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Abstract
During the design process, a designer transforms an abstract
functional description for a device into a physical description that
satisfies the functional requirements. In this sense, design is a
transformation from the functional domain to the physical domain;
however, this transformation process is not well characterized nor
understood for mechanical systems. The difficulty arises, at least in
pan, because mechanical designs are often composed of highly-
integrated, tightly-coupled components where the interactions
among the components are essential to the behavior and economic
execution of the design. This assertion runs counter to design
methodologies in other engineering fields, such as software design
and circuit design, that result in designs in which each component
fulfills a single function with minimal interaction. Because of the
geometry, weight, and cost of mechanical components, converting a
single behavioral requirement into a single component is often both
impractical and infeasible. Each component may contribute to
several required behaviors, and a single required system behavior
may involve many components. In fact, most mechanical

• components perform not only the desired behavior, but also many
additional, unintended behaviors. In good mechanical designs, these
additional behaviors often are exploited.

The long term goal of our research is to create a transformational
strategy in which the design specifications for a mechanical system
can be transformed into a description of a collection of mechanical
components. To realize this goal requires formal representations for
the behavioral and the physical specifications of mechanical systems
as well as formal representations for the behaviors and the physical
characteristics of mechanical components. Because the interactions
of components are important in our synthesis strategy, the
representation of the behaviors of mechanical components must be

. linked to the representation of their physical characteristics; that is,
we are concerned with modeling the relationship between form and
function of components. Finally, we need a strategy that enables us
to transform an abstract description of the desired behavior of a

> device into a description that corresponds to a collection of available
physical components.

In this paper, we present a graph-based language to describe both
the behavioral specifications of a design as well as the behavior of
the available physical components. We also briefly discuss a graph-
based grammar for the representation of the physical characteristics
of the components that enables us to guide the translation from
specifications to components [Pinilla 89]. The transformation
strategy is discussed in a companion paper [Hoover 89].

Introduction
During the design process, t designer transforms an abstract
functional description for a device into a physical description that
satisfies the functional requirements.1 In this sense, design is a
transformation from the functional domain to the physical domain
[Mostow 85, Rinderle 82]; however, the basis for selecting

appropriate transformations and methods for accomplishing
transformations are not well understood. The implicit basis for
design transformations in circuits [Steinberg 86], software [Wirth
71], and some architectural applications [Fcnvcs 87] result in a
degree and type of modularity not well suited to mechanical devices
[Rinderle 86].

Good mechanical designs are often composed of highly-integrated,
tightly-coupled components where the interactions among the
components are essential to the behavior and economic execution of
the design. This assertion runs counter to design methodologies in
other engineering fields, such as software design and circuit design,
that result in designs in which each component fulfills a single
function with minimal interaction. Because of the geometry,
weight, and cost of mechanical components, convening a single
behavioral requirement into a single component is often both
impractical and infeasible. Each component may contribute to
several required behaviors, and a single required system behavior
may involve many components. In fact, most mechanical
components perform not only the desired behavior, but also many
additional, unintended behaviors. In good mechanical designs, these
additional behaviors often are exploited.2

'Mechanical engineers tend to use the words function and behavior
interchangeably. Qualitative physicists make a distinction between these »ords:
that is, the design's function is what it is used for, while its behavior is *hai u
does. For example, the function of a clock is to display the time, but its behavior
might be the rotation of hands. Similarly, a motor may be designed to function as
a prime mover, but can also function as a door stop because it has additional
behaviors due to its mass. In this paper. Junction is used to indicate ihe subset of
behaviors which are required for the device to perform satisfactorily.

2This statement does not contradict the design axioms put forth by Suh (Suh
80, Suh 88]. The design axioms state that good designs maintain independence of
functional requirements and minimize the information content of the design Suh
points out that by integrating functions into t single component, information
content may be reduced without compromising the independence of functional
requirements.
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The direct transformation of behavioral requirements into physical
components may result in undesirable designs for two reasons. The
first is that matching individual behaviors directly to components
does not enable the integration of behaviors into more compact or
more economical collections of physical components. The second
reason is that physical components have not only the desired
behavior and physical characteristics but also many additional,
incidental behaviors and characteristics. The appropriate device
configuration and selection of components depends to some extent
on exploiting or compensating for these incidental behaviors.

By creating a formal description of a limited set of behaviors for
mechanical designs and a corresponding description of physical
components, we can generate the description of a physical system
that takes advantage of the multiple behaviors of its components.
This paper focuses on the grammar that underlies the transformation
from behavioral specifications to physical components. The
transformation strategy is discussed in a companion paper [Hoover
89].

Overview of Our Approach
The goal of our research is to create a transformational strategy by
which the design specifications for a mechanical system can be
transformed into a description of a collection of mechanical
components. Both behavioral and physical requirements as well as
behavioral and physical characteristics of the available mechanical
components must be represented to execute such a transformational
approach to design. We are investigating the use of representations
based on formal grammars to facilitate the characterization of our
approach with respect to completeness, complexity, etc. and to take
advantage of the advances in formal language theory. Because the
interactions of components are important in our synthesis strategy,
the representation of the behaviors of mechanical components must
be linked to the representation of their physical characteristics; that
is, we are concerned with modeling the relationship between form
and function of components. Finally, we need a strategy that
enables us to transform an abstract description of the desired
behavior of a device into a description that corresponds to a
collection of physical components. This paper primarily addresses
the first issue, that of formal representations of behavior.

To realize the goal of formalizing the transformation from the
behavioral to the physical domain, we have begun to explore a small
domain within mechanical design, the domain of gear box design.
Clearly, one reason for selecting this domain is that gear box design
is a well-understood, highly-parameterized area of mechanical
design. Nevertheless, we believe that our representation and
transformation formalism will be applicable in other mechanical
design domains, particularly to the class of design problems that we
call configuration design. By configuration design, we mean
designs composed from standard component families but for which
allowable configurations are not specified a priori.

Our approach is based on the following assertions:

• The behavioral requirements of mechanical systems can
be represented using a graph grammar based on bond
graphs.

• The behavioral characteristics of components can be
represented using a graph grammar based on bond
graphs.

• The physical characteristics of designs and components
can be represented using an augmented topology and
geometry graph.

• The behavioral and physical graphs of components can
be linked parametrically.

• The behavioral specifications graph can be transformed
into a description of a physical system with associated
behavioral and geometric representations.

Representational issues will be discussed at greater length in
subsequent sections; however, we note here that our underlying
representation for behavior is based on bond graphs [Paynter 61].

Usin^ bond graphs, we can construct a formal grammar that rives us
a general representation of classes of mechanical behavior. lit
common practice, bond graphs are constructed to model the
behavior of physical systems. We use bond graphs not only to
model the behavior of physical systems, but also to represent
behavior in the abstract, as with a design specification. Thus a
device configuration can be generated by transforming a
specification bond graph into a functionally equivalent graph which
corresponds to a configuration of available components. The type of
graph transformations used are those that decompose, aggregate, and
redistribute graph primitives.

A major advantage of using bond graphs to represent design
requirements is that we can define transformation rules that alter the
structure of the bond graph but that do not alter the dynamic
behavior of the system represented by the graph. The implications
of this statement are important Because we can transform the
specifications graph to represent many different physical systems,
we do not impose an initial structure or configuration on the
physical design; that is, we do not require an a priori decomposition
of the design specifications.

To complete this methodology, we plan to represent the physical
characteristics of designs and components using another graph
grammar that is based on an augmented topology graph [Pinilla 89]
and non-manifold geometry [Gursoz 89]. We plan to link
parametrically the bond graph representation and the topology and
geometry graph representation. With a geometric representation,
characteristics such as the volume or mass can be modeled and
computed, and from the bond graphs, the dynamic behavior of the
final design can be modeled. In this paper, wfe do not discuss the
geometric representation in detail because our work on linking the
geometry and behavior is preliminary.

A Brief Introduction to Bond Graphs
Bond graphs, which were created by Paynter [Paynter 61], provide a
convenient and uniform representation for the dynamic behavior of a
broad class of physical systems, including those within the
mechanical, electrical, hydraulic, thermal, and biological domains.
Bond graphs have been used extensively in a wide variety of
application areas including robotic manipulators [Margolis 79],
torque conveners [Hrovat 85], and vacuum cleaners [Remmerswaal
85]. A brief introduction to bond graphs is given here. For a
complete discussion, see Karnopp and Rosenberg [Kamopp 75].

Bond graphs enable mechanical and hydraulic systems to be
represented in a manner equivalent to electric circuit diagrams. For
example, a spring in a mechanical device acts like an electrical
capacitor by storing and releasing energy. To illustrate the
similarity, Figure 1 shows an RLC circuit with its equivalent bond
graph and a mass-spring-damper system with its equivalent bond
graph. While Figure 1 illustrates separate electrical and mechanical
systems, one of the most powerful attributes of bond graphs is that
they can be used to model integrated electrical, mechanical, and
hydraulic systems.

Using bond graphs, physical systems are represented as a graph of
lumped-parameter, idealized elements. Power is the currency of
bond graphs; power flows through the bonds (edges) in the graph,
and power is dissipated, stored, supplied, and transformed at the
ports (vertices) in the graph.

The ports, or vertices, of bond graphs are divided into three
categories:

• 1-port elements dissipate power, store energy, and
supply power. Dampers, springs, and masses arc the
mechanical elements represented by the passive 1-port
elements. Force (effort) and velocity (flow) sources are
represented as active 1-ports.

• 2-port elements transform power. Transformers axe 2-
port elements that represent an imposed proportionate
relationship between similar quantities, e.g. a gear pair
constrains rotational speeds. Gyrators are a 2-port
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Figure 1: Simple systems with corresponding bond graphs

elements that impose a proportionate relationship
between dual quantities, e.g. a torque converter
constrains the relationship between torque and angular
velocity. Pdwer is conserved across a 2-port.

• N-port elements represent the structure of the system
corresponding to the connections among the elements.
There are two types of N-port elements: O-junctions
and 1-junctions, which correspond respectively to
"same force" and "same velocity" connections.
Equivalents of Kirkoff s laws apply to N-port elements:
the sum of the efforts around a 1-junction is zero (the
bonds share a common flow); the sum of the flows
around a 0-junction is zero (the bonds share a common
effort). N-pon elements are power conserving.

Because bond graphs can be used to model electrical, mechanical,
and hydraulic systems, problems with standard notation and
terminology arise. For example the symbol, v, is commonly used
for velocity in mephanical systems and for voltage in electrical
systems. In circuits, it is common to speak of a voltage source, but
speaking of a force source in mechanics is awkward. Table 1 gives
a common notation for bond graph equivalents in the electrical and
mechanical domains.

The bond graphs shown in Figure 1 consist of 1-port elements, n-
port elements, and power bonds. Power bonds are indicated by the
presence of a half-arrow, the direction of which establishes the sign
convention for power flow. Power bonds are usually shown with a

. causal stroke at one end. The causal strokes play an important role
in identifying device states, formulating system equations, and
interpreting causal structure, but they, like the power direction half-
arrow, may be considered as augmentations to the basic bond graph.
Although they are included in the illustrations, neither the causal
strokes nor the half-arrows enter into representational or
grammatical considerations. Other bond graphs elements, notably
field structures and active bonds, are not considered here.

Figure 2 shows a schematic of a motor, drive shaft, gear, and load
system with an equivalent bond graph. In this bond graph, the
motor and its controller have been idealized as a source of torque;
however, the drive shaft compliance, gear inertia, and bearing losses
have been explicitly included. "Die overall behavior of the
transmission element is the aggregated behavior of these behavior
primitives.
The use of bond graphs in our representation and grammar will be
discussed in following sections.

Variables

Source
Elements

Passive
Elements

Structure

Generalised
Bond Graphs

effort, e

flow.f

Power* ef

Effort Source

Row Source

Resistance
R

c-Rf

Compience
c

f«Cdv/dt

Incrunce
I

e-Idf/dt

0 Junction
Common Effort

1 Junction
Common Plow

Electrical
Systems

VoHtse,v

Current,*

Power-vi

Volute Source

Current Source

Resistor
R

v - i R

Capacitor
c

i-Cdv/dt

Inductor
L

v • L di/dt

Parallel

Series

Mechanical
Systems

Force. F

Velocity, v

Power • F v

Applied Force

Prescribed Velocity

Damper
b

F«bv

Spring
1/k

dF/dt * k v

Inenia
m

F • m dv/dt

Svnc Force

Same Vdociry

Table 1: Equivalents for electrical, mechanical and
generalized bond graph elements

i Prime Mover -i—^ Transmission -i—i^ Load

Figure 2: Drive system and associated bond graph



Related Work
Our research builds upon research from several different areas
including representation of mechanical behavior, grammars for
shape representation, configuration design, and bond graphs. In this
section, we briefly discuss related research in these areas.

Representation of Function
A transformational strategy for design requires a representation of
the device specifications and the components used in the device.
The representation of the function and behavior of mechanical
designs has been explored by, among others, Lai [Lai 87], Crossley
[Crossley 80], Pahl and Beitz [Pahl 84]. The function structures of

Pahl and Beitz provide a graphical system for laying out the
functions of a design. In this system, functions such as "mix" or
"deliver" are arranged in a graph to represent the overall function of
the design. This is similar to our idea of a specifications graph,
discussed below; however, there are several important differences.
Pahl's work does not discuss how to integrate form specifications or
functional constraints with this functional representation. Therefore,
while the function structures are used to study varous
configurations in Pahl's synthesis strategy, there is little guidance
for transforming the function structure to a physical description of
the device. Lai has created a formal, English language-based system
called FDL for representing the function and structure of mechanical
designs. In FDL, nouns and verbs are used to create sentences that
represent the function of a design, and design rules operate directly
on the nouns and verbs in the sentence. Allowable verbs, for
example "fasten," do not have physical or mathematical
representations and so their meaning is determined by the rules that
use them. While the FDL language can represent the function and
form of a design it provides no assistance in transforming a
functional description into a physical description.

More closely related to our approach for representing behavior is the
work of Fenves and Baker [Fenvcs 87] and of Ulrich and Seering
[Ulrich 87, Ulrich 88, Ulrich 89]. Fenves has created a spatial and

functional representation language for structural designs. They use
operators that execute a known grammar to generate architectural
layouts as well as structural and functional configurations; however,
they assume that the layout and structure are independent if they are
generated sequentially. Ulrich and Seering also use a formal
representation of function based on bond graphs; however, their goal
is to create a system in which the bond graphs for single-input,
single-output dynamic systems can be automatically synthesized and
transformed into physical components. Using a strategy they call
design and debug, they transform a graph of design requirements
directly to functionally independent physical components.
Reconfiguration for function sharing is performed after the
components have been selected.

Grammars for Shape Representation
Formal grammars that can be used to represent, generate, and parse
valid strings in a language have proven useful in a number of fields,
most notably, linguistics and computer science. Recently, interest
has been growing on the use of formal grammars in engineering
design. Our work draws mainly from these engineering applications
of grammars. We are specifically concerned with graph grammars,
the class of grammars that operates on graphs. Tutorials on graph
grammars and their applications are given by Ehrig [Ehrig 87] and
by Nagl [Nagl 87].

One of the earliest uses of grammars in design was by Stiny [Stiny
75] who created shape grammars based on the formalisms of
computational linguistics [Chomsky 57]. Architects in particular
have been interested in shape grammars, using them to generate a
family of floor plans or ornamentation. Fitzhorn [Fitzhorn 89] has
shown the formal relationship between language theory and solid
modeling systems. He shows that a variant of a graph grammar can
produce three-dimensional solids. He creates three grammars, one
of which generates the constructive solid geometry representation,
the second of which generates the boundary representation, and the
third of which generates plane models.

Pinilla\m al [Pinilla 89] have created a grammar that can be used to
describe and represent the geometric features of a design Thev use
a non-manifold tcmological representation of a design to createa
general, but formal, representation of form features. This system is
currently being extended to enable feature-based designs to be
generated, represented, and parsed. This extension if possible
because the underlying representation of a feature is based on
elements of a well-defined grammar.

Configuration Design
Configuration design and parametric design are active areas of
research in mechanical engineering design. For a more complete
discussion of this body of work, see [Finger 89]. Our research
combines configuration design and parametric design because we
generate both the structure of the design and the individual
components. Many design systems, such as HI-RISE [Mahcr 851
AIR-CYL [Brown 85], and VT [Marcus 86], utilize either a set of
predetermined decompositions of the structure of a design, or utilize
design methods that generate, as part of the design process a
decomposition belonging to such a set Therefore, all of the designs
generated by these systems will share, at a relatively low level, a
structural similarity. For design domains in which the most
desirable structures can be enumerated or explicitly decomposed in
advance, this approach proves useful. But there are many design
problems where the structural decomposition of the most useful
solution is not pre-determined.

Representation of Specifications, Components, and
Devices
The transformational approach to design, which we have briefly
introduced, imposes some representational requirements.
Specifically, the representation must:

• Express formally the design requirements of mechanical
systems.

• Be compatible with the representation of the behavior
of components.

• Facilitate design validation.

• Represent the required system behavior without
imposing a pre-defined structure on the physical
realization of the design.

We make the observation that system specifications for engineering
designs are of two types; behavioral and physical. "HUMS, some
specifications describe at an abstract level the desired behavior of
the overall system while others describe physical restrictions or
requirements on the final design. For example, the requirements for
a vibration absorber might include the behavior of the device in
terms of frequency and rejection ratio and might also specify
physical properties such as allowable size and weight. The physical
and behavioral specifications express the design objective Since
the specifications are given without regard to design configuration,
they are independent of each other.3 Physical specificauons for a
design may or may not be given, while at least some behavioral
specifications must be given, since the behavioral specifications
express the central aspect of the design objective.

Although the behavioral and physical specifications are independent
in the functional domain, they are coupled in the physical domain,
because any physical arrangement results in a specific set of
behaviors. In the physical domain, the physical and behavioral
characteristics of a individual components depend on one another,
and the behavior of the whole design depends strongly on the
configuration and interaction of components. The representation of
interactions is essential for our purposes since we are invest:eating
the effects of and the means for achieving functional integration in
design

*That is, they are independent unless the requirements are contradictory, for
example by virtue of physical law.



Physical and behavioral specifications and characteristics can be
represented as combinations of abstract primitives. They are
abstract because each primitive corresponds to only one behavioral
or physical characteristic. Individually they do not correspond to
any particular component or configuration of components, but
collectively they may represent the design specifications or the form
and behavior or components. There are two important criteria that a
set of primitives must satisfy. One requirement is that the set of
primitives chosen be complete; that is, all relevant behavioral and
physical characteristics must be representable by some combination
of primitives. The other is that the number of primitives must be
small, although not necessarily minimal. The latter requirement
minimizes combinatorial problems associated with representing a
single behavior in different ways. In addition, the primitive
behavioral and physical elements should enable commonly used
components and typical specifications to be represented easily.

Representation of the Design Specification
If the behavioral primitives correspond to bond graph elements, the
behavioral specifications can be represented by a bond graph. This
specification bond graph is not unique, indeed any behaviorally
equivalent graph is an acceptable representation of the
specifications. The specifications graph represents only the desired
behavior of the design. Physical specification will be represented as
an augmented topology graph which is not discussed further in this
paper.
Deriving a correct specifications graph for a design problem is, in
itself, a major research problem. Initially, for transmission design,
we assume that deriving a specifications graph from the problem
statement is straightforward. Later, as less constrained design
domains are explored, we will look at the problem of constructing
the specification graph from the design requirements.
Figure 3 illustrates the system specification for a system required to
drive two loads at a high speed relative to the input speed. The
single physical requirement is a required shaft offset and is not
shown.

Load,

Load,

Figure 3: Specification graph for a system to drive two loads

Representation of Physical Components
Physical components, like specifications, have both behaviors and
physical characteristics. Therefore, it is convenient in representing
components to employ the same basic structure that is used for
specifications. One crucial difference, however is that the behaviors
and physical characteristics of a component are inherently linked; no
single characteristic can be obtained in isolation. Each physical
component is represented as an object that has a behavioral
representation, a physical representation, and an explicitly
represented interaction between the two. The relationships can take
the form of design equations, analytical models that relate geometric
characteristics to behavioral characteristics, or data base entries that
prescribe a relation between the physical and the behavior
characteristics. For example, the weight of a helical coil spring,
which is a physical characteristic, is proportional to the product of
stiffness and the square of allowable deflection, which are
behavioral characteristics. These relationships are often critical
during the design.

As an example consider a single spur gear as a component The
behavior graph for the component is shown in Figure 4. In this
example, a relationship is imposed between flow quantities
rotational speed, co on the left and surface speed, v, on the right The
topological graph, representing physical characteristics is not shown.
In its place we simply show the geometric parameter corresponding
to pitch diameter.

Figure 4: Behavior graph for a single spur gear

It is important to note that the completeness of the behavioral and
physical representations determines the extent to which the
additional behaviors can be exploited. For example, with a worm
gear, the right angle shaft configuration jmd^ the self-locking
property must be represented explicitly, or be derivable from the
representation, for it to be recognized and utilized in the design
process. Therefore, this methodology requires a known component
base.

Representation of Designs
A complete design is the specified configuration of a set of
components. Since the components have associated with them both
behaviors and physical characteristics, the distinction between the
representation of designs and the representation of components is in
the representation of the behavioral and physical configuration. The
behavioral configuration fundamentally consists of the kinematic
connections, e.g. mounting to a frame, rigid connections, or rolling.
Most of the common kinematic arrangements can be
categorized [Reuleaux 54] and reduced to a bond graph junction
structure. A 1-junction, for example, represents a common
translational velocity. In this way, the behavior of complete devices
may be represented in terms of the behavioral bond graphs of
components and a number of bond graph junction structures
representing kinematic connections. Partially complete designs also
consist of components and junction structures and some number of
behavioral primitives not yet associated with a component.

Ultimately, we will represent the physical characteristics of the
device in much the same way, i.e. as a composite of the topology
and geometry graphs of the components and configuration. To date
we have represented the physical characteristics of devices by
aggregating, on an ad hoc basis, the geometric parameters of the
components and the layout. Figure 5 shows how two spur gears are
represented as a combination of components joined through a
kinematic connection. In this case, the components have 3 common
speed at the pitch diameters of the gears.

At the device level, a physical or behavioral charactcrisnc describes
an overall characteristic of the system. These characteristics may be
one of two types: configuration-independent and configuration-
dependent. Configuration-independent characteristics are those such
as weight that depend only on the selected components and not on
their configuration or interactions. Configuration-dependent
characteristics, such as size and resonant frequency, depend on the
configuration and interaction of the components in the final design.
In either case the characteristics of the design can be determined
from the completed behavioral and topological graphs, however, the
implications of configuration independent characteristics can be
utilized prior to design completion.



Figure 5: A behavior graph for a combination of two spur gears

A Bond Graph Grammar
In this section, we discuss the formalisms that enable bond graphs to
be transformed from design specifications to component
specifications while preserving the system behavior. We first define
the graph, its elements, and some set operations on the graph such as
inclusion and difference. We then define what it means for one
graph (the component graph) to be derivable from another graph
(the specification graph). Our primary interest is in the productions
for transforming bond graphs of mechanical systems, rather than in
demonstrating a grammar that generates all possible, valid bond
graphs.

transforms 2-ports to transformers a**d gyrators and so on.

For the b'mited domain of gears, the alphabet for the vertices is:

I , - {1-pon, source, torque source, angular velocity source,
passive-element, rotary inertia, rotary damper, rotary spring,
2-port, transformer, gyrator, n-port, 0-junction, 1-junction)

Basic Graph Relationships and Operations
Transformations of the specifications graph will require removing
subgraphs of bond graphs and replacing them with other graphs.
For example, if a specification included a graph representing a
transformation ratio of 25:1, that subgraph would be removed, and a
graph representing a sequence of 5:1 reductions might be inserted in
its place. To perform such a transformation requires a definition of
graph isomorphism so that different arrangements of the same graph *
can be recognized. It also requires a definition of graph inclusion so
that subgraphs within a larger graph can be identified, that is, for "
example, to define what it means to say that the graph of the 25:1
reduction ratio is included in the specifications graph. Finally, it •
requires a definition of the difference operation between two graphs
so that we can, for example, remove the 100:1 reduction from the
specifications graph in order to replace it with the sequence of
smaller reductions. Graph isomorphism, inclusion and difference
are defined in Appendix A and are illustrated in Figure 6.

Graph Representation
A bond graph is a graph with vertices labeled to indicate
correspondence to the various 1-ports, 2-ports and n-ports. The
edges of the graph correspond to the power bonds and may be
labeled to show, for example, causality. Loops may occur in a bond
graph but multiple edges and self edges are not meaningful and are
not allowed.

We define the bond graph to be an undirected graph with edge and
vertex labels, that is, the bond graph, g is

* - < V . B ) .

where

and

V c X x Zv is called the vertex set

B Q V x V x Ze is the edge set with the conditions:

• V (v., v;, le) € B, (v,, v,, /,) * (v;, v,, /,)

• V 0v v>f/,) € B>**J
• if 3 (v., v;, /,) and (v,, v,, lf) e B, /, = lf

Iv is a finite, non-empty set of symbols called the vertex
labels

le is a finite, non-empty set of symbols called the edge
labels

X is a non-empty, enumeration set

V- is an element in the vertex set

le is an edge label in the edge alphabet

In this section, all graphs, gmt are assumed to be defined on the
alphabets, Iv and Z, with gm = (Bm, VJ

For the grammar presented here, the labels of the edges are simple
enumeration labels; however, in a more complete grammar for bond
graphs, edge labels for causal strokes and power flow will be useful.
We include in the set of vertex labels both terminal and non-terminal
elements, that is, both the low level elements like resistors as well as
the general elements like 1-ports. The set of vertex labels, which is
large, can be generated by enumerating all the ports and port-types.
Alternately, the labels could be generated by a simple string
grammar that transforms n-ports to Q-junctions and 1-junctions.
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Figure 6: Graph isomorphism, inclusion, and difference

Graph Productions
We now define graph productions that enable us to remove one part
of the bond graph and replace it with another. A graph production
consists of a right hand side, a left hand side and an embedding
transformation. That is, a production, P, transforms the left hand
graph, gL% into the right-hand graph, gR:

where E is the embedding transformation that gives the procedure
for inserting the right-hand graph into the parent graph after the left
hand side has been removed. In the productions defined so far, the
embedding transformation involves a simple reconnection of bonds
in the right-hand graph to vertices in the parent graph, so the
embedding transformation will not be defined formally in this paper.
A graph production is illustrated in Figure 7.
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Graph Derivations
Now we say what it means to derive one graph from another. Given
the definition of a production, we can define a graph derivation. Let

ge» context graph

gf«the initial graph

gF «the final graph

then gF is directly derivable from g, through production P

BF - B^ - Bc = Set of connections specified by
the embedding transformation

These conditions state that the left-hand graph of the production
must be contained in the initial graph, that the right-hand graph of
the production must be contained in the final graph, that the graph
remaining after the left-hand graph has been removed from the
initial graph is the same as the final graph before the right-hand
graph has been inserted, and that the embedding transformation
specifies the connections between right-hand graph and the context
graph.

Finally, we can say that a graph, g^ is derivable from gt if there
exists a set of graphs and productions such that:

For the mechanical design problem, we are looking for the sequence
of productions that will transform the original specifications graph
into the final graph of component specifications.

Graph Grammar
.Using the elements already defined, defining a grammar for the class
of graphs of interest here becomes straightforward. A grammar G

jon the set of graphs { f t}^ is a quanet
VG=(IV ,I, ./ ,P)

where
£vand£, are the venex and edge alphabets,

/ is an element graph of ( ^ U selected as the starting
symbol of the grammar, and

P is a set of graph productions where |P | is finite.
This grammar defines a set of graphs or a language that can be

derived from / throuth the set of productions P. Fonmfly, th*
language, UG)9 is denned as:

L(O» [g | g* l8i)zfg
 A 8 i* derivable from /}

Example of a Transformation from Specifications to
Components
In this section, we illustrate how the graph productions are applied
to a specifications graph resulting in a design alternative. In this
paper, we do not discuss the strategy for selecting the sequence of
transformations. The strategies are a topic of current research and
are are discussed in [Hoover 89]. Briefly, the transformation
strategy selects and configures components into a physical system
based on two characteristics typical of good mechanical designs:

• Functional integration
• Utilization of incidental behaviors

Transformations that result in increased functional integration create
a device configuration in which a single component contributes to
more than one of the behavioral requirements of the design.
Transformations that result in increased utilization of incidental
behaviors create a device configuration in which secondary
behaviors or physical characteristics of components are exploited.

Behavior-Preserving Transformations ^
The specification graph is not unique since there are many graphs
which represent the same behavior. Figure 8 shows a specification
graph for the design of a gear box that must drive two loads at a
speed 400 times as great as the input speed. Other specification
graphs are valid and, as many will immediately observe, the
particular specification graph given is not likely to be the most
convenient.

By transforming the specification graph, without altering behavior,
we can explore design alternatives that have the same behavior.
Some of the resulting configurations result in physically desirable
designs and some do not In addition to knowing the general rules
for behavior-preserving transformations, we need to know which
transformations to apply and the sequence of application. Guidance
in selecting the behavior-preserving transformation to apply comes
from the physical requirements of the system, from the physical
characteristics of the components, and from the relationship between
geometry and behavior of the component

The transformation process described in [Hoover 89] is guided by
the function integration and incidental behavior principles and by
knowledge of the available components. It provides an approach to
finding configurations that meet the physical requirements, thus
eliminating blind search. This approach has been successful for the
design of mechanical power transmissions and serves to illuminate
several important issues for extending this technique to other
domains.

The specification graph is composed of abstract behavioral
primitives that do not yet correspond to any physical components.
To arrive at a design we transform the specification graph, without
changing function, so as to obtain a graph that more nearly
corresponds to a collection of components. Figure 9 shows the
resulting graph in which each of the rotational-rotational
transformers has been replaced with a pair of rotational-translaoonal
transformers that might correspond to individual spur gears.

Component-Directed Transformations
Because mechanical designs are characterized by a high degree of
integration, transformations should be directed toward this coal.
Integration in a design requires the appropriate utilization or the
behavioral and physical characteristics of its components.
Therefore, intelligent application of transformations requires
utilizing both the behavior and geometric graphs of the components
to guide the selection process. Transformations selected in this way
are component-directed transformations because their selection and
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Figure 10: Component-directed splitting transformation of Figure 9
Figure 11: Physical system corresponding to Figures 8, 9, and 10

use are directed by knowledge of the available components. It is the
class of component-directed transforms that ultimately enables the
selection of a single component to fulfill multiple functions, e.g.
selecting a worm gear to execute speed reduction, shaft offset and
right angle functions as described more fully in [Hoover 89].
In this paper we have restricted the component domain to spur gears;
nevertheless, the component directed transforms are important. The
pair of transforms shown in Figure 9, if mapped directly to
components would require a pair of gears with a 400:1 diameter
ratio, which is clearly not practical. Directed by the allowable size
range of available components, we apply a splitting transform to
arrive at the graph shown in Figure 10.
The individual transformers in Figure 10 can then be mapped to spur
gears (see Figure 4). The resulting design is shown in Figure 11.
Note that as the mapping transforms are executed the dynamic
behavior of the device changes due to the introduction of gear
inertia. Because the function of the transmission is kinematic rather
than dynamic, these mapping transforms are function preserving.

T ^ 1 *w
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Figure 12: An alternative graph corresponding to Figure 10

Load

Other Transformations
Although the gearing system shown in Figure 11 is feasible, it is
overly large, costly, and complex because there is no commonality
of the power paths. Component-directed transforms do not have the
scope to identify this type of deficiency. Another class of
transforms are used to extend the function integration concepts to
the device as a whole. Again, without discussing the means of
selecting transforms we point out that the graph shown in Figures 8,
9, or 10 can be transformed in a function preserving manner to the
one shown in Figure 12.
This specification can be mapped to an arrangement of gears as
shown in Figure 13. This configuration has five fewer gears, one
less shaft and is significantly more compact than the configuration
shown in Figure 11.
The identification and selective application of this type of
transformation is one of the most important and challenging aspect
of our strategy for mechanical design.

Figure 13: An alternative design corresponding to the
specification given in Figure 8

and to the transformed graph shown in Figure 12

Results and Future Work
We have presented a behavioral and physical representation of the
specifications and components for a limited class of mechanical
designs. For transmission design, we have created the component
database that contains graphs and form-behavior relations for bevel,
spur, and worm gears, and we have implemented the transformation
strategy discussed in [Hoover 89]. However, this paper presents
preliminary work that must be expanded in many directions before
we can prove that our transformational approach is valid for a larger
class of mechanical designs.

Our research will continue in the following areas:



Expanding the behavioral md physical characteristics
that can be represented*
Continuing to develop the representation of the
interconnection between geometry and behavior.
Increasing the number of components from different
mechanical design domains represented in our system,
and representing them at higher-levels of abstraction as
well as at greater levels of detail.
Creating new transformation strategies, refining the
existing ones, and in particular, creating general
transformations that operate based on system-level
characteristics rather than on component characteristics.
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Appendix A: Basic Graph Relationships and
Operations
Let g = (V, B) and gm • (V\ B*) The graph, g, is defined to be
isomorphic to g*9 that is,

g=g* iff:

V€

such that:
<{> is bijective

V ( v p v 2 , / , ) € B 3(<J)(vI),0(v2),/€)€B-

^(vl» V2» 0€ ^* 3 ^"'(Vj). 0"'(V2), /,)€ B
That is, two graphs are isomorphic if for every venex in either graph
there is an equivalent venex in the other, and for every edge
connecting two venices in either graph there is an equivalent edge in
the other.

Again assuming that the graphs are defined on the same alphabets,
the graph, g\ is defined to be included in g, that is,

g'Qg iff

where:

r * r
V £ V

Bmm c B
V v,, v2 € V, V /, € I, iff (v | fv2 , / ,) € B then
(v,, v2, lt) € B"

That is, calling g* the subgraph and g the parent graph, the subgraph
is said to be included in the parent graph if for every labeled edge
between labeled vertices in the subgraph, or some graph isomorphic
to it, there is an equivalent labeled edge between labeled venices in
the parent graph.

Finally, given that g9 is included in g, that is, g'Qg* the graph
difference is defined to be:

g-gm = (V' \ B")

where:

V s V - V set difference

B - = B - (B- u {(v,, v2, /,) | v, € V , v2 € V J )

That is, the difference between the parent graph, g, and the
subgraph, g* is the parent graph with the vertices of the subgraph
removed and with the edges of the subgraph removed along with the
edges connecting the subgraph to the parent graph.
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