to a larger Intuitively, how much controLONhas overOUT is re-

number of bits. lated to the number of different values tha®Wcan cause
QUT to take on. IfOUT always takes on the same value, re-

2.3 Information flow gardless of the value ¢fOW thenL Owhas no control over
QUT. At the other extreme, if selecting an appropriate value

There is a large body of work on information-flow secu- of LOWcan caus@®UT to take on any value in the codomain
rity. Sabelfeldet al. provide a good survey of the field [22].  of P, thenLOWhas maximal control oveDUT.

Most prior work seeks to detect or prevemty flow of We propose to measure the control th&Whas over
sensitive data to an insecure output. Vachharajaail.[24] QUT asinfluence which we denot€. We define the influ-
propose and implement a system to dynamically detect un-ence ofL ONoverCQUT, given a particular assignmentlidf ,
permitted information flows in binary programs. Venkatakr- as the log of the size of the range®ffor the given assign-
ishnanet al.[25] propose a provably correct system to en- ment ofHl . For convenience, we take the log base 2, which
force non-interference for a small well-structured larggia  allows us to measure influence in bits. Formally:



C(LOM=pOUTIH = hi ) =
log [{out |3l ow: P(I ow, hi ) = out }|.

To show that this is intuitively a useful measure for con-
trol, we consider a few simple examples.QfT takes on
the same value regardlessld®W the influence is zero bits.
If selectingLOWcan caus@UT to take on any value in the
codomain ofP, then the influence is exactly the number of
bits needed to represe@UT. In cases wher&OWis able
to freely overwriten bits of QUT, thenLOWhasn bits of
influence oveOUT.

Note however that influence is more informative than
tracking a binary attribute for each bit of whetheg®wWcan

Channel capacity is the maximum information flow for
all probability distributions ol.OW[12]. In this case, the
probability distribution ol OWthat maximizes information
flow is the distribution that maximizes the entropy@fT.

Given the standard definition of entropy of a random
variable X asH(X) = Y- p(X = z)log ;x=;. the en-
tropy of OUT is maximized when all possible values@fT
are equally likely. In that case, the entropy@fT is equal
to the log of the number of values th@UT can take on,
which is exactly the influence afONover OUT.

Therefore the channel capacity of the information flow
from LOWto QUT is exactly equal to the influence afow

affect that bit, because it takes dependencies between bitgver OUT:

into account. For example, suppose th&@Wcan cause a
32-bit OUT to have a value of all zero-bits or all one-bits,
but no other values. AlthoughOWcan affect the value of
all 32 bits of QUT, it has much less control ov€lUT as a
whole than ifLOWcould caus@UT to take on al232 com-

maxVy : Z((LOW~ p)—pOUT|HI = hi )
= C(LON=pOUTH = hi )

3.4 Influence variations

binations of ones and zeroes. The influence measure reflects

this; sinceLOWcan only caus@UT to take on one of two
different values, the influence is onlyg 2 = 1 bit.

3.3 Equivalence to channel capacity

We now show that that the influenceldDWoverP when
Hl ishi is exactly the maximum information flow, chan-
nel capacity from LOWto P, given thatHl is hi , and that
the fact thatHl = hi is known. Intuitively, the concepts
of control and information flow are tightly linked. As we

describe in Section 2, dynamic taint analysis has been use

both to propagate the flow of control and the flow of infor-
mation. Hence, it is unsurprising that a quantitative measu
of control turns out to be a well known quantitative measure
of information flow.

Using Denning’s definition of quantitative information
flow [12], the amount of information that flows froOW
to OUT, given the known assignmeht = hi , is the ex-
pected reduction of entropy &fOW givenQUT, and given
the known assignment ¢fl :

Z(LOMN=pQUTH =hi ) =
HILOWH = hi ) — HLONOUT,H = hi ).

This in turn, is equivalent to the mutual information
of LOWand QUT given HI, which can be expressed as
H(OUT|HI = hi ) — HOUT|LOWHI = hi ). Using these
relationships, and the fact that the entropy@JT given
LOWandHI is zero (becaus@ is a deterministic function),
we find that the information flow is simply the entropy of
QUT, given the assignment ¢l :

Z(LON>pOUTIHI = hi)
H(OUT|HI = hi ) — H(QUT|LOWHI = hi )
H(QUT|HI = hi )

We next consider some useful variations of influence.

3.4.1 Partial influence

There are several cases where it is useful to consider influ-
ence considering a subset of possible valuds@#/ rather
than over the entire domain &fOWN The range of® when
considering only a subset of its domain is, of course, a sub-
set of the actual range. Therefore, the influence calculated
over a partial domain is bower boundof the actual influ-
gnce. We refer to the influence calculated over a partial do-
main as partial influence.

The most obvious reason to use partial influence is in
cases where it is difficult or impossible to calculate the in-
fluence over the entire domain bOW such as some cases
where the domain of OWis of infinite size. We use this
technique in Section 6 to reason about influence in large
x86 programs.

Partial influence can also be used to reason abpata
ticular value ofLOW or a particulaclassof values ofL ON
As we have defined it, influence isdependenof any ac-
tual value ofLOW it is a property of the prograr® itself.

In Section 5.2 we show how partial influence can be used to
help classify whether a particular value lod®Wexploits an
overwrite vulnerability.

3.4.2 Max influence

So far, we have only defined influence as parameterized for
a particular value ofll . This formulation is useful wheHl
is known,e.g, when dynamically determining the influence
for a particular execution of the program in question.

For applications wheréll is unknown, such as when
performing static analysis, it would be useful to consider a
variation of influence calculated ovall possible values of



HI . Usually, it would be most useful to find theaximum  theswi t ch variable, and then using it to calculate an ad-

influence over all values dfll . This is a measure of the dress, which is used in an indirect jump. While the sanity

mostcontrol thatl OWcould have ovelOUT. check makes this structure safe, DTADI tools detect this as
a security violation when the switch variable is tainted.

As far as we are aware, the only way to work around
such cases in current DTADI is to manually annotate the
code structuree.g. to force LOWto be untainted after the
sanity check, or to ignore the specific integrity violations

In this section, we examine several program structuresthat are detected as a result@fT being marked tainted.
that can cause DTADI tools to give incorrect results. For In addition to requiring manual intervention, care must be
each structure we give simple concrete examples, explataken not to introduce other inaccuracies with such annota-
nations of when they occur in real programs, explanationstions.
of why they are difficult for DTADI tools to handle, and
finally we show how the influence measure handles eachy 9 A rithmetic restriction
case. Note that the influence measures stated in this section
are calculated by manual inspection. We describe methods
for automatically calculating influence in Section 6, anq us Example 2 Arithmetic restriction: mask
those methods to analyze these and other programs in Sec OUT = baser+ (LOW& 0x07)

4 Influence analysis of problematic program
structures

tion 7.
In each concrete example, we examine the taint propaga-

tion from LOMo OUT, and the influence diOWNoverOUT. A similar problem occurs when arithmetic is used to re-

LOWandQUT are both 8 bit unsigned integers. For simplic- strict the range of a calculation. Example 2 is equivalent

ity, most of these examples do not dependbn to Example 1, but instead of restricting what inputs may be
used via control-flow, it instead simply masks off the bits

4.1 Sanity checks that could caus@®UT to take on an undesired value. It is
possible that somewi t ch structures may be compiled in
this way.

We first examine sanity checks implemented by condi-
tional execution: cases whefJT is only derived from
LOwWafter LOWhas been found to be within some accept-
able range.

All DTADI tools that we are aware of would consider
QUT to be tainted in this case, which could lead to false pos-
itives. As with Example 1, this problem can be addressed
with manual annotations.

The influence of. OWoverQUT in this example is again
4 bits, which is expected since the end result of this example
is identical to Example 1.

Example 1Sanity check

if LOW< 16then
QUT:= base H.OW

elsciﬂ_: base Example 3 Arithmetic restriction: identity functions
endif QUT; := LOWXORLOW

QUT, :=LOW& 0
QUT3 :=0; QUT3 :=QUT3 + LOW ...; QUT3 := QUT3 —
In Example 1,0UT is derived fromLOWonly whenLOW LOW
has been verified to be less than 16. Taint analysis tools do
not take such sanity checks into account, & will be
considered tainted.
To calculate influence, we observe that for &y OUT
can have one of 16 values, from (ba$g to (base-15).
Therefore, the influence afOWNover QUT is 4 bits. While
LOWhas some control ovedUT, it does not have a full 8
bits of control over the 8 biDUT.
We have observed such structures in real programs. In
particular, we have verified that the gcc C compiler com-
piles someswi t ch statements by performing a check on

Example 3 shows several examples where, while a naive
analysis may conclude th&UT is derived fromLOW the
final value ofOUT actually does not depend drOWat all.

In these examples, all thr&®JT variables have the value 0
at the end of the program. Hence, these kinds of structures
can lead to false positives.

DTADI tools that we are aware of detect some of the
common structures of this nature, using a precompiled list
of idioms. In particular, many compilers exclusive-or a-reg
ister with itself to initialize it to zero, and all the DTADI

2DTADI tools may only consideOUT tainted when_Owpasses the  t0OIs that we are aware of mark the result of this instruction
sanity check, since otherwise the derivation fro@Adoes not take place. as untainted.




However, in the general case, detecting such cases igExample 5Implicit flow

non-trivial. Especially considé€dUT 5 in the example above.
In this case, examining either assignment in isolation reake
it seem thatOUT3 is derived fromLOW It is only by ex-
amining the higher-level structure of the program that we
can determine that the final value@gT; does not depend
on LOWat all. We further examine this challenge in Sec-
tion 6.1.

The influence ol.OWover eachOUT variable is O bits,
since eachOUT can take on exactly 1 value, regardless of
the value ofLOWN

4.3 Table lookup

There are several ways in which low integrity inputs can
be used tcselectother data. One of the most ubiquitous
ways is via a table lookup.

Example 4 Table lookup
QUT:= table.OW

In Example 4L OWis used as an index into a table. We

if LOW== 0then
QUT:=0
else ifLOW== 1then

else ifLOW== 255then
QUT:= 255
end if

The influence of. OWoverQUT in this example is 8 bits,
sinceQUT can take on 256 unique values.

DTADI tools do not track implicit flows, and would con-
sider OUT to be untainted, which could lead to false neg-
atives. Some taint analysis tools that are usedctonfi-
dentiality rather thanintegrity [14, 17] detectpositiveim-
plicit flows, which are implicit flows that result from aax-
ecutedassignment that is control-dependenti.g®WV How-
ever, none that we are aware of deteegativeimplicit
flows, which are implicit flows that result from amexe-
cutedassignment that is control-dependent @ without
the assistance of manual program annotations.

To clarify, suppose the program is executed WiBW

assume for the sake of this example that the contents of thisset to 4. In that case, the assignmeDUT:= 4) is a pos-

table are untainted. DTADI tools that we are awarepf
tionally mark QUT tainted in this case, using a rule that data

loaded via a tainted pointer is also tainted. As we demon-

itive implicit flow, and all the other assignments are neg-
ative implicit flows. A bound calculated over the positive
implicit flows would approximate that the previous 4 un-

strate in Section 7.1.3, enabling this rule can cause tainttaken branches could have each leaked at most 1 biDaf

analysis to have false positives, and disabling this rufe ca
cause taint analysis to have false negatives.

However, because of the negative implicit flows (the other
branches that are never reached) the influence over, and in-

The actual influence depends on the contents of the tableformation leakage taQUT is actually all 8 bits oL OW

which is not shown. For example, if each entry in the table
is unique, therOUT can take on 256 unique values, and the

These types of structures can be used to translate input
from one format to another. In particular, keyboard input

influence is 8 bits. Otherwise, the influence is less than 8is propagated via implicit flows in the Windows keyboard
bits. In the extreme case where every table entry containsdriver [6].

the same value, the influence is 0 bits. In programs where

the contents of the table are not constant, the table can b&  Using influence to identify attacks

considered to be part ¢ .

This case occurs frequently in real programs. This tech-

As we have shown in Section 4, influence is a useful the-

nique is often used to translate input from one character sety atical tool for reasoning about how much contr@Whas

to another. We have observed functions such@spper
andt ol ower implemented in this way. We have also ob-
served this technique used to select a request-handlig fun
tion pointer in samba (see Section 7.1.3).

4.4 Implicit flows

Another way that tainted data can be used to select un-

tainted data is via control flow.

In Example 5, the final value @UT is equal td.OMas-
sumingLOWis 8 bits), yet there was never a direct assign-
ment fromLOWto OUT. In the information flow and taint
analysis literature, this is referred to as an implicit flow.

overQUT. However, in the context of detecting integrity vi-
olations, there are two questions that must be addressed:
how much influence signifies an integrity violation, and
how do we use influence to determine whethqraaticu-

lar value ofLOWis malicious?

5.1 Quantitative integrity policies

As we discussed in sections 1 and 4, current DTADI sys-
tems propagate a binary taint attribute at a per-instroctio
granularity. Ad-hoc rules are used to specify which in-
puts of a particular instruction have enough control over
each output of that instruction to justify propagating the



taint attribute. Using influence, it is possible to specify a belongs. This is done by calculating the the influence for a
integrity policy based on a quantitative threshold of how partial domain o OW as described in Section 3.4.1.
much influence low-integrity inputs may have over given For example, the security violation in most overwrite at-
high-integrity operations, rather than based on a coblecti tacks is that a calculated pointer used in a memory-store op-
of taint-propagation rules. Due to their simplicity, we be- eration points to an unintended destinatierg. outside of
lieve that quantitative policies will be easier to create an the intended buffer in the case of a buffer overflow. Lever-
understand. Additionally, sensitivity of such policiesdze aging this observation, we can determine whether the value
tuned by simply adjusting a numeric threshold rather than LOMesults in a buffer overflow by calculating the influence
attempting to modify or create new qualitative taint propa- overQUT for the set of values of OWthat would cause all
gation rules. memory store operations to write to the same address as
As an example, we consider one of the types of at- | ow does. Wherl ow is a value that results in a buffer
tacks that DTADI systems are used to detect: when a low- overflow, this influence measure will be high. WHeswis
integrity input overwrites a function pointer or return ad- a value that does not result in a buffer overflow, inputs that
dress. The policy used in current systems is specifiedwrite outside of the intended buffer will not be considerred i
roughly as “dataderivedfrom low-integrity inputs should  the influence calculation, and the calculated influence will
not be loaded into the program counter,” wheezivedis be low (or zero).
defined by the collection of taint-propagation rules. Using
influence, we can specify a quantitative policy suchas “low- 6 Measuring influence in binary programs
integrity inputs should not have more thabits of influence

over a value loaded into the program counter,” wheiea We next investigate how to automatically measure influ-

simple numeric threshold. _ ence in real binary programs. We show that while it is pos-
Selecting a threshold for this policy is fairly straight-  gjpje to leverage previous work in taint analysis and infor-

forward. It is common for untrusted inputs to be able 0 mation flow analysis, all previous approaches we are aware

specify a function pointer from a small set of vahdlvalues of are forced to over-approximate, and in practice require

(e.g. handlers for different request types), so setting manual annotation to calculate useful bounds. We propose

zero would certainly result in false positives. To our knowl 5 hew approach, which is the first that can calculate a sound

edge, though, situations where a low integrity input is able |5\yer-hound of influence. It can also calculate an upper-

to legitimately choose from more than a handful of pointers pong that is sound for certain cases and useful in practice,

are rare. Hence, settinido a small value such as 6 bits (al- 54 jn some cases can soundly calculate the exact influence.

lowing the low integrity input to select from up & = 64

different choices), would likely result in few false pogés. 6.1 Transfer-functions are forced to over-

In theory, any non-zero value forcould result in false neg- approximate

atives if a vulnerability allowed the input to overwrite gnl

a few bits of the target pointer. However, we are unaware of  po.q again that influence is defined as the log of the

any such vulnerabilities, and such a vulnerability would be g, of the range of a progra for some particular assign-

relatively challenging to exploitin a useful way. _ment to high-integrity inputsil . We briefly discuss several
Another advantage of using a threshold-based integrity hossiple approaches for calculating influence, using Exam-

policy is that different thresholds may be set for different ple 6 as a motivating example. In this exampIkT can

high integrity operations. For example, while itis common oy take on one possible value: 0x0. As a result, the influ-
for alow integrity input to legitimately have a few bits ofin  oce of. OWoverOUT is 0 bits.

fluence over a function pointer, a low integrity input should

never have any influence over a return address. Example 6Inter-dependent operands
if predicatell OW then
5.2 Identifying malicious values of low- a:=0x01; b :=0x10
integrity inputs else

a :=0x10; b := 0x01

Influence is a property of a program, not a property of a end if
particular input value. Hence, in the general case, inflaenc QUTi=aé&b
can be used to identify a vulnerability, but does not indicat
whether a particular valueow of LOWis an attack. We first consider the approach of usitrgnsfer func-

One way to use influence to determine whether a partic-tions which is the approach of all previous mechanisms
ular value ofLOWis an attack is to calculate the influence of which we are aware for calculating taint or information
over QUT for someclassof value of LOW to whichl ow flow. In these approaches, a transfer function is defined for




each statement in the language, which defines how execuabout. We here briefly describe the techniques we use to
tion of the statement affects the tracked attribute for eachgenerate such formulas. The details of these techniques are
variable. One way of utilizing this approach, which is the described in our previous work [1,5,19].

most analogous to previous approaches for quantitative in- At a high level, we first convert some or all of the 1A-32
formation flow tracking, is to track the number of different binary program to an intermediate representation (IR) with
values that each variable can take on. In Example 6, analy-a smaller instruction set, which makes all side-effectslfsu

sis of the if-then-else structure would determine thahdb as setting and checking condition flags) explicit. If neces-
can each take on two different values. With only this knowl- sary, we convert the program to be loop-free by unrolling

edge, a transfer-function of the final assignmen®td is loops up to a maximum of some fixed number of times. Fi-
forced to over-approximate th@JT could take or2x2 = 4 nally we compute the weakest precondition [13] over the
different values, which would in turn over-approximate the program. Where we are unable to model the entire behav-
influence as 2 bits. ior of the program, guards are inserted to ensure soundness,

Greater accuracy can be achieved by tracking the actuakffectively constraining the domain &fOWto those values
set of values that each variable can take on, rather than onlywhich the formula can reason about with guaranteed accu-
the size of the set. One implementation of such an approachracy.
is value-set analysis [2], which is a method for calculating  Generating a formula that accurately models an entire
memory-alias relationships in binary programs. Unfortu- binary program can be quite challenging. Indirect jumps
nately, this approach is still forced to over-approximate.  make it difficult to statically determine all possible con-
this example, analysis of the if-then-else structure would trol flow paths. Modeling loops that could execute an un-
determine that andb can each take on the values 0x01 pounded number of times requires finding loop invariants,

and 0x10. A transfer-function analysis of the final assign- which is an open research problem. While system calls can
ment would conclude tha@UT can take on three different  pe modeled statically, using a providel to specify aux-

values: 0x01 & 0x01 = 0x01, 0x10 & 0x10 = Ox10, and jliary inputs, doing so requires significant implementatio
0x10 & 0x01 = 0x0. As a result, this approach would over- effort.

approximate the influence as 1.6 bits. As in our previous work [5, 19], we address these prob-
Example 3 in Section 4.2, in whichOWis added to 2 |ems by only modeling the execution paths ae able
variable and later subtracted again, is another example ofg analyze, and using guards to reject formula inputs that
this type of problem. A transfer-function that analyzedreac \yould execute an unmodeled execution path. For large pro-
Operation independent|y would conclude that the influence grams, we Current|y model exacmeexecution path_ the
is non-zero, when in fact it is zero. path taken in an actual execution of the program. We lever-
Because of these types of problems, transfer-function-age an execution trace obtained from the TEMU dynamic
based approaches are not able to compute a sound lowegint analysis tool [1, 14, 27] to greatly simplify the prob-
bound of information flow, and in practice often require |em. The execution trace contains the address of each ex-

manual annotations to compute a useful upper bound. ecuted instruction, the instruction itself, the values atte
. operand of each instruction, and the taint attribute of each
6.2 Our approach: end-to-end analysis operand of each instruction.

The resulting formula accurately relates the program in-
puts to the program outputs, for inputs that would follow

individual | h our hiah-level ! the same execution path. Thus, the formula domain is lim-
Individual step along the way. Our high-level strategy IS t0 o ¢4 guch inputs, and contains guards to reject inputs out

soundly convertsome orall of the programto aformula, and iy of this domain. The formula is of the desired form:
then use a decision procedure to reason about the range (LOWH ) — OUT. Hi is obtained from the execution
Q.JT’ given the particular assignment b."- For programs - yace. LOWCcorresponds to inputs that were marked tainted
with a finite number of possible execution paths, and given in the execution tracéQUT may be an intermediate or final

enough computation time, this approach can theoreticallyvaIue of any program state, the value of program output, or
compute theexactinfluence with guaranteed accuracy. The any combination

challenge to this approach is to calculate useful bounds of
the influence on real programs, in a reasonable amount of
time. 6.2.2 Determine how many value©UT may take on

To avoid over-approximation, we analyze the end-to-end
derivation of OUT as a whole, rather than analyzing each

The next step is to find how many valuesT may take on.
We are not aware of any existing tools that can solve this
The first step is to generate a formula that accurately modelsproblem directly. We have developed some strategies for
the program, and which a decision procedure can reasorreasoning about how many valuesiT may take on using

6.2.1 Converting the program to a formula



current decision procedures.

We first give the formula to the decision procedure. We
then pose queries to the decision procedure, which consist
of predicates over the free variables; in our ca§¥Vand
QUT. The decision procedure responds to these queries ei-
ther that the predicate islid, indicating that it holds for all
values oflLONandQUT, or responds with a counterexample:
an assignment tbOWNandQOUT that causes the predicate to
be false.

Given this interface, we have developed the following
query strategies:

e Ask for examples of OUT. The most straight-forward
technique is to simply query the decision procedure for
a value ofQUT that satisfies the formula, then query for
another value oOUT that satisfies the formula and has
not already been found, continuing to query the deci-
sion procedure either until no more valued®fT can
be found (which will take many queries for high influ-

dure whether it is possible to satisfy the formula with
each of those values. We can then use the fraction of
these values that are satisfiable to estimate what frac-
tion of values in the whole codomain &f are satisfi-
able. This technique is useful when a significant frac-
tion of the codomain of° is satisfiablej.e. when the
influence is large. For example, when analyzing a po-
tential overwrite attack, if the attacker has 30 bits of
influence over a 32 biOUT, 25% of the codomain is
satisfiable, and only a few samples are needed for a
statistically significant result. However, when the in-
fluence is only a few bits, too many random samples
would be needed to achieve a tight influence estimate,
though we could still use this approach to set a proba-
bilistic upper bound of influence.

We currently implement the strategies of asking for ex-

amples, and negative range queries. We first attempt to get
up to some thresholttnumber of example values @UT.

ence values), or until we have found enough values to ¢ the gecision procedure is not able to find any more ex-
establish that the influence is higher than some given amples after finding: examples, then we are done, and the

threshold.

e Positive range queries. We expect that values that
QUT may take on will often occur in contiguous
ranges. Once we have found a value tOall may

influence is exactijog x with respect to the formula, and
at leastlog = with respect to the program. In cases where
the formula is completé;e. models all relevant parts of the
program; then the influence is exaclhg x with respect to

take on, we can perform binary searches to establishi,o program.

the left and right boundaries of such a range. Queries
posed to the decision procedure will be of the form
“All values from proposed-left-boundary to proposed-
right-boundary ofOUT are satisfiable.” Each boundary

If we find ¢ examples, we stop asking for individual ex-

amples. At this point, we have established that the influence
is at leastlog ¢t both with respect to the formula and with
respect to the actual program. We next compute an upper

can be found using a number of such queries less than,nq using the negative range query strategy to find the
the log of the size of the co-domain. Note that this et yalugdUT can take ony, and the highest valugUT

type of query requires a universal quantifier, which is
unsupported by many decision procedures.

e Negative range queries.Similarly, once we have es-
tablished a value dDUT maynottake on, we can per-

can take onv;,. We then know that the influence is no more
thanlog(vh — ’Ul).

form a binary search to find the left and right bound- / Evaluation

aries of the encompassing contiguous range of values
that OUT may not take on. Unlike the positive range

We have implemented the method of calculating influ-

query approach, this approach does not require univer-ence described in Section 6. We currently query for up to
sal quantifiers, allowing it to be used on more decision 64 values ofOUT, meaning that we find the exact influence
procedures. when the influence is up to 6 bit§ & log64), and other-

e Partitioning. We can reason about parts ©0T in- wise establish a sound lower bound of 6 bits of influence.
dependently to help establish an upper bound of influ-  We first apply it to example programs from Section 4.
ence. For example, ®UT is 32-bits, we can establish Each of these programs was written as a C program and
whether each individual bit can take on values of both compiled using gcc. For these experiments we used 32-
0 or 1 in at most 64 queries. The influence@JT as bit variables forLOWand OUT instead of 8-bit variables.

a whole can be no more than the number of bits that We then use the tool on larger constructs known to cause
can take on both 0 and 1 values. Tighter bounds canproblems for DTADI systems: sawi t ch statement, and a

be achieved at greater execution cost by using largercase-conversion using theupper function. Finally, we
granularities, such as analyzing each byte instead ofdemonstrate the scalability and usefulness of our approach
each bit. on two real programs: samba, and Microsoft SQL server.

e Random sampling. Another approach is to choose Using our influence measurement, we are able to verify that
random values o©UT, and query the decision proce- an alarm generated by the TEMU [1, 14,27] DTADI system



alarm in samba is a false positive, and that an alarm in SQLtives, that disabling the table-lookup policy can causethe

server is a true positive. to have false negatives, and that the influence measurement
can be used to accurately reason about these problematic
7.1 Results cases.

Table-lookups are often used to convert data from one

We summarize our results in Table 1. For each exper-character set to another. As a resulisabling the table
iment we list the program or program-construct evaluated, |l0okup propagation policy in DTADI tools can lead to false
and how many execution paths are accounted for in the for-negatives: tainted data translated in such a way is marked
mula. Where possible, we construct a formula including all @s untainted. We evaluate the gnu libcupper function
paths. In these cases, both the lower and upper influenc&s an example of such a translation. In this experiment, we
bounds are sound. In other cases, we model only the exetranslate each of the four byteslo®/\Wviat oupper , and
cution path taken in a given execution trace, as described inevaluate the taintedness and influence of the result. When
Section 6. We next list the time spent performing decision- collecting the execution trace for this experiment, we pro-
procedure queries, the measured exact influence or influvide the input “aaaa”. As expected, when the table-lookup
ence bounds, and the lowest and highest valuedti@may policy is disabled, TEMU marks the result as untainted. Our
take on. Finally, as a point of comparison, we list the actual influence measurement confirms that the input has at least
influence as established by manual inspection. 6.1 bits of influence over the resulting value, and could have
up to 28.6 bits of influence of the resulting value for the ex-
ecution path examined. The actual influence is higher, due
to the unanalyzed execution path where the input bytes are
The first two experiments are provided as a baseline refer-not lower case characters. Nonetheless, the measured influ-
ence. In the “No propagation” experime@JT does not ence bounds are sufficient to show that the result is heavily
depend onLOWat all. In the “Direct copy” experiment, influenced byLOW
LOWis simply copied tacQUT. Our measured results are as  Table-lookups can also be used to select from a small set
expected: the influence is found to be exactly 0 in the first of values, by restricting the index to a small set of values,
case, and between 6 and 32 in the latter case. or by having duplicate entries in the table. As a reser,

The next group of experiments are analogous to the ex-abling the table lookup propagation policy in DTADI tools
amples from Section 4. In the table lookup test, each of thecan lead to false positives. In particular, we have observed
four bytes ofL Oware masked with 0xOf and used as an in- this to be the case in samba, which we evaluate in Sec-
dex into a table with values 0x10 to 0x1f. For each of these tion 7.1.4.
experiments, we are able to calculate the exact influence or
useful bounds of the influence within a few seconds.

7.1.1 Baseline experiments

7.1.4 Real-world programs

7.1.2  Sanity checked data: switch statements We next use our influence measurement tool on two real-

The gcc compiler, and probably many other compilers, World programs. _ _ _
compiles someswi t ch statements to compute a pointer ~ Samba is an open-source implementation of the Win-
from theswi t ch variable, and then use that pointer as an d90Ws SMB protocol. Samba uses data from a network re-

indirect jump target. Sanity checks ensure that this opera-duest to calculate an index into a table of function pointers
tion is safe, but this results in a false positive for tairalan ~ Which causes a false positive in TEMU when that function
ysis tools when the table lookup policy is enabled and the Pointeris called. Using our influence measurement tool, we
swi t ch variable is tainted. We confirm that TEMU raises are able to verify that the sanity checks in the program make
an alarm for this case. However, our influence measure-this operation safe: the input has only a few bits of influence
ment verifies that ONs actual influence over the indirect  ©Ver the function pointer. As a further verification step, we
jump target is only a few bits. verified that all of the values that the function pointer can
take on are within the code segment of the program.
Microsoft SQL server is a closed-source database, and
was the target of the well known Blaster worm. Our tool
As we described in Section 4, whether data loaded via averifies that the alarm generated by TEMU when SQL
tainted pointer should be marked tainted is a configurableserver is attacked by the Blaster exploit is a true positive.
policy in most DTADI tools. In real programs, this typically ~ Specifically, we find that the input has at least 6 bits of in-
happens when tainted data is used as an index into an unfluence over a return address, and could have as much as a
tainted table. We next demonstrate that enabling the table-full 32 bits of influence over the return address., total
lookup policy can cause DTADI tools to have false posi- control. As far as we are aware, the true influence is indeed

7.1.3 Solving the taint analysis table lookup catch-22
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Program Paths Run Measured Influence Measured Value Actual Influence
Analyzed Time (s) | (bits) bounds (bits)
No propagation all (1) .07 0.0 0x0 to 0x0 0
Direct copy all (1) 1.1 6.0t0 32.0 0x0 to Oxffffffff 32
Sanity checked (Ex. 1)| all (2) .54 4.0 0x0 to Oxf 4
Masked (Ex. 2) all () .28 4.0 0x0 to Oxf 4
Plus-minus (Ex. 3) all (1) .23 0.0 0x0 to 0x0 0
Table lookup (Ex. 4) all (1) 5.5 6.1to0 27.9 0x10101010 to Ox1fififif || 16
Implicit flow (Ex. 5) all (6) 57 2.8 0x0 to 0x6 2.8
switch (ijmp) 1(of 1) 1.9 4.2 0x401078 to 0x4010de 4.2
toupper 1 (of 2) 94 6.1t0 28.6 0x41414141 to Ox5a5a5a5p 31.4
samba (fn ptr table) 1 (of many) | 73.6 3.3 0x807de90 to 0x8088eal || 3.3
SQL server (ret addr) || 1 (of many) | 17346 6.0t0 32.0 0x0 to Oxffffffff ~ 32

Table 1. Influence measurement results.

32 bits. 8.2 Improving performance and accuracy

of DTADI systems

8 Discussion and future work As we showed in Section 4, the inaccuracies of DTADI
systems stem largely from manually generated, ad-hoc taint
propagation policies, defined over one instruction at a.time
We believe that these problems can be addressed by us-
ing the techniques presented in this workaistomatically
generate taint propagation policies, basednfluence In

In Section 3.3, we showed that influenceld®Vover  other words, we may be able to combine the advantages of
QUT is equal to the maximum information flow, or chan- our current end-to-end calculation approach with the perfo
nel capacity, fromLOWto OUT, whenH! is known This  mance advantages of the transfer-function-based approach
assumes that the provider of the untrusted inpt¥V(the described in Section 6.1.
potential attacker), knows the complete state of the rest of The premise of this approach is to identify blocks of
the program. This is a pessimistic assumption. code, such as a function, that have a single entry point and

In cases wherkll is unknown, the influence afONover single exit point. For each such block of code, thaximum
OUT does not changé® still has the same range. However, influence(See Section 3.4.2) of each variable read could be
the information flow froml. OWto OUT may belessthan the computed for each variable written. When the DTADI sys-
influence ofLOWover OQUT. In practical terms, this comes temis aboutto enter one of these pre-computed code blocks
about wher. ONcan influencdUT to take on differentval- ~ at run-time, the summary can be used to determine what
ues, but some uncertainty remains ababtch value QUT the taint value of each written variable should be when the
will take on for a given value of OW block exits.

A notable real-world example is the use minter en- This approach could improve the accuracy of current

cryption[8]. The idea in pointer encryption mechanisms is DTADI_sysI:emks, §|nc|§ !n]EIeractlonZ W'.ﬂ;]m th.e .blOCk’ S.UCh
to store pointers in an encrypted form, and decrypt themjustas sanity checks, implicit flows, and arithmetic interausio

before dereferencing them. Hence, an attacker who is abIeWOUId be accounted for. If desired, this approach could

to overwrite the encrypted pointer cannot predict the value also be used to propagate a quantitative or stratified tiint a

of the unencrypted pointer, generally causing the programtk”bUt? mslzea;d ofa Iblpary tf?unf[ ag”tk\’;ljte’ V\Q:'Chkwomgmﬁl
to crash when the pointer is unencrypted and dereferencedf €ep track of cumulative el_e_c S Se _eens fc S, and aflow
If an overwrite vulnerability exists that allows an attacke or quantitative integrity policies (Section 5.1).

to overwrite a 32 bit encrypted pointer, then the influence This approach can also 'mprove the. performance of
of LONover OUT will be 32 bits. However, without some D 1AD! systems, since the taint propagation summary for

knowledge of the encryption key (which is partidf), the a block may be less expensive to execute than propagating

maximum information flow from.OWto OUT is O bits a taint attribute for each instruction within the block.
' There are, however, several challenges that must be ad-

In general, we believe that the difference between influ- yregsed before this approach can be implemented. Some of
ence and channel capacity lo®Wover OUT whenHl has these challenges, and potential solutions are:

some uncertainty can be considered a measure ofithe
predictabilityof LOWSs influence oveOUT. Further work is
needed to investigate this relationship.

8.1 Accounting for unknown Hi

e The code of the target program must be analyzed stati-
cally. Code that cannot be found or analyzed statically,
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such as dynamically generated code, must still be in- believe that our techniques can also be extended to sup-
strumented at run-time (though these summaries canplement or replace the manually written taint propagation
of course be saved for subsequent program runs). rules used in today’s DTADI systems with automatically
generated propagation rules that improve the system’s per-

e For our current influence-calculation techniques to formance and accuracy.

work, we must be able to transform the code block to

an equivalent loop-free program, and we must be able
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