Measuring Uncertainty Using Survey-Based Diffusion Indices

Pierre-Daniel G. Sarte

Federal Reserve Bank of Richmond, pierre.sarte@rich.frb.org

Follow this and additional works at: http://repository.cmu.edu/sem_conf

Part of the Economics Commons

http://repository.cmu.edu/sem_conf/2015/full_schedule/15

This Event is brought to you for free and open access by the Conferences and Events at Research Showcase @ CMU. It has been accepted for inclusion in Society for Economic Measurement Annual Conference by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
Learning About Consumer Uncertainty from Qualitative Surveys: As Uncertain As Ever

Santiago Pinto, Pierre-Daniel Sarte, Robert Sharp
Federal Reserve Bank of Richmond

July 2015
Introduction

- Information compiled by statistical agencies (e.g. BLS, BEA) on state of economic activity,
 - is not comprehensive, e.g. regional information on certain series are not compiled
 - involves lags, i.e. published with at least a one-month lag, and subject to 3-month and 1-year revisions
Introduction

- Information compiled by statistical agencies (e.g. BLS, BEA) on state of economic activity,
 - is not comprehensive, e.g. regional information on certain series are not compiled
 - involves lags, i.e. published with at least a one-month lag, and subject to 3-month and 1-year revisions

- A growing number of institutions and government agencies produce diffusion indices constructed from qualitative survey data
 - Michigan Survey of Consumers indices of consumer sentiment, Institute of Supply Management index of manufacturing production, Federal Reserve Banks regional indices, etc.
Introduction

- Summarizing qualitative survey data in the form of a diffusion index:

\[\mu \left(\frac{n^u}{n} - \frac{n^d}{n} \right) + \kappa = \mu D + \kappa \]

ISM: \(\mu = 1/2, \kappa = 1/2 \)
Richmond: \(\mu = 1, \kappa = 0 \)
Introduction

- Summarizing qualitative survey data in the form of a diffusion index:

\[\mu \left(\frac{n^u}{n} - \frac{n^d}{n} \right) + \kappa = \mu D + \kappa \]

ISM: \(\mu = 1/2, \kappa = 1/2 \), Richmond: \(\mu = 1, \kappa = 0 \)

- Aggregate growth may arise in different ways: e.g. IP, a few sectors doing well while others muddle through, all sectors doing moderately well, etc.
Introduction

- Summarizing qualitative survey data in the form of a diffusion index:

\[\mu \left(\frac{n^u}{n} - \frac{n^d}{n} \right) + \kappa = \mu D + \kappa \]

ISM: \(\mu = 1/2, \kappa = 1/2 \), Richmond: \(\mu = 1, \kappa = 0 \)

- Aggregate growth may arise in different ways: e.g. IP, a few sectors doing well while others muddle through, all sectors doing moderately well, etc.

- Diffusion indices summarize the direction of change in a set of disaggregated series: the breadth of change
Actual change and the breadth of change

\[
\Delta x_t = \frac{1}{N} \sum_{i=1}^{n^u_t} \Delta x_{i,t}^u - \frac{1}{N} \sum_{i=1}^{n^d_t} \Delta x_{i,t}^d,
\]

where \(\Delta x_{i,t}^u = \Delta x_{i,t} \) if \(\Delta x_{i,t} \geq 0 \), and \(\Delta x_{i,t}^d = -\Delta x_{i,t} \) if \(\Delta x_{i,t} < 0 \).
Actual change and the breadth of change

\[\Delta x_t = \frac{1}{N} \sum_{i=1}^{n_t^u} \Delta x_{i,t}^u - \frac{1}{N} \sum_{i=1}^{n_t^d} \Delta x_{i,t}^d, \]

where \(\Delta x_{i,t}^u = \Delta x_{i,t} \) if \(\Delta x_{i,t} \geq 0 \), and \(\Delta x_{i,t}^d = -\Delta x_{i,t} \) if \(\Delta x_{i,t} < 0 \)

\[\Delta x_t = \frac{n_t^u}{N} \mu_t^u - \frac{n_t^d}{N} \mu_t^d \]
Actual change and the breadth of change

- Define $\mu^u = T^{-1} \sum_{t=1}^{T} \mu_t^u$, $\phi^u = T^{-1} \sum_{t=1}^{T} n_t^u / N$,

- Then ...

$$\Delta x_t^u = \left(\frac{n_t^u}{N} - \phi^u \right) \mu^u + \phi^u (\mu_t^u - \mu^u) + \left(\frac{n_t^u}{N} - \phi^u \right) (\mu_t^u - \mu^u),$$
Actual change and the breadth of change

Define $\mu^u = T^{-1} \sum_{t=1}^{T} \mu_u^t$, $\varphi^u = T^{-1} \sum_{t=1}^{T} n_u^t / N$,

Then ...

$$\Delta x_t^u = \left(\frac{n_t^u}{N} - \varphi^u \right) \mu^u + \varphi^u (\mu_u^t - \mu^u) + \left(\frac{n_t^u}{N} - \varphi^u \right) (\mu_u^t - \mu^u),$$

Similarly, let $\mu^d = T^{-1} \sum_{t=1}^{T} \mu_d^t$, $\varphi^d = T^{-1} \sum_{t=1}^{T} n_d^t / N$,

Then ...

$$\Delta x_t^d = + \left(\frac{n_t^d}{N} - \varphi^d \right) \mu^d + \varphi^d (\mu_d^t - \mu^d) + \left(\frac{n_t^d}{N} - \varphi^d \right) (\mu_d^t - \mu^d),$$
Actual change and the breadth of change

- Decomposing an expansion/contraction,

\[
\Delta x_t \approx \varphi^u(\mu^u_t - \mu^u) - \varphi^d(\mu^d_t - \mu^d)
\]

Change in “how much” or intensive margin

\[
+ \mu^u D_t,
\]

Change in “how many” or extensive margin
Actual change and the breadth of change

- Decomposing an expansion/contraction,

\[\Delta x_t \approx \varphi^u (\mu^u_t - \mu^u) - \varphi^d (\mu^d_t - \mu^d) \]

Change in “how much” or intensive margin

\[+ \mu^u D_t , \]

Change in “how many” or extensive margin

- Overall growth arises from:

 - the difference between how fast ”up” sectors grew and how badly ”down” sectors declined,

 - the difference between the proportion of sectors that expanded versus those that declined, the breadth of the expansion
Decomposition of BLS Δx_t

Annualized month/month % change

Month

Ext. margin: $D_t \mu^u$

Int. margin: $\varphi^u (\mu^u_t - \mu^u) - \varphi^d (\mu^d_t - \mu^d)$

Interaction: $\varepsilon \varphi^d_t + (\varphi^u_t - \varphi^u) (\mu^u_t - \mu^u) - (\varphi^d_t - \varphi^d) (\mu^d_t - \mu^d)$

S. Pinto P.-D. Sarte R. Sharp
Uncertainty and Qualitative Surveys July 2015 8 / 26
Measuring the breadth of change using qualitative surveys

A sample of n survey participants, drawn randomly from a population at a point in time, is surveyed – e.g. overall business conditions?
Measuring the breadth of change using qualitative surveys

- A sample of \(n \) survey participants, drawn randomly from a population at a point in time, is surveyed – e.g. overall business conditions?

- Possible answers: \(\mathcal{A} = \{1, 2, \ldots, r\} \). Answers are indexed by \(a \in \mathcal{A} \), e.g. \(a \in \mathcal{A} = \{u, d, s\} \)
Measuring the breadth of change using qualitative surveys

- A sample of \(n \) survey participants, drawn randomly from a population at a point in time, is surveyed – e.g. overall business conditions?

- Possible answers: \(\mathcal{A} = \{1, 2, \ldots, r\} \). Answers are indexed by \(a \in \mathcal{A} \), e.g. \(a \in \mathcal{A} = \{u, d, s\} \)

- Number of respondents associated with answer \(a \in \mathcal{A} \), is \(n^a \), where \(\sum_{a=1}^{r} n^a = n \). Answers of type \(a \) are assigned a value of \(\omega^a \in \mathcal{R} \), e.g. \(\omega^u = 1 \), \(\omega^s = 0 \), and \(\omega^d = -1 \).
Measuring the breadth of change using qualitative surveys

- A sample of n survey participants, drawn randomly from a population at a point in time, is surveyed – e.g. overall business conditions?

- Possible answers: $\mathcal{A} = \{1, 2, \ldots, r\}$. Answers are indexed by $a \in \mathcal{A}$, e.g. $a \in \mathcal{A} = \{u, d, s\}$

- Number of respondents associated with answer $a \in \mathcal{A}$, is n^a, where $\sum_{a=1}^{r} n^a = n$. Answers of type a are assigned a value of $\omega^a \in \mathcal{R}$, e.g. $\omega^u = 1$, $\omega^s = 0$, and $\omega^d = -1$.

- The answers are summarized in a diffusion index

$$\hat{D} = \sum_{a=1}^{r} \omega^a \frac{n^a}{n}.$$
Measuring the breadth of change using qualitative surveys

- p^a is the probability that a participant’s answer is $a \in A = \{1, 2, \ldots, r\}$, with $\sum_{a=1}^{r} p^a = 1$
Measuring the breadth of change using qualitative surveys

- p^a is the probability that a participant’s answer is $a \in A = \{1, 2, \ldots, r\}$, with $\sum_{a=1}^{r} p^a = 1$

- $\hat{p}^a = n^a / n$, the proportion of answers of type $a \in A$, where $\hat{p}^a = \frac{1}{n} \sum_{i=1}^{n} x_i^a$,

 where x_i^a takes on the value 1 when survey participant i answers a, zero otherwise
Measuring the breadth of change using qualitative surveys

- p^a is the probability that a participant’s answer is $a \in \mathcal{A} = \{1, 2, \ldots, r\}$, with $\sum_{a=1}^{r} p^a = 1$

- $\hat{p}^a = n^a / n$, the proportion of answers of type $a \in \mathcal{A}$,

$$\hat{p}^a = \frac{1}{n} \sum_{i=1}^{n} x_i^a,$$

where x_i^a takes on the value 1 when survey participant i answers a, zero otherwise

- \hat{p}^a then has the interpretation of a sample Bernoulli mean
The multivariate Central Limit Theorem immediately gives

\[
\sqrt{n} \left(\begin{array}{c}
\hat{p}^1 - p^1 \\
\hat{p}^2 - p^2 \\
\vdots \\
\hat{p}^r - p^r
\end{array} \right) \xrightarrow{D} \mathcal{N} \left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array} \right), \quad \begin{array}{ccc}
p^1(1 - p^1) & -p^1 p^2 & \cdots & -p^1 p^r \\
-p^2 p^1 & p^2(1 - p^2) & \cdots & -p^2 p^r \\
\vdots & \vdots & \ddots & \vdots \\
-p^1 p^r & -p^2 p^r & \cdots & p^r(1 - p^r)
\end{array}
\]

where \(D = \mathbb{E}(\hat{D}) = \sum_{a=1}^{r} \omega\hat{p}^a = \sum_{a=1}^{r} \omega a \hat{p} \).
Uncertainty in the measure of direction of change

- The multivariate Central Limit Theorem immediately gives

$$\sqrt{n} \begin{pmatrix} \hat{p}^1 - p^1 \\ \hat{p}^2 - p^2 \\ \vdots \\ \hat{p}^r - p^r \end{pmatrix} \xrightarrow{D} \mathcal{N} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} p^1(1 - p^1) & -p^1 p^2 & \cdots & -p^1 p^r \\ -p^2 p^1 & p^2(1 - p^2) & \cdots & -p^2 p^r \\ \vdots & \vdots & \ddots & \vdots \\ -p^r p^1 & -p^r p^2 & \cdots & p^r(1 - p^r) \end{pmatrix}$$

- \hat{D}, is a linear combination of sample Bernoulli means, $\sum_{a=1}^{r} \omega^a \hat{p}^a$
Uncertainty in the measure of direction of change

- The multivariate Central Limit Theorem immediately gives

\[
\sqrt{n} \left(\begin{array}{c}
\hat{p}^1 - p^1 \\
\hat{p}^2 - p^2 \\
\vdots \\
\hat{p}^r - p^r
\end{array} \right) \overset{d}{\longrightarrow} \mathcal{N} \left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}, \begin{pmatrix}
p^1(1 - p^1) & -p^1 p^2 & \cdots & -p^1 p^r \\
-p^2 p^1 & p^2(1 - p^2) & \cdots & -p^2 p^r \\
\vdots & \vdots & \ddots & \vdots \\
-p^r p^1 & -p^r p^2 & \cdots & p^r(1 - p^r)
\end{pmatrix} \right)
\]

- \(\hat{D} \), is a linear combination of sample Bernoulli means, \(\sum_{a=1}^r \omega^a \hat{p}^a \)

- Then

\[
\sqrt{n} \left(\hat{D} - D \right) \sim^a \mathcal{N} \left(0, \left(\sum_{a=1}^r (\omega^a)^2 p^a \right) - D^2 \right),
\]

where \(D = E(\hat{D}) = \sum_{a=1}^r \omega^a p^a. \)
Uncertainty in the survey-measured direction of change

- Richmond indices: $\mathcal{A} = \{u, d, s\}$, and $\omega_u = 1$, $\omega_s = 0$, $\omega_d = -1 \Rightarrow \hat{D} = (\hat{\rho}_u - \hat{\rho}_d)$ and

$$\sqrt{n} \left(\hat{D} - D \right) \xrightarrow{D} \mathcal{N} \left(0, (1 - p_s) - D^2 \right).$$
Uncertainty in the survey-measured direction of change

- Richmond indices: \(A = \{u, d, s\} \), and \(\omega_u = 1, \omega_s = 0, \omega_d = -1 \) \(\Rightarrow \)
 \(\hat{D} = (\hat{p}_u - \hat{p}_d) \) and

 \[
 \sqrt{n} \left(\hat{D} - D \right) \overset{D}{\longrightarrow} \mathcal{N} \left(0, (1 - p_s) - D^2 \right).
 \]

- Uncertainty in the measured direction of change ...
 - decreases with the square root of the sample size
 - decreases with the diffusion index itself, \(D \)
 - decreases with the degree of polarization, \(1 - p_s \)
Distinguishing between different categories of participants

\[
\hat{D} = \sum_{j=1}^{J} \sum_{a=1}^{r} \omega^a \frac{n^a_j}{n} = \hat{D} = \sum_{j=1}^{J} \frac{n_j}{n} \sum_{a=1}^{r} \omega^a \frac{n^a_j}{n_j} \]

where \(\sum_{j=1}^{J} n^a_j = n^a\), and \(\sum_{j=1}^{J} n_j = n\)
Distinguishing between different categories of participants

\[
\hat{D} = \sum_{j=1}^{J} \sum_{a=1}^{r} \omega^a \frac{n_j^a}{n} = \hat{D} = \sum_{j=1}^{J} \frac{n_j}{n} \sum_{a=1}^{r} \omega^a \frac{n_j^a}{n_j} \\
\text{where } \sum_{j=1}^{J} n_j^a = n^a, \text{ and } \sum_{j=1}^{J} n_j = n
\]

One may choose to rescale the weights, say by \(\gamma_j \),

\[
\hat{D} = \sum_{j=1}^{J} \gamma_j \frac{n_j}{n} \sum_{a=1}^{r} \omega^a \frac{n_j^a}{n_j}
\]
Distinguishing between different categories of participants

\[\hat{D} = \sum_{j=1}^{J} \sum_{a=1}^{r} \omega^a \frac{n_j^a}{n} = \hat{D} = \sum_{j=1}^{J} \frac{n_j}{n} \sum_{a=1}^{r} \omega^a \frac{n_j^a}{n_j} \]

where \(\sum_{j=1}^{J} n_j^a = n^a \), and \(\sum_{j=1}^{J} n_j = n \)

One may choose to rescale the weights, say by \(\gamma_j \),

\[\hat{D} = \sum_{j=1}^{J} \gamma_j \frac{n_j}{n} \sum_{a=1}^{r} \omega^a \frac{n_j^a}{n_j} \]

\[\sqrt{n} \left(\hat{D} - D \right) \sim^a \mathcal{N} \left(0, \left(\sum_{a=1}^{r} \sum_{j=1}^{J} (\omega^a \gamma_j)^2 p_j^a \right) - D^2 \right) \]
The Distribution of Composite Indices

- \(n \) survey participants responding to questions concerning \(k \) economic conditions - e.g. household conditions, overall business conditions, spending on big ticket items
The Distribution of Composite Indices

- n survey participants responding to questions concerning k economic conditions - e.g. household conditions, overall business conditions, spending on big ticket items

- Answers a_k, confined to a set A_k, each comprising r possible types of responses, $\{1, 2, \ldots, r\}$.
The Distribution of Composite Indices

- n survey participants responding to questions concerning k economic conditions - e.g. household conditions, overall business conditions, spending on big ticket items

- Answers a_k, confined to a set \mathcal{A}_k, each comprising r possible types of responses, $\{1, 2, ..., r\}$.

- Participants’ answers across all components, $k = 1, ..., k$, are collected in a k-tuple $\mathbf{a} = (a_1, ..., a_k)$ that lives in the set $\mathcal{A} = \Pi_{k=1}^{k} \mathcal{A}_k$.
The Distribution of Composite Indices

- n survey participants responding to questions concerning k economic conditions - e.g. household conditions, overall business conditions, spending on big ticket items.

- Answers a_k, confined to a set \mathcal{A}_k, each comprising r possible types of responses, $\{1, 2, \ldots, r\}$.

- Participants’ answers across all components, $k = 1, \ldots, \bar{k}$, are collected in a k-tuple $\mathbf{a} = (a_1, \ldots, a_{\bar{k}})$ that lives in the set $\mathcal{A} = \prod_{k=1}^{\bar{k}} \mathcal{A}_k$.

Consider an example with 3 components, each comprising 3 possible responses, $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A}_2$

$= \{u, d, s\} \times \{u, d, s\} \times \{u, d, s\} = \{uus, uud, uus, duu, ddu, dsu, suu, sdu, ssu, \ldots\}$ has 27 elements, in general $r^{\bar{k}}$.

S. Pinto P.-D. Sarte R. Sharp

Uncertainty and Qualitative Surveys

July 2015 14 / 26
The Distribution of Composite Indices

The Composite Index

\[\hat{D} = \sum_{k=1}^{\bar{k}} \delta_k \hat{D}_k, \]

where \(0 < \delta_k < 1. \)
The Distribution of Composite Indices

The Composite Index

\[\hat{D} = \sum_{k=1}^{k} \delta_k \hat{D}_k, \]

where \(0 < \delta_k < 1\).

\[\hat{D}_k = \sum_{a=1}^{r} \omega^a \sum_{a_k \in A/A_k} \frac{n(a_k=a,a_{-k})}{n} = \sum_{a=1}^{r} \omega^a \frac{n_k^a}{n}, \]
The Distribution of Composite Indices

- The Composite Index

\[\hat{D} = \sum_{k=1}^{\bar{k}} \delta_k \hat{D}_k, \]

where \(0 < \delta_k < 1 \).

- \(\hat{D}_k = \sum_{a=1}^{r} \omega^a \sum_{a_k \in A/A_k} \frac{n(a_k=a,a_{-k})}{n} = \sum_{a=1}^{r} \omega^a \frac{n^a_k}{n}, \)

Uncertainty in \(\hat{D} \) will need to take account of pairwise covariances between individual indices, say \(D_k \) and \(D_\ell \) - i.e. how participants’ answers compare/comove across different categories.
The Distribution of Composite Indices

- $n_{k\ell}^{aa'}$ - the number of survey participants answering $a_k = a$ and $a_\ell = a'$ for the components k and ℓ,

\[
n_{k\ell}^{aa'} = \sum_{a_{\{k,\ell\}} \in A/A_k \times A_\ell} n^{(a_k=a,a_\ell=a',a_{\{k,\ell\}})}, \ k \neq \ell,
\]
The Distribution of Composite Indices

- $n_{k\ell}^{aa'}$ - the number of survey participants answering $a_k = a$ and $a_\ell = a'$ for the components k and ℓ,

$$n_{k\ell}^{aa'} = \sum_{a_{\{-k,\ell\}} \in \mathcal{A}/\mathcal{A}_k \times \mathcal{A}_\ell} n(a_k = a, a_\ell = a', a_{\{-k,\ell\}}), \ k \neq \ell,$$

- The number of participants answering a given response a for component k satisfies $n_k^a = \sum_{a' \in \mathcal{A}_\ell} n_{k\ell}^{aa'}$.
The Distribution of Composite Indices

- $n_{k\ell}^{aa'}$ - the number of survey participants answering $a_k = a$ and $a_\ell = a'$ for the components k and ℓ,

$$n_{k\ell}^{aa'} = \sum_{a_{-\{k,\ell\}} \in \mathcal{A}/\mathcal{A}_k \times \mathcal{A}_\ell} n^{(a_k=a, a_\ell=a', a_{-\{k,\ell\}})}$$

- The number of participants answering a given response a for component k satisfies

$$n_k^a = \sum_{a' \in \mathcal{A}_\ell} n_{k\ell}^{aa'}$$

- Let $\hat{p}_k^a = n_k^a / n$, and $\hat{p}_{k\ell}^{aa'} = n_{k\ell}^{aa'} / n$,
The Distribution of Composite Indices

- \(n_{k\ell}^{aa'} \) - the number of survey participants answering \(a_k = a \) and \(a_\ell = a' \) for the components \(k \) and \(\ell \),

\[
n_{k\ell}^{aa'} = \sum_{a-\{k,\ell\} \in \mathcal{A}/\mathcal{A}_k \times \mathcal{A}_\ell} n(a_k=a, a_\ell=a', a-\{k,\ell\}) \quad k \neq \ell,
\]

The number of participants answering a given response \(a \) for component \(k \) satisfies \(n_k^a = \sum_{a' \in \mathcal{A}_\ell} n_{k\ell}^{aa'} \)

Let \(\hat{p}_k^a = n_k^a / n \), and \(\hat{p}_{k\ell}^{aa'} = n_{k\ell}^{aa'} / n \),

Individual indices are given by

\[
\hat{D}_k = \sum_{a=1}^{r} \omega^a \hat{p}_k^a = \sum_{a=1}^{r} \omega^a \sum_{a' \in \mathcal{A}_\ell} \hat{p}_{k\ell}^{aa'},
\]
The Distribution of Composite Indices

- $p_{k\ell}^{aa'}$ - the joint probability of observing $a_k = a$ and $a_\ell = a'$ for the components k and ℓ,

$$p_{k\ell}^{aa'} = \sum_{a_{-\{k,\ell\}} \in \mathcal{A}/\mathcal{A}_k \times \mathcal{A}_\ell} p(a_k=a,a_\ell=a',a_{-\{k,\ell\}}), \ k \neq \ell,$$

where $(a_k = a, a_\ell = a', a_{-\{k,\ell\}})$ distinguishes between answers for component k, component ℓ, and all other components, $-\{k,\ell\}$.
The Distribution of Composite Indices

- $p_{k\ell}^{aa'}$ - the joint probability of observing $a_k = a$ and $a_\ell = a'$ for the components k and ℓ,

$$p_{k\ell}^{aa'} = \sum_{a_{-\{k,\ell\}} \in \mathcal{A}/\mathcal{A}_k \times \mathcal{A}_\ell} p(a_k = a, a_\ell = a', a_{-\{k,\ell\}}), \ k \neq \ell,$$

where $(a_k = a, a_\ell = a', a_{-\{k,\ell\}})$ distinguishes between answers for component k, component ℓ, and all other components, $-\{k,\ell\}$

- $p_{k\ell}$ - the vector comprising all pairwise joint probabilities, $p_{k\ell}^{aa'}$ for given components k and ℓ, where the dimension of $p_{k\ell}$ is r^2.

Each element $\hat{p}_{k\ell}^{aa'}$ in the vector $\hat{p}_{k\ell}$ is the sample mean of $\sqrt{n}(\hat{p}_{k\ell}^{aa'} - p_{k\ell}) \rightarrow D \mathcal{N}(0, \Sigma_{p_{k\ell}})$.
The Distribution of Composite Indices

- $p_{k\ell}^{aa'}$ - the joint probability of observing $a_k = a$ and $a_\ell = a'$ for the components k and ℓ,

$$p_{k\ell}^{aa'} = \sum_{a_{-{k,\ell}} \in \mathcal{A}/\mathcal{A}_k \times \mathcal{A}_\ell} p(a_k = a, a_\ell = a', a_{-{k,\ell}}), \ k \neq \ell,$$

where $(a_k = a, a_\ell = a', a_{-{k,\ell}})$ distinguishes between answers for component k, component ℓ, and all other components, $-{k,\ell}$

- $p_{k\ell}$ - the vector comprising all pairwise joint probabilities, $p_{k\ell}^{aa'}$ for given components k and ℓ, where the dimension of $p_{k\ell}$ is r^2.

Each element $\hat{p}_{k\ell}^{aa'}$, in the vector $\hat{p}_{k\ell}$, is the sample mean of Bernoulli random variables

$$\sqrt{n}(\hat{p}_{k\ell} - p_{k\ell}) \xrightarrow{D} \mathcal{N}(0, \Sigma_{p_{k\ell}}).$$
The Distribution of Composite Indices

\[\sqrt{n}(\hat{D} - D) \sim a \mathcal{N}\left(0, \sum_{k=1}^{\bar{k}} \delta_k^2 \text{Var}(\hat{D}_k) + 2 \sum_{1 \leq k < \ell \leq \bar{k}} \delta_k \delta_\ell \text{Cov}(\hat{D}_k, \hat{D}_\ell)\right), \]

where

\[D = \sum_{k=1}^{\bar{k}} \delta_k \sum_{a=1}^{r} \omega^a p_k^a, \]

\[\text{Var}(\hat{D}_k) = \frac{1}{n} \left\{ \left(\sum_{a=1}^{r} (\omega^a)^2 p_k^a \right)^2 - (D_k)^2 \right\}, \]

\[\text{Cov}(\hat{D}_k, \hat{D}_\ell) = \frac{1}{n} \left\{ \sum_{(a, a') \in A_k \times A_\ell} \omega^a \omega^{a'} \left[p_{k\ell}^{aa'} - \sum_{(b, b') \in A_k \times A_\ell} p_{k\ell}^{ab} p_{k\ell}^{b'a'} \right] \right\}. \]
An Application: The Michigan Survey of Consumers

- Monthly survey of Consumers (about 500 interviews) conducted by the Survey Research Center, University of Michigan
An Application: The Michigan Survey of Consumers

- Monthly survey of Consumers (about 500 interviews) conducted by the Survey Research Center, University of Michigan

- Index of Current Conditions
 - D_1: Would you say that you (and your family living there) are better off or worse off financially than you were a year ago?
 - D_5: Generally speaking, do you think now is a good or bad time for people to buy major household items?

$$ICC = \frac{D_1 + D_5}{2.6424}$$
An Application: The Michigan Survey of Consumers

Index of Consumer Expectations

- D_2: Do you think that a year from now, you will be better off financially, or worse off, or just about the same as now?

- D_3: In the country as a whole—do you think that during the next twelve months we’ll have good times financially, or bad times, or what?

- D_4: In the country as a whole, will we have continuous good times during the next five years or so, will we have periods of widespread unemployment or depression, or what?

\[ICE = \frac{D_2 + D_3 + D_4}{4.1134} \]
An Application: The Michigan Survey of Consumers

- **Index of Consumer Expectations**
 - D_2: Do you think that a year from now, you will be better off financially, or worse off, or just about the same as now?
 - D_3: In the country as a whole—do you think that during the next twelve months we’ll have good times financially, or bad times, or what?
 - D_4: In the country as a whole, will we have continuous good times during the next five years or so, will we have periods of widespread unemployment or depression, or what?

 $$ICE = \frac{D_2 + D_3 + D_4}{4.1134}$$

- **Index of Consumer Sentiment (headline number)**

 $$ICS = \frac{D_1 + D_2 + D_3 + D_4 + D_5}{6.7558}$$
Uncertainty and Qualitative Surveys

July 2015 26 / 26