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Precise calculations are made of the scattering intensityI (q) from an oriented stack of lipid bilayers using
a realistic model of fluctuations. The quantities of interest include the bilayer bending modulusKc , the
interbilayer interaction modulusB, and bilayer structure through the form factorF(qz). It is shown howKc and
B may be obtained from data at largeqz where fluctuations dominate. Good estimates ofF(qz) can be made
over wide ranges ofqz by using I (q) in q regions away from the peaks and forqrÞ0 where details of the
scattering domains play little role. Rough estimates of domain sizes can also be made from smallerqz data.
Results are presented for data taken on fully hydrated, oriented DOPC bilayers in theLa phase. These results
illustrate the advantages of oriented samples compared to powder samples.

DOI: 10.1103/PhysRevE.63.011907 PACS number~s!: 87.16.2b, 87.64.Bx, 61.30.2v, 61.10.Dp

I. INTRODUCTION

Lipid bilayers have been much studied as the prototypical
biomembrane. One focus of such studies is the structure of
lipid bilayers and how that structure varies with the thermo-
dynamic phase and with the chemistry of different lipids
@1,2#. Another focus is on the interactions between two bi-
layers@3,2# and on the mechanical properties of bilayers@4#.

For these purposes many groups have used x-ray scatter-
ing from lipid bilayers in the model system of multilamellar
vesicles ~MLVs! @1–3,5#. Each MLV consists of bilayers
arranged~topologically at least! as more than 200~usually
many more! concentric spheres with an average repeat spac-
ing D of order 60 Å , of which about 25 Å is water, depend-
ing upon the lipid and the phase. For scattering purposes
MLV samples effectively consist of independent domains,
each of which is a stack of parallel bilayers, but the normals
to the bilayers in the independent stacks are isotropically
distributed in space. Such powder samples diffract relatively
weakly and the intensity falls off rapidly withq because of
the Lorentz factor which scales as 1/q2. For samples in the
fully hydrated, most biologically relevant, fluid (La) phase,
often onlyh52 orders of diffraction are observable (qz,max
'0.2 Å21). Dehydrating the sample by applying osmotic
pressure increases the number of observable orders, but there
is an osmotic pressure correction to structure that must be
applied@2,6,7#. Furthermore, for at least one lipid~DOPC!,
the structure changes drastically upon mild dehydration
~relative humidity near 96%! @8#; for lower relative humidity,
diffraction data are not relevant for the desired bilayer struc-
ture @5#.

The intensity of diffraction is much greater from stacks of
bilayers that are oriented with their normals aligned along
one axis. However, until quite recently there has been con-
cern about studying oriented samples by x-ray diffraction
because they could not be hydrated from water vapor to the
full D spacing of samples immersed in water. This ‘‘vapor
pressure paradox’’ has recently been shown to be an experi-
mental artifact@9,10# and sample chambers suitable for x-ray

studies have now been built that obtain full hydration@11#.
Figure 1 shows the kind of data that hold the promise of
providing far more information than the MLV samples. The
purpose of this paper is to show how data like those in Fig. 1
can be analyzed.

The first reason that the data in Fig. 1 are so promising is
that there is intensity for aqz range at least up to 0.6 Å21,
more than twice as far as for the comparable MLV samples
@12#. The second reason is that the deep minima in the inten-
sities nearqz50.28 and 0.44 Å21 immediately show where
there are zeros in the single bilayer form factorF(qz), de-
fined by

F~qz!5E
2`

`

@r I* ~z!2rW* #cos~zqz!dz. ~1!

F(qz) provides information about the structure of a bilayer
centered atz50 with average normal directionz through the
contrast in the electron densityr I* (z) relative to that of water
rW* . Third, in addition to data in theqz direction, there is
clearly distinguishable information in Fig. 1 along theqr
direction which, for MLV samples, is lost by convolution
into a powder-averagedq dependence@13#. Finally, the data
are not confined just to the vicinity of the peaks as in our
previous studies on MLVs@13#, although other groups@14–
16# have obtained and analyzed intensity data that are con-
tinuous inq for MLV samples.

This work is closest in many ways to the study of Lei
et al. @17# and has benefited from it~see especially Lei@18#!.
There are, however, substantial differences which require a
separate development. Leiet al. studied a surfactant system
where the bending modulus could be made small by adding
cosurfactant so that their inverted bilayers could swell to
large D values. This took the system into the hard confine-
ment regime where the Helfrich theory of interactions@19# is
appropriate, whereas our systems have much smallerD and
are in the soft confinement regime@20,21#. Because fluctua-
tions were large, at most two peaks were observed and data
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extended only to about 0.25 Å21. Structure was not a goal,
so the electron density of the bilayerr I* (z) was assumed to
be a constant which is an adequate assumption for theirqz
range, but not for ours for which the extendedq range pro-
vides more information about the structurally useful modu-
lation of r I* (z) across the bilayer. Their major goal, which is
also one of ours, was to obtain the bending modulusKc and
the bulk ~interaction! modulusB. These two moduli are re-
lated to two parameters that were obtained from the scatter-
ing data. The first of these is the Caille´ parameter@22#

h15
kBT

8ABKc

4p

D2
. ~2!

The second, which involvesB andKc in a different combi-
nation, is an in-plane correlation length@23,17#

j45Kc /B, ~3!

which is related to the de Gennes penetration lengthl @24#
by j25lD. The Cailléparameter has been obtained in many
studies, including MLVs, by analyzing the tails of the dif-
fraction peaks@13,25#. Obtainingj is even more challenging
@26#; in particular, powder data are very insensitive toj @13#.
Lei et al. @17# obtainedj by analyzing the intensity in the
very small angle regime (qz,0.03 Å21). However, as they

noted, this small-angle scattering becomes weak in the more
weakly fluctuating soft confinement regime appropriate to
our lipid bilayers. We therefore did not attempt to obtain data
at such small angles~this small-angle regime is obscured by
the beam block in the data in Fig. 1!. Instead, we show how
bothh1 andj ~equivalently,B andKc) can be obtained from
the qr dependence of the data at large values ofqz .

Although the data in Fig. 1 contain a great deal of infor-
mation, including the structural information inF(qz) and the
interaction information inh1 and j, the data are also af-
fected by the domain size. Following@13#, we defineLz to be
the average domain size in the direction of the average bi-
layer normals. For cylindrical domain shapes,Lr is defined
to be the average radius in the transverse direction along the
plane of the bilayers. We also consider distributions in these
two sizes. The data also depend upon inevitable experimental
artifacts such as x-ray beam size, mosaic spread, and instru-
mental resolution. We will initially ignore the experimental
issues, except to note that the instrumental resolution for the
data in Fig. 1 was limited by the pixel size of the charge-
coupled device~CCD! detector, about 0.001 Å21, which is
10 times coarser than our best resolution for MLV samples
@12#. Therefore, our analysis must not rely upon the most
intense data very near sharp diffraction peaks, but must in-
stead focus upon the weaker intensity outside the peak re-
gions.

FIG. 1. Scattering intensity from a sample oriented on a cylindrical substrate versus scattering vector, whereqz is normal to the stack of
bilayers andqr is in the plane of the bilayers.~A! shows high intensities in white and~B! shows the average intensity as a function ofqz for
a strip of widthdqr50.01 Å21 centered atqr50. The dashed lines in~B! indicate the range for the grey scale in~A!. Data are from oriented
fully hydratedLa phase DOPC at 30 °C obtained at CHESS with a CCD detector@30#.
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Since the data are affected by so many parameters, the
analysis should ultimately consist of a simultaneous fit of a
model to the global data. However, in this paper we prefer to
establish the feasibility that such a program even has a
chance to succeed by identifying different regions of the data
from which a smaller subset of parameters can be estimated
separately. That this piecemeal approach might work is indi-
cated by the fact that the high-qz data are so strongly affected
by fluctuations that all the scattering is diffuse whereas the
smaller-qz data exhibit sharper and narrower peaks, more
typical of ordered samples. Another indication is that the
intensity I (q) is a product

I ~q!5S~q!uF~qz!u2/qz ~4!

of a structure factorS(q), which contains theB andKc in-
formation, and a form factor squared, which does not have
any qr dependence, as well as the customaryqz

21 Lorentz
factor for oriented samples. This implies that theqr depen-
dence must therefore come fromS(q). Therefore, the deter-
mination of the structural parameters inF can be separated
from the remaining parameters involved inS.

In Sec. II the basic model of discrete bilayer stacks is
reviewed and it is shown how the correlation functions that
affect x-ray scattering are calculated. It is shown how the
structure factorS(q) is calculated in Sec. III. Regions in
which the domain sizes and distribution have little effect on
S(q) are identified in Sec. IV. It is then shown in Sec. V that
bothh1 andj can be determined from data in these regions.
We return in Sec. VI to the other regions where the domain
sizes do affectS(q) and show how the sizes can be estimated
from data in these regions. It is then shown in Sec. VII how
the previous sections enable determination of the form factor
F(qz). Finally, in Sec. VIII this new analysis is used to
provide results for the data in Fig. 1.

II. CORRELATION FUNCTIONS FOR FLUCTUATIONS

The system consists ofn51, . . . ,N bilayers stacked in
the z direction. The center of each bilayer has an average
positionzn5nD and each bilayer extends over a diameterLr
in the r5(x,y) plane. Fluctuations in the stacking of the
bilayers are described by the quantitiesun(r ) which are spa-
tial deviations in thez direction of the center of thenth
bilayer from its average position at locationr . The original
Caillé theory @22# employed a continuum model of smectic
liquid crystals which has gradually been replaced by the fol-
lowing, more realistic, discrete free energy functional
@27,20,17,28,21#

f 5
p

NLr
2E r dr (

n50

N21

$Kc@¹ r
2un~r !#21B@un11~r !2un~r !#2%,

~5!

where the first term accounts for the bending energy of indi-
vidual bilayers and the second term is a harmonic approxi-
mation to the interactions between adjacent bilayers@20,28#,

parametrized by the modulusB which has units of energy/
length4. OurB is related to the Caille´ three-dimensional bulk
modulusB3 by B5B3 /D.

To treat x-ray scattering it is necessary to calculate the
height-height pair correlation function

dun~r !5^@un~r !2u0~0!#2&, ~6!

which has no azimuthal dependence because the bilayers are
in-plane fluids. We will avoid the ambiguity that arises from
imposing boundary conditions on a finite-size domain by cal-
culating the correlation functions for an infinite domain and
assume translational invariance. The restriction to finite-size
domains will be made in Sec. III by summing the infinite
domain correlation functions only over pairs that are con-
tained in such a domain. Then, for the discrete model in Eq.
~5! it has been shown@17,28# that

dun~r !5
4kBT

~2p!2BD2E0

p/D

dkz

3E
0

p/a kr dkr@12J0~krr !cos~kznD!#

4 sin2~kzD/2!1j4kr
4

, ~7!

where J0 is the zeroth-order Bessel function. Definingx
5(jkr)

2/2 and integrating overkz using the calculus of resi-
dues@18# yields

dun~r !5
2h1

q1
2 E0

(p/a)2j2/2
dx

3
@12J0~rA2x/j2!~A11x22x!2n#

xA11x2
, ~8!

whereq152p/D is the position of the first diffraction peak.
Equation ~8! shows thath1 is just a scaling factor for
dun(r ). This is computationally convenient because a table
of correlation functions can be calculated once to use with
different values ofh1. Something similar occurs with the
parameterj, but this is somewhat less obvious, sincej ap-
pears both inside the integral and in the upper limit in Eq.
~8!. Fortunately, the upper limit of integration can be ex-
tended tò with high accuracy@18#, as we have verified. To
removej from inside the integral, we change variables tot
5r /j so that the height-height correlation functions finally
can be written

dun~jt !5
2h1

q1
2 E0

`

dx
@12J0~ tA2x!~A11x22x!2n#

xA11x2
,

~9!

in which j appears only as a scaling factor ofr. This means
that we can calculate a table fordun(r ) only once for certain
values ofr 5jt, n, h1, andj. Then, we can use this table for
other values ofh1 by simply rescaling the values ofdun(r )
by a constant factor. And we can use this table ofdun(r ) for
other values ofj by rescaling ther dimension. We calculate
dun(r ) in Eq. ~9! numerically as a function ofr andn on a
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grid and save the values in a table.~It is computationally
useful to use logarithmic steps inr.! We then perform
smooth polynomial interpolations fordun(r ) for any r be-
tween the grid points.

Caillé @22# proposed an approximate correlation function
for r .j,

dun~r !5
4h1

q1
2 Fg1 lnS r

j D10.5E1S r 2

4nj2D G , ~10!

where g is Euler’s constant andE1(t) is the exponential
integral. In Fig. 2 we compare this approximation to our
accurate results forn50. Even for this worst case good
agreement is obtained forr .1000 Å. Forn.0 the approxi-
mation works well for even smaller values ofr. However,
precise numerical calculation is required in the vicinity ofr
50 andn50 and also high accuracy is needed for detailed
analysis of the structure factor, so we use Eq.~9! to calculate
dun(r ) for r ,2000 Å andn,30. We therefore use the
Caillé approximation, Eq.~10!, for r .2000 Å or n.30,
having checked that the fractional difference is less than
1024.

III. CALCULATION OF THE STRUCTURE FACTOR

The electron densityrn* of thenth bilayer will be written

rn* ~z,r !5r I* @z2nD2un~r !#, ~11!

where r I* (z) is the electron density profile of the bilayer
centered atz50. As has been discussed before@13,29#, there
is little reason to suppose that the local fluctuations in the
bilayer shapedr I* are correlated with the long-wavelength
fluctuationsun(r ), at least when the bilayers are fully hy-
drated@5#. However, there is a geometric correction to the
projected thickness of undulating bilayers along the average
bilayer normal which is correlated withu¹un(r )u and, when
under osmotic pressure, the local bilayer thickness is anticor-

related withu¹un(r )u @5#. Both effects are limited to about
2% for typical lipid bilayers and will be ignored. Then, the
basic scattering formula

I ~q!5K U E
V
r~R!eiq•R d3RU2L ~12!

can be written as Eq.~4! @13,17# whereF(qz) is given by Eq.
~1! and the structure factorSL(qz ,qr) is

SL~qz ,qr !5 (
n,m51

N

eiqz(n2m)D

3E
ur u,ur 8u<Lr /2

d2r d2r 8eiqr•(r2r8)

3G~ ur2r 8u,n2m,qz!, ~13!

whereG is the scattering pair correlation function:

G~r ,n,qz!5exp@2qz
2dun~r !/2#. ~14!

Since the lipid bilayer is organized as a fluid within the plane
of each bilayer and there are no local correlations between
molecules in adjacent bilayers, each bilayer is an in-plane
powder, the azimuthal angleu can be integrated out, and the
in-plane vectorr can be replaced by the in-plane distancer.
As already discussed in Sec. II, the correlation functions de-
pend only upon (n2m) and (r 2r 8), so the structure factor
for a domain of sizeLr andLz5ND becomes

SL~qz ,qr !5pLr
2 (

n52N

N21

~N2n!cos~qznD!

3E
0

Lr
r drF r~r /Lr !J0~qrr !G~r ,n,qz!,

~15!

whereFr(x), which is a finite-size effect function in ther
direction @18#, is zero ifx.1 and forx<1

Fr~x!5cos21~x!2xA12x2. ~16!

We next assume that the distributions of domain sizesLr and
Lz are independent, so that

S~qz ,qr !5E
0

`

dLzPz~Lz!E
0

`

dLr Pr~Lr !S~qz ,qr !,

~17!

where Pz(Lz) and Pr(Lr) are distribution functions forLz
andLr . ~One might alternatively assume that theLr andLz
sizes are correlated in some fashion.! We will use the Gauss-
ian distributions

Pr~Lr !5
1

s r
exp@2~Lr2L̄ r !

2/2s r
2#, ~18!

FIG. 2. Correlation functionsdun(r ) for various values ofn
~solid lines!. The dashed line shows the approximation in Eq.~10!
for n50.
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Pz~Lz!5
1

sz
exp@2~Lz2L̄z!

2/2sz
2#. ~19!

Equation ~17! can be simplified by introducing effective
finite-size factors

Hz~z!5E
z

`

dLzPz~Lz!~Lz2z!/D, ~20!

Hr~r !5pE
r

`

dLr Pr~Lr !Lr
2Fr~r /Lr !. ~21!

Thus, the final equation forS(qz ,qr) becomes

S~qz ,qr !5 (
n52`

`

Hz~nD!cos~qznD!

3E
0

`

rdrH r~r !J0~qrr !G~r ,nD,qz!. ~22!

To calculateS(qz ,qr) from Eq. ~22! numerically we first
calculateG using the table fordun(r ) in Sec. II. We also
calculateHz(z) andHr(r ) using Eqs.~20! and~21! and save
them in tables. We then calculate the integral and sum in Eq.
~22! numerically. The accuracy of our calculations has been
checked in two ways. The same integration was performed
using different tables calculated using a finer grid forr in
dun(r ) and different integration procedures of the Romberg
type have been used, with cutoffs adjusted to provide an
accuracy of 1024.

Figure 3 shows calculated structure factors where the val-
ues of h1 and j were chosen to correspond toKc510212

ergs andB52.831012 ergs/cm4, which are typical for lipid
bilayers @28#. As expected@17,13#, the intensities of the
higher orders rapidly decrease and almost disappear byh
55 even atqr50. As qr increases, the higher-order peaks
disappear completely, but the first two peaks are seen even at
qr50.04 Å21. Curiously, the shape of the peaks as a func-
tion of qz becomes narrower and more Bragg like asqr in-
creases. In the next several sections we will discuss how
changes in the various parameters affect the structure factor
shown in Fig. 3.

IV. EFFECT OF DOMAIN SIZES

Figure 4 shows how the structure factor is affected by the
average domain size in thez direction which henceforth will
be designated just asLz with no overbar. For all comparisons
we normalizeS(qz ,qr) by the amount of material in the
bilayer stack. This normalization gives the same values for
S(qz ,qr) for large values ofqz . As expected, the peaks also
become higher with larger domain size. Because of the over-
all conservation of scattering intensity, the diffuse scattering
between peaks becomes lower with an increase inLz . Most
importantly, the dependence onLz becomes smaller asqz
and/orqr increases. There is almost no dependence between
the h53 and h54 peaks whenqr50. For qr.0.01 Å21

there is almost no dependence onLz except very close to
qz52ph/D for h51 andh52.

Figure 5 shows thatLr affects the structure factor quite
differently from howLz affects it. An increase inLr results
in an increase of the wholeS(qz) curve whenqr50, more
so at lowqz values than at highqz . This does not violate
conservation of total scattering intensity since an increase in
Lr makes the peaks inS(qr) sharper and higher, therefore
reducing the intensity in theqr direction. Most importantly,
and similar to the effect ofLz above, the dependence onLr

FIG. 3. S(qz) at various values ofqr ~in Å21) for D563 Å,

h150.1, j580 Å, L̄ r5L̄z5104 Å, sz5L̄z/3, ands r5L̄ r /3. Solid
line: qr50. Dashed line:qr50.001 Å21. Dotted line: qr50.01
Å21. Dash-dotted line:qr50.02 Å21. Short dashed line:qr

50.04 Å21.

FIG. 4. S(qz) at different values ofLz at qr50 ~the upper three
curves! and qr50.04 Å21 ~the lower three curves!. Solid line: Lz

5103 Å, dashed line:Lz5104 Å. Dotted line:Lz5105 Å.
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becomes smaller asqz and/orqr increase. There is almost no
dependence between theh53 and h54 peaks whenqr
50. Forqr.0.01 Å21 there is almost no dependence onLr
except very close toqz52ph/D for h51 andh52.

V. DETERMINATION OF h1 AND j

The results in the previous section show that the domain
size parameters can be ignored in large regions of the data
where the fluctuations and diffuse scattering dominate. The
important unknowns in these regions are thereforeh1 , j,
and the form factorF(qz). SinceF depends only uponqz
@Eq. ~4!#, we now concentrate on theqr dependence of the
structure factor to evaluate the possibility of findingh1 andj
without having to do a global fit that includesF(qz) and the
domain size parameters.

Figure 6 showsSas a function ofqr in regions where the
dependence on domain sizes is negligible. Since the overall
amplitude of these curves would be set by the as yet un-
known form factor, the curves are normalized atqr50.01
Å21 in order to concentrate on theqr functional dependence
for largerqr . Figure 6 shows that both parametersh1 andj
affect S(qr). There is an important difference, however, be-
tween the effect in Fig. 6~a!, which is for aqz slice ~constant
qz and varyingqr) at theh5fourth-order peak, compared to
the effect in Fig. 6~b!, which is for aqz slice that goes mid-
way between the third and fourth peaks. In Fig. 6~a! the
effect of changingh1 by a factor of 2 is relatively larger than
changingj by the same factor and the reverse is true in Fig.
6~b!. Therefore, the effect of changing the two parameters is
not functionally degenerate and it is therefore plausible that
both parameters can be extracted from twoqz slices of data.

Programs were written to fit data from two or moreqz
slices and the programs were tested on calculated data with
random noise comparable to the noise in the data in Fig. 1.

~We note that data can be taken in future with less noise.!
Two slices of calculated data are shown in Fig. 7. The fitted
curves are also shown in Fig. 7 and the fitted values ofh1
andj agree well with the input values.

We note that a choice of twoqz slices should include at
least one withqz near a peak valuehq1 and one from be-

FIG. 5. S(qz) at different values ofLr at qr50 ~the upper three
curves! and qr50.04 Å21 ~the lower three curves!. Solid line: Lr

553103 Å, Dashed line:Lr5104 Å. Dotted line:Lr563104 Å.

FIG. 6. S(qr) normalized atqr50.01 Å21 for three combina-
tions of (h1 ,j) ~i! ~0.1,80 Å! ~solid lines!, ~ii ! ~0.1,40 Å! ~dotted
lines!, and~iii ! ~0.05,80 Å! ~dashed lines!. Panel~a! is for the slice
qz54q1 and panel~b! is for the sliceqz53.5q1 (q152p/D). Lz

5104 Å5Lr .

FIG. 7. Calculated data points, normalized atqr50.01 Å21,
with added noise forh150.1 andj580 Å are shown by points
with error bars for two slicesqz54q1 ~lower data! andqz53.5q1

~upper data!. A nonlinear least-squares fit to the data produced the
two solid curves and returned valuesh150.096 andj578.9 Å.
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tween peaks, such as (h2 1
2 )q1, as shown in Figs. 6 and 7.

Choosing two slices, both between successive peaks, does
not give sufficient contrast to obtain good parameter values
when noise is included. We have used more than twoqz
slices to increase the accuracy of the determination of the
parameters, but two slices suffice to illustrate the principle.

VI. DETERMINATION OF DOMAIN SIZES

In Sec. IV the emphasis on the effect of domain sizes was
to find the scattering regions where the domain sizesLz and
Lr had little effect so that the evaluation ofh1 andj could
be carried out independently as shown in Sec. V. We now
turn to the scattering regions near and between the low-order
peaks where the domain size has a large effect. This will give
us a method to estimate domain sizes. This procedure uses
the values ofh1 and j that will now be assumed to be de-
termined by the method of Sec. V. We cannot assume the
values of the form factorsF(qz), so the method in this sec-
tion will again focus on theqr dependence of the structure
factor but now at low values ofqz .

Figure 8~a! shows the dependence ofS(qr) on Lz for two
qz slices, one that goes through theh51 peak and one that
goes halfway between theh51 andh52 peaks. We have
chosen to normalize these curves to unity atqr50.01 Å21,
which is the same value ofqr used for normalization in Sec.
V, since there is little dependence ofS on domain size for
qr.0.01. With this normalization the dependence ofSon Lz
near qr50 is opposite for the twoqz slices. Figure 8~b!

shows a much different dependence ofS(qr) on Lr for the
same normalization. For bothqz slices an increase inLr

results in an increase ofS nearqr50.
The aforementioned difference in the effect of domain

sizes Lz versus Lr on the behavior ofS(qr50)/S(qr

50.01) at differentqz values indicates that these two param-
eters are functionally inequivalent and therefore bothLr and
Lz should be extractable from the data, as we have verified
for calculated data in which we have variedLz andLr . How-
ever, this assumes that we know the functional form of do-
main sizes. Our experience with powder samples has led us
from Gaussian distributions@12# to exponential distributions
@28#. It is also not clear howLr andLz should be correlated.
We think it is unlikely that these kinds of issues will be
definitively resolved. Fortunately, these domain details are
also the least important from the fundamental point of view,
since, due to the exigencies of sample preparation, they are
strongly variable even for nominally identical samples, as
was earlier emphasized for powder samples@25#. ~One
would expect oriented samples to have even more variation.!
Therefore, we are content to obtain a rough estimate of do-
main sizes and distributions and to focus on data in the re-
gions where details of the domains are not important.

VII. DETERMINATION OF THE FORM FACTOR

SinceS(q) is determined from the methods in the previ-
ous sections, we will now use Eq.~4! to calculate the form
factor F(qz), which is the only remaining unknown. As
noted at the end of the previous section, because details of
domain sizes and distributions are the most problematical
quantities to obtain precisely, it is appropriate to determine
F(qz) by analyzing data in regions inq where such details
are unimportant. We have chosen to useI (q) data for the
region 0.035,qr,0.040 Å21 where intensity data are also
strong enough to perform reasonable fits. For each value of
qz , F(qz) is chosen to provide the best overall fit to Eq.~4!
in this qr range.

We have tested this method of findingF(qz) using calcu-
lated data with added noise. As expected, the method works
well when one knowsh1 , j, Lz, andLr , precisely. Figure 9
shows the result of a more challenging test which supposes
that an incorrect value ofLr and Lz was obtained from the
method in Sec. VI. In this test the correct value of the form
factor is F51 for all qz . Figure 9~a! shows that the esti-
matedF(qz) is quite good everywhere except very near the
diffraction peaks, even thoughLz was misset by a factor of 5.
Figure 9~b! indicates that missettingLr has a larger, more
systematic effect, but it is still confined to the vicinity of
each diffraction peak. We note that the values ofF in Fig.
9~b! are consistently a few percent too high for most values
of qz not near a diffraction peak, but such a uniform error is
unimportant since experimental intensities are relative. Since
F(qz) is a smooth function on theqz scale of each of the
deviations in Fig. 9, one can easily interpolate accurate val-
ues ofF(qz) for these regions where one expects the method
to be inaccurate.

FIG. 8. Structure factor as a function ofqr for qz52p/D ~upper
curves! and qz53p/D ~lower curves!. ~a! shows the effect of
changingLz with constantLr5104 Å and ~b! shows the effect of
changingLr with constantLz5104 Å. Solid lines are for 103 Å,
dashed lines are for 104 Å, and dotted lines are for 105 Å. All
curves have been normalized to 1 atqr50.01 Å21.
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VIII. APPLICATION TO DOPC DATA

We have applied the analysis methods developed above to
the data shown in Fig. 1. The instrumental resolution of these
data was limited todq50.001 Å21 by the pixel size~50 mm
of the CCD detector and its placement~22 cm! from the
sample. The sample volume was effectively 10mm
3500 mm and the latter length was convolved into the cal-
culations to fit the data. The small mosaic spread, estimated
to be less than one degree, was not included in the fit.

The results for the fluctuation parameters areh150.08
60.01 andj55962 Å. The value ofh1 may be compared
with the valueh150.1060.01 obtained from the analysis of
peak shapes of unoriented fully hydrated MLV samples@6#.
Using Eqs.~2! and~3! givesKc50.7360.04310212 erg and
B56.060.731012 ergs/cm4. This value ofKc may be com-
pared with a recent valueKc50.8560.1310212 erg ob-
tained using the aspiration pipette method on giant unilamel-
lar vesicles at the lower temperature of 18 °C@4#. The value
of B has not been previously obtained for fully hydrated
DOPC, but the new value generally agrees with the range of
values reported for egg lecithin@28#.

The results for domain sizes areLz50.18 mm and Lr
50.5 mm. The thickness of the sample on the curved glass
substrate is at most 10mm, so the value ofLz appears rea-
sonable. We expected a larger size forLr . It is noteworthy,
however, thatLr is still considerably larger thanj andLz is
considerably larger than the interbilayer water spacing of
0.0025mm, so a theory of long-range fluctuations is appro-
priate for this sample.

The result for the form factor is shown in Fig. 10. It is
compared to a published form factor obtained for partially
dehydrated MLV samples which was put on an absolute
scale@6#. The overall scale factor for the new form factor
from the oriented sample is set to match the previous form
factor in the first lobe regionqz,0.3 Å21 where the MLV
results are most accurate. The new results become very noisy
for qz,0.15 Å21 due to uncertainties in subtracting back-
ground which is higher for smallqz due to air scattering from
the beam. The older results in the region of the third lobe
(qz.0.44 Å21) were obtained with very few data with large
statistical deviations@6#. The new results forF appear to be
more accurate in the high-qz region.

IX. CONCLUSIONS

It has always been attractive to study lipid bilayers
stacked in oriented samples because they scatter more
strongly. Now that the vapor pressure paradox has been over-
come experimentally@9,10#, there is added motivation be-
cause these samples can be fully hydrated in the biologically
relevant fluid phase. However, the intensity is affected by a
convolution of many factors. The analysis presented here
shows how to extract both the parametersKc and B from
x-ray scattering data from such samples in the fluctuatingLa
phase. These parameters appear in the fluctuational free en-
ergy that has previously been shown@12,28,6# to describe
powder samples; however, only one of the parameters could
be obtained from the powder data. Being able to obtain both
parameters will enhance future studies of the basic interac-
tions between lipid bilayers in which the osmotic pressure
will be varied systematically to obtainB as a function of the
distance between bilayers@3,2,28#.

Our analysis shows how to obtain the continuous form
factor F(qz) in a way that is not very sensitive to uncertain-
ties in determining domain size. Previous determinations of
the continuous form factor using powder samples relied on

FIG. 9. Form factorF(qz) obtained by analyzing data calculated
with h150.1, j580 Å, andLr5Lz5104 Å with calculations with
~a! Lz misset to 2000 Å and~b! Lr misset to 2000 Å. The true value
is F(qz)51 for all qz and the diffraction peaks occur atqz50.1h
Å21.

FIG. 10. Absolute value of the form factoruF(qz)u for DOPC.
Solid circles show results obtained in this work for one fully hy-
drated sample. Open diamonds show results for many powder
samples in different humidity conditions@6#.
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only a few orders from many samples, each with a different
D. In contrast, the results in Fig. 10 come from just one
sample. The relative wealth ofq-space data in Fig. 10 raises
several possibilities for obtaining electron density profiles for
lipid bilayers. In a subsequent paper we will consider some
of these possibilities, employingF(qz) results that we hope
will extend to even higherqz .

It has also not escaped our attention that this method
should be applicable to more complex biomembranes that

include mixtures of lipids, sterols, or antibiotic peptides in
the biologically relevant, fully hydrated state.
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@22# A. Caillé, C. R. Seances Acad. Sci., Ser. B274, 891 ~1972!.
@23# R. Lipowsky, inHandbook of Biological Physics, edited by R.

Lipowsky and E. Sackmann~Elsevier, New York, 1995!, Vol.
I, Chap. 11.

@24# P. G. deGennes and J. Prost,The Physics of Liquid Crystals
~Oxford University Press, New York, 1993!.

@25# J. F. Nagle, R. Zhang, S. Tristram-Nagle, W. Sun, H. I. Pe-
trache, and R. M. Suter, Biophys. J.70, 1419~1996!.

@26# D. C. Wack and W. W. Webb, Phys. Rev. A40, 1627~1989!.
@27# R. Holyst, Phys. Rev. A44, 3692~1991!.
@28# H. I. Petrache, N. Gouliaev, S. Tristram-Nagle, R. Zhang, R.

M. Suter, and J. F. Nagle, Phys. Rev. E57, 7014~1998!.
@29# J. F. Nagle, H. I. Petrache, N. Gouliaev, S. Tristram-Nagle, Y.

Liu, R. M. Suter, and K. Gawrisch, Phys. Rev. E58, 7769
~1998!.

@30# M. W. Tate, E. F. Eikenberry, S. O. Barna, M. E. Wall, J. L.
Lowrance, and S. M. Gruner, J. Appl. Crystallogr.28, 196
~1995!.

METHOD FOR OBTAINING STRUCTURE AND . . . PHYSICAL REVIEW E63 011907

011907-9


	Carnegie Mellon University
	Research Showcase
	1-1-2000

	Method for obtaining structure and interactions from oriented lipid bilayers
	Yulia Lyatskaya
	Yufeng Liu
	Stephanie Tristram-Nagle
	John Katsaras
	John F. Nagle
	Recommended Citation



