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ABSTRACT
Cross-realm authentication is a useful and interesting compo-
nent of Kerberos aimed at enabling secure access to services
astride organizational boundaries. We present a formalization
of Kerberos 5 cross-realm authentication in MSR, a specifi-
cation language based on multiset rewriting. We also adapt
the Dolev-Yao intruder model to the cross-realm setting and
prove an important property for a critical field in a cross-realm
ticket. Finally, we document several failures of authentica-
tion and confidentiality in the presence of compromised inter-
mediate realms. Although the current Kerberos specifications
disclaim responsibility for these vulnerabilities, the associated
security implications must be highlighted for system adminis-
trators to decide whether to adopt this technology and to aid
designers with future development.

1. INTRODUCTION
Kerberos [17, 21] is a successful, widely deployed single-

login protocol that is designed to strongly authenticate a client
to services it may require. Kerberos has been adopted by
many large companies, universities, and other organizations,
and Microsoft has included a largely compatible implementa-
tion of Kerberos 5 into all its operating systems starting with
Windows 2000 [13]. The core intra-realm protocol, in which
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clients and servers are part of the same administrative unit, or
realm, has been extensively studied [2, 3, 6, 7, 18]: in partic-
ular, [2, 3, 4] verified a high-level specification of Kerberos 4
using the Isabelle theorem prover, and [7] proved confidential-
ity and authentication properties for a detailed formalization of
the more recent Kerberos 5. While all this work has focused
on intra-realm communication, Kerberos 5 also provides sup-
port for cross-realm authentication, where clients and servers
straddle organizational boundaries, possibly with intermediate
realms in between. While cross-realm authentication has been
studied in the past [5, 14], to the best of our knowledge, it has
never been formalized nor has its security been formally an-
alyzed or verified. Moreover, we are not aware of any recent
research on this topic.

In the intra-realm setting, the main objective of formal ver-
ification is to ascertain that Kerberos realizes stated confiden-
tiality and authentication goals. An unavoidable assumption is
that the administrative principals of that realm, here abstractly
called the KDC (Key Distribution Center), behave honestly: a
dishonest or compromised KDC trivially invalidates any au-
thentication or confidentiality expectations. In the cross-realm
case, a multitude of intermediate KDCs may be involved in
the process of authenticating a client to a remote server. When
configuring Kerberos for cross-realm operation, a system ad-
ministrator must consider what will happen if a remote realm
is compromised. What are the security implications associated
with a compromised remote KDC, and how can that KDC af-
fect clients and servers in the rest of the Kerberized network?
These questions are especially important because the local sys-
tem administrator has no control over other realms, cannot
ensure that proper and timely maintenance is performed, and
does not have a say on which realms are added to the foreign
realm’s trusted list. The Kerberos specification documents [17,
21] do not provide any guarantees about authentication, con-
fidentiality, or any security properties in the case that inter-
mediate realms are compromised. In fact, the default setting
of all distributions is not to trust any foreign entity and each
candidate foreign principal must be explicitly allowed by the
system administrator. Therefore, the first objective of formal
verification in the cross-realm case is to assess the vulnerabil-
ity of a constellation of realms to the compromise of some of
its members. Only then can more traditional confidentiality
and authentication properties be ascertained.

This paper reports the preliminary results of a formal in-
vestigation of cross-realm authentication in Kerberos 5. We
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Figure 1: An Overview of Kerberos Authentication

formalize the message exchange and introduce a cross-realm
threat model that extends the standard Dolev-Yao intruder with
the implications of compromising intermediate KDCs. We
state and prove a property that characterizes the possible ways
a request for service may have been forged; as a corollary, we
obtain minimum confidentiality requirements to support au-
thentication. This same model is used to outline several at-
tacks that a compromised remote KDC may mount. For ex-
ample, an intruder getting a hold of a remote realm is capable
of masquerading as any known client in order to gain access
to any remote Kerberized service that this client is authorized
to use. It is crucial that the extent of the damage that a com-
promised KDC may inflict be documented precisely, so that
system administrators can make informed decisions in regard
to trusting other realms. We also hope this work will sensi-
tize the development of cross-realm authentication to making
it less susceptible to compromised nodes.

We conduct our analysis using MSR [9, 12], a powerful yet
flexible framework for the specification of complex crypto-
graphic protocols, possibly structured as a collection of coor-
dinated subprotocols. MSR uses strongly-typed multiset rewrit-
ing rules over first-order atomic formulas to express protocol
actions and relies on a form of existential quantification to
symbolically model the generation of fresh data (e.g., nonces
or short-term keys). MSR has been successfully used in the
past to analyze a detailed model of the intra-realm operations
of Kerberos 5 [6, 7].

We recall Kerberos 5 intra- and cross-realm authentication
in Sections 2 and 3, respectively, while MSR is briefly re-
viewed in Section 4. The formalization of the cross-realm op-
erations is given in Sections 5 and 6, and the corresponding at-
tacker model is introduced in Section 7. Section 8 proves prop-
erties pertaining to cross-realm authentication in Kerberos 5,
while Section 9 documents several vulnerabilities when the
corresponding requirements are not met. Section 10 reports
on related work. Finally, Section 11 outlines directions for

future research.

2. KERBEROS 5 BASICS
Networked computer systems put a multitude of shared re-

sources at a user’s fingertips: remote hosts, file servers, print-
ers, and many other networked services are readily available
without leaving one’s desk. Authentication and other security
mechanisms need to be in place so that this convenience is
not abused, in particular nowadays where connections to the
Internet provide dangerous backdoors to one’s organization.
The natural solution to this, requiring users to authenticate to
each service they need (for example using a password) is not
only inconvenient, but also insecure in practice as humans are
notoriously poor at juggling a multitude of strong passwords.

The Kerberos protocol [20] was designed to allow a legit-
imate user to log on to her terminal once a day (typically)
and then transparently access all the networked resources she
needed for the rest of that day. Each time she wanted to re-
trieve a file from a remote server, for example, Kerberos would
securely handle the required authentication behind the scene,
without any user intervention. See [13] for a gentle yet com-
prehensive introduction to Kerberos.

We will now review how Kerberos achieves secure authen-
tication based on a single logon. We will concentrate on the
most recent version of this protocol, Kerberos 5 [21], and for
the time being on situations where all the authentications take
place within the same administrative domain (or realm).

2.1 Principals
In the above informal description, we have already encoun-

tered three of the agents, or principals, that comprise a typical
Kerberos exchange: the humanuserat her terminal, theclient
process that accepts the user’s password and transparently han-
dles the authentication aspect of each of her requests on her
behalf, and the requested services, orserversin Kerberos ter-
minology. Kerberos relies on two additional administrative
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Figure 2: Intra-Realm Message Exchange

agents together known as theKDC: the Kerberos Authentica-
tion Server (KAS) who authenticates the user and provides the
corresponding client with credentials to use the network for the
day, and the Ticket Granting Server (TGS) who authenticates
the client to each requested server based on those credentials.

The high-level picture is given in Figure 1. The top of the
figure represents the daily authentication to Kerberos: as the
user (U ) logs on, the KAS authenticates the client process rep-
resenting her and provides credentials to use the system for
that day. These credentials from the KAS are called the Ticket
Granting Ticket, abbreviatedTGT. Whenever the user wants
to use a networked service, the client on her behalf will seek
authentication to the processS managing this service. This is
done in two steps: the first timeU attempts to accessS, C
presents the TGT from the KAS to the ticket granting server
(TGS) who will in turn provide credentials forS. These cre-
dentials are called the Service Ticket orST. Every subsequent
timeU wants access to this particular service,C forwards the
service ticket toS, without involving the TGS. The line at the
bottom of the figure represents the actual use of the desired
service: this is all the user sees as her client process handles
the authentication overhead.

The above mode of interaction is typical of a single organi-
zation, orrealm in Kerberos terminology. Each realm is reg-
ulated by a single KDC (although there may be synchronized
replicas for performance and fault tolerance reasons). Within
a realm, there will be in general multiple clients and multiple
servers.Intra-realm authentication, as this modality is known,
is widely deployed and has been extensively studied [2, 6, 18].
Kerberos also supportscross-realm authentication, a scheme
by which a client in a realmR1 can access a service in a dif-

ferent realmRn. We will dedicate the rest of this paper to
exploring how Kerberos achieves cross-realm authentication.
Before doing so, we recall how the basic intra-realm protocol
works.

2.2 Intra-Realm Message Exchanges
In this section, we focus on the messages exchanged during

a typical intra-realm authentication session between a clientC
and a serverS, as sketched in the boxed part of Figure 1. We
provide sufficient detail to support their formal specification
in the next section. Notice however that Kerberos is far more
complex than the abstract view given here: we refer the reader
to [21] for a complete description, and to [6] for a formaliza-
tion of an intermediate level of detail. In the following, we
assume the reader familiar with the traditional concepts per-
taining to security protocols, in particular the notions of nonce,
shared key encryption, and timestamps.

The fleshed out version of the Kerberos 5 exchanges is given
in Figure 2: the top part relies on the traditional “Alice-and-
Bob” notation, with the standard name [21] for each mes-
sage given on the left. The bottom part takes a clearer two-
dimensional view. We will now describe each of the three
roundtrips between a client (C) and the KAS (K for brevity),
the TGS (T for short), and a server (S), respectively.

Authentication Service Exchange (C ⇔ K): This exchange
takes place when the user first logs on to a Kerberized network.
The client processC generates a noncen1 and sends it to the
KAS together with his own name,C, which indirectly identi-
fies the user, and the name of the TGS (officially “krbtgt ”,
here abbreviated asT ).

Upon recognizingC (and indirectlyU ), the KAS replies
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Figure 3: Schematic Cross-Realm Authentication

with a message containing two encrypted components: the
ticket granting ticket (TGT){AK, C, tK}kT that is cached
by C and will be used to obtain service tickets for the rest of
the day, and{AK, n1, tK , T}kC with which the KAS informs
C of the parameters of the ticket. The TGT is meant for the
TGS and is encrypted with the long-term keykT that the KAS
shares with the TGS. It contains a freshly generatedauthenti-
cation keyAK and a timestamptK in addition toC ’s name
(and many other pieces of information, abstracted away here).
The keykC used to encrypt the second component is a long-
term secret betweenC and the KAS derived from the user’s
password.AK will be used in every subsequent communica-
tion with the TGS, sparing the more vulnerablekC . The times-
tamptK will assure the TGS andC that this ticket was issued
recently, as all Kerberos principals have loosely synchronized
clocks. The noncen1 in the second component binds this re-
sponse toC ’s original request.

Ticket Granting Exchange (C ⇔ T ): This exchange takes
place the first timeU tries to access a serviceS. In the out-
going message,C transmits the cached TGT andS’s name
together with a freshly generated noncen2 (again to bind this
request and the subsequent response), and theauthenticator
{C, tC}AK , wheretC is a timestamp. The authenticator proves
to T thatC indeed knows the authentication keyAK.

Upon authenticatingC and verifying that he is allowed to
useS, the TGS sends a response with the same structure as the
second message above except the service ticket{SK, C, tT }kS

is now encrypted with the long-term key shared between the
KDC andS, and it contains a freshly generatedservice key
SK, C ’s name, and a timestamptT . The other encrypted com-
ponent is as in the second message above, but now encrypted
with the authentication keyAK. C caches the service ticket.

Client/Server Exchange (C ⇔ S): This exchange takes
place each time the client initiates a new session with the server
S. With a service ticket in hand,C simply contactsS with this
ticket and an authenticator similar to the one described above.

The response fromS is optional as the subsequent appli-
cation exchanges may subsume it. When present, it provides
assurance toC that S is alive, for example by returning the
timestampt′C thatC included in her request, encrypted with

the service key.
The actual application exchanges, by whichS provides the

service requested byC, are not properly part of Kerberos (whose
mandate is limited to authentication). However, Kerberos pro-
vides message formats to attain specified security goals. Their
discussion is beyond the scope of this document since they
may or may not be used by the application server.

3. CROSS-REALM AUTHENTICATION
Kerberos supports authentication across organizational bound-

aries by permitting clients and servers to reside on different
realms. A realm consists a group of clients, a KDC, and appli-
cation servers, as seen in Section 2. For example, the Graph-
ics group in the Computer Science Department of University
A may organize as an independent realmRGr with its own
users, services and administrators. Similarly, the CS depart-
ment may define a Kerberos realmRCS to allow CS mem-
bers to access common resources, and the University may in
turn have a realmRA of its own to operate university-wide
resources such as printers in dormitories. Cross-realm authen-
tication enables a student at her workstation in the Graphics
lab to transparently access a file on the common CS server,
and even to seamlessly print it on a printer in her dormitory.
Without cross-realm authentication this student would need a
separate account in each realm, log into each of them, and
explicitly transfer files from account to account in order to
achieve the same goals. This is impractical, not scalable, and
less secure as several passwords would be needed, one for
each realm. While this form of hierarchical organization [5]
of realms is recommended when enabling cross-realm authen-
tication in Kerberos, it is by no means mandated, as, for exam-
ple, the Graphics realm of universityA may establish a cross-
realm partnership with the Graphics realm of another univer-
sity with which it collaborates.

In the simplest case, the cross-realm authentication of a client
C in realmR1 to a serverS in Rn is accomplished by regis-
tering the KDC ofRn as a special server inR1 and using a
variant of the intra-realm protocol to first acquire a TGT for
C in R1 (as always) and then a service ticket forRn’s KDC
seen as a local service inR1. This service ticket has the same
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Figure 4: Messages in Cross-Realm Authentication

format as a TGT forC in Rn, and as such it is handed to the
KDC of Rn to obtain a service ticket for accessingS. The key
used byR1’s KDC to encrypt the ticket for the special service
corresponding toRn’s KDC is called across-realm key. This
is all Kerberos 4 allows. In Kerberos 5,C ’s access toS may
require traversing intermediate realmsR2, . . . , Rn−1 if there
is no cross-realm key betweenR1 andRn, but R1 has such
a partnership withR2, R2 with R3, etc. up toRn. C then
needs to obtain a TGT for each of these realms in succession
before accessingS. The list of traversed KDC’s[R1, . . . , Rn]
is called theauthentication pathof C ’s access toS. This high-
level description is schematically represented in Figure 3.

A message-oriented view of the cross-realm authentication
exchange highlighted in Figure 3 is given in Figure 4. Each
of the four roundtrips in this figure corresponds to a ticket
granting exchange, as described in Figure 2: the service ticket
returned by each TGS is forwarded to the next TGS who in-
terprets it as a TGT. The messages in Figure 4 differ in two
points from the intra-realm abstraction presented in Figure 2.
First, we explicitly annotate each database key with the realm
it is defined in. Therefore, the local key between the KAS and
the TGS of realmR1 is written kR1,T1 rather thankT1 , but
more importantly the cross-realm key of the TGS ofRi+1 in
realmRi can be written askRi,Ti+1 . Second, our formaliza-

tion of the ticket is extended with an additional field known as
TRANSITED. This field implements the partial authentication
path ofC ’s request on its way toS: whenever a ticket leaves
realmRi, it lists all the realms[R1, . . . , Ri−1] that have been
previously traversed;Ri itself will be added by the KDC of
Ri+1 (in this way,Ri’s KDC cannot hide the fact thatRi ap-
peared on the authentication path—although the KDC ofRi+1

may). TheTRANSITED field will play an important role in our
analysis of Kerberos cross-realm authentication in Section 8 as
it is the only information available the target KDC to establish
whether all previously traversed realms are trustworthy, and
therefore to decide whether to grant access to the requested
server.

The authentication process described in Figure 4 assumes
thatC knows the authentication path he wants to follow since
C specifies the (TGS of the) “next” realm with each succes-
sive request. This is only one of the options available in Ker-
beros, and not the most common. In general,C will ask her
local TGS for a service that could be the special server corre-
sponding to the “next” realm, could be the TGS ofS’s realm,
or could be the TGS of any realm in between. WheneverR1

does not have a cross-realm key with the realmRi specified by
C, his local TGS will plot a route to this realm. This can be ac-
complished through configuration files, or using a DNS server

5



in case the hierarchy of Kerberos realms mirrors the standard
DNS hierarchy. See [14] for a discussion of the underlying
algorithm. In this case,C ’s TGS will return a ticket for the
TGS of a realmR2, “closer” to the desired realm, with which
it does share a cross-realm key.C will then contact this TGS
with this ticket and her original request, until he reachesRi.

4. OVERVIEW OF MSR
MSR is a formal language for describing security proto-

cols [9, 12]. More precisely, it is a powerful yet flexible frame-
work for the specification of complex cryptographic proto-
cols, possibly structured as a collection of coordinated sub-
protocols. MSR uses strongly-typed multiset rewriting rules
over first-order atomic formulas to express protocol actions
and relies on a form of existential quantification to symboli-
cally model the generation of fresh data (e.g., nonces or short-
term keys). We will now describe its basic syntactic features,
demonstrate them with the specification of Kerberos intra-realm
authentication, and outline its execution model. This excerpt
will be completed and extended in Sections 5 and 6.

MSR represents network messages and their components
as first-order terms (for simplicity, we use the same syntax
as in the informal descriptions above). Therefore, the TGT
{AK, C, tK}kT above is seen as a term obtained by apply-
ing the binary encryption symbol{ } to the constantkT and
the subterm(AK, C, tK). In turn, this subterm results from
applying the binary message concatenation symbol (here the
infix “ , ”) twice.

Terms are classified by types, which describe their intended
meaning and restrict the set of terms that can be legally con-
structed. For example,{ } accepts a key (typekey) and a
message (typemsg), producing amsg: using a nonce as the
key yields an ill-formed message. These objects are declared
as:

msg : type.
key : type.
{ } : key → msg → msg.

Nonces, principals, etc., often appear within messages. MSR
handles this by relying on the notion of a subsort (written<:).
The following declarations define the type of nonces (nonce)
and the fact that every nonce can be used where a message is
expected:

nonce : type. nonce <: msg.

While simple types such asmsg adequately describe simple
categories, MSR provides means to capture more structured
information. For example, it can express the fact thatsk37 is a
short term key shared between a particular clientc3 and a par-
ticular servers7 directly within sk37’s type. This is achieved
through the notion of dependent type. The following declara-
tions formalize this example, and define the short-term keys
(shK) of any principal as a particular type of key:

shK : principal → principal → type.
∀A, B : principal. shK A B <: key.

c3 : principal. s7 : principal. sk37 : shK c3 s7.

We will come back to these declarations in Section 5 to show

how they need to be updated to express cross-realm authenti-
cation.

Thestateof a protocol execution is determined by the net-
work messages in transit, the local knowledge of each princi-
pal, and other similar data. MSR formalizes individual bits of
information in a state by means offactsconsisting ofpredi-
cate nameand one or more terms. For example, the network
factN({AK, C, tK}kT ) indicates that ticket{AK, C, tK}kT

is present on the network. The network predicateN is declared
as:

N : msg → state.

We will encounter many other predicates while formalizing
Kerberos.

A protocol consists of a sequence of actions that transform
the state. In MSR, this is modeled by the notion ofrule: a
description of the facts that an action removes from the current
state and of the facts it replaces them with to produce the next
state. For example, the rule describing the functionalities of
the KAS in Figure 2 follows:

∀K : KAS ∀C : client ∀T : TGS ∀n1 : nonce
∀kC : dbK C ∀kT : dbK T ∀tK : time.

⇒
∃AK : shK C T»

N(C, {AK, C, tK}kT
,

{AK, n1, tK , T}kC
)

–
if ValidK(C, T ), clockK(tK)

Rules are parametric, as evidenced by the leading string of
typed universal quantifiers (here, all types are mnemonic, ex-
cept perhapsdbKA which stands for the long-term key shared
between principalA and the KDC): actual values need to be
supplied before applying the rule. The middle portion de-
scribes the transformation performed by the rule: it replaces
states containing a network fact of the formN(C, T, n1) with
states that containN(C, {AK, C, tK}kT

, {AK, n1, tK , T}kC
)

but are otherwise identical. The existential marker “∃AK :
shK C T ” requiresAK to be replaced with a newly generated
symbol of typeshK C T : this is how freshness requirements
are modeled in MSR. The line starting withif lists additional
facts that must be present in the state for the rule to be appli-
cable: predicateValid models a validity check performed by
the KAS andclock looks up the local clock. Differently from
the facts in the antecedent, they are consulted but not removed
as a result of applying the rule. Note that facts are simply state
elements manipulated by the rules — in particular predicates
do not have a semantics of their own. For example, the policy
specified byValid may be described extensionally in the state.
Instead, a traditional “tick rule” or the scheme in [16] can be
used to update the value held inclock (although a simulator
may rely on an external routine to update theclock value).

While this rule completely describes the behavior of the
KAS, more than one rule may be needed to model the ac-
tions of a generic principal. This is the case of the client, even
when focusing just on his exchange with the KAS. Coordi-
nated rules describing the behavior of a principal are collected
in a role. A role is just a sequence of rules, parameterized
by the principal executing them (theownerof the role). The
2-rule role describing the client’s view of the authentication
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service exchange is as follows:

∀C : client2666666666664

∀T : TGS

· ⇒ ∃n1 : nonce.

»
N(C, T, n1)
L(C, T, n1)

–
∀T : TGS ∀kC : dbK C ∀AK : shK C T
∀X : msg ∀n1 : nonce ∀tK : time.»

L(C, T, n1)
N(C, X, {AK, n1, tK , T}kC

)

–
⇒ AuthC(X, T, AK)

3777777777775
In the first rule, we write “·” for an antecedent containing no
predicates. The predicateL ensures that the second rule can
execute only after the first has fired. Finally, the client uses
the predicateAuth to cache the ticket (here modeled as the in-
scrutable messageX) and its parameters for subsequent ticket
granting exchanges.

The rule shown earlier for the KAS is easily turned into
a 1-rule role by putting the quantification “∀K : KAS” in
the owner position. The complete specification of Kerberos 5
intra-realm specification at this level of detail requires four ad-
ditional roles: one for the TGS, one for the end-server, and two
for modeling the client’s exchanges with each of these princi-
pals. For space reasons, we do not show these roles here: they
follow the above pattern; moreover cross-realm variants will
be presented in Section 7. The interested reader is referred
to [6, 7] for a full specification and analysis of Kerberos 5.

5. TYPING
In this section, we complete the MSR declarations needed to

specify Kerberos 5 and update them to cope with cross-realm
authentication. We will now comment on the resulting signa-
ture, which is displayed in Figure 5.

When modeling intra-realm authentication in [6, 7] (par-
tially reproduced in Section 4), we did not need to give a repre-
sentation to administrative domains since everything happened
within one realm. Clearly this needs to be upgraded when
dealing with cross-realm authentication. We start by adding
the typerealm to represent a realm. Our next change is to as-
sociate each principal, be it a client, a server, a KAS or a TGS,
with the realm it lives in. In MSR, the most convenient way
to achieve this effect is to parameterize each principal type
with a realm. Therefore, while the type of a generic princi-
pal was “principal” in the intra-realm model, we upgrade it to
“principal R” for an appropriate realmR in the cross-realm
setting.

Kerberos relies on a number of specialized principals, which
we formalize as different subsorts ofprincipal: clients, servers,
TGSs and KASs are modeled by the type familiesclient, server,
TGS, andKAS, respectively, each parameterized by a realm.
For convenience, we introduce two auxiliary types:ts repre-
sents either a TGS or a server, andtcs additionally encom-
passes clients. These relations are realized using subsorting.

The next segment in Figure 5 formalizes the types of keys
used in Kerberos: “dbKR A” represents a long-term key that
the KDC of realmR shares with principalA, which can be a
client, a server, or the TGS ofR. The type “shK C A” instead
represents the short-term authentication and service keys that
clientC receives to communicate with a TGS or a server. Both

are subsorts of the generic typekey of all keys, butshK must
also be a subsort ofmsg since it is transmitted in the network.

We indirectly model the novel notion of cross-realm keys
by defining the typerTGS of remote TGSs. A principalT
declared of typerTGS R1 R2 is seen as a server inR1 and as
a TGS inR2. This is achieved through the subsorting relation:

∀R1, R2 : realm. rTGS R1 R2 <: server R1.
∀R1, R2 : realm. rTGS R1 R2 <: TGS R2.

In order to represent the fact that the long-term key ofT seen
a server inR1 is the same as the long-term key ofT seen
as a TGS inR2, we need the following additional subsorting
relation:

∀T : rTGS R1 R2. dbKR1 T <: dbKR2 T

Note that this relation holds only for remote TGSs: it does not
imply that the long-term key of any principal inR1 is also a
long-term key for this principal inR2. Observe also that this
relation is oriented:T sees a service ticket inR1 as a TGT in
R2, but not vice versa.

We introduceRset to model theTRANSITED field; Rset is a
collection of realm names. We express this field as a list with
( ˆ ) as its constructor (infix for convenience) andRnil as the
empty list:

Rnil : Rset.
( ˆ ) : realm → Rset → Rset.

Note that the Kerberos specification documents [17, 21] do not
assume thatTRANSITED is implemented as a list. Therefore,
none of the MSR predicates that make decisions based on the
value of this field shall rely on this structure.

6. FORMALIZATION
We now present a formalization of Kerberos 5 intra- and

cross-realm authentication. The rules described in the follow-
ing sections are sufficient for modeling both modes of opera-
tion and include the minimum level of detail we believe neces-
sary to prove properties on authentication, confidentiality, and
the effect of compromised realms. At the time of writing, this
specification is being validated using the MSR implementa-
tion in [23], where the entire code for this case-study can be
found. For the convenience of the reader, Appendix A lists the
predicates used in this formalization that are not formally part
of MSR.

6.1 Authentication Service Exchange
Figures 6 and 7 show the MSR rules used by the client and

KAS, respectively, during the initial authentication service ex-
change. The actions of the client and KAS are the same in both
the intra-realm and cross-realm case. Section 2.2 gives a de-
scription of these rules; the interested reader is referred to [7]
for more details. Upon receiving a valid reply from the KAS,
C stores the TGT, the name of the TGST , and the shared key
AK for future use using theAuthC predicate. TheAuthC

predicate is used to store a postulated ticket,ts andshK tuple,
and models storing a ticket-granting ticket or a service-ticket
along with associated parameters for future use.

Note that in general, MSR relies on a form of existential
quantification to distinguish between various instances ofL
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Types Subsorting Names

(Messages) msg : type. m, X, Y

(Realm) realm : type. R

(Principals) principal : realm → type. ∀R : realm. principal R <: msg.
KAS : realm → type. ∀R1, R2 : realm. KAS R1 <: principal R2. K
tcs : realm → type ∀R1, R2 : realm. tcs R1 <: principal R2.
ts : realm → type ∀R1, R2 : realm. ts R1 <: tcs R2.
TGS : realm → type. ∀R1, R2 : realm. TGS R1 <: ts R2. T
server : realm → type. ∀R1, R2 : realm. server R1 <: ts R2. S
client : realm → type. ∀R1, R2 : realm. client R1 <: tcs R2. C

(Keys) key : type.
dbK : realm → tcs R → type. ∀R : realm, B : tcs R2. dbKR B <: key . k ,

shK : client R1 → ts R2 → type. ∀C : client R1, A : ts R2. shK C A <: key . AK
∀C : client R1, A : ts R2. shK C A <: msg. SK

(RemoteTGS) rTGS : realm → realm → type. ∀R1, R2 : realm. rTGS R1 R2 <: server R1. T
∀R1, R2 : realm. rTGS R1 R2 <: TGS R2.
∀T : rTGS R1 R2. dbKR1 T <: dbKR2 T

(Nonces) nonce : type. nonce <: msg. n

(Timestamps) time : type. time <: msg. t ,

(Transited) Rset : type. Rset <: msg Rs

Figure 5: An MSR Signature for Kerberos 5 with Cross-Realm Capabilities

∀C : client RC2666666666664

∀T : TGS RC

· α1.1=⇒
»
N(C, T, n1)
L(C, T, n1)

–
∀T : TGS RC ∀kRC ,C : dbKRC C ∀AK : shK C T
∀X : msg ∀n1 : nonce ∀tK : time.»

L(C, T, n1)
N(C, X, {AK, n1, tK , T}kRC ,C

)

–
α1.2=⇒ AuthC(X, T, AK)

3777777777775
Figure 6: The Client’s role in the Authentication Service Exchange

predicates in different roles. However, this is not required in
the formalization of Kerberos 5 because nonces are used for
the same purpose. Thus, for simplicity, this feature of MSR
has been left out of the formalization. Nevertheless, note that
there are protocols, such as Kerberos 4, that do require exis-
tential quantification ofL predicates.

6.2 Ticket Granting Exchange
After C has obtained a TGTX she may useX to obtain

TGTs for remote realms or service tickets for application servers.
Figure 8 shows the MSR rules that formalize these actions. At
this pointC has a TGT for use with the ticket granting server
T . There are two modes of operation in whichα1.3 may be
used. The first mode is the standard intra-realm ticket grant-
ing exchange. In this case,T andS are in the same realm
(i.e., RT = RS). TheDesiredHop constraint is used byC
to pick the TGS that she should use to obtain the service or
ticket granting ticket (see Appendix A).Rn is the realm that
will be the next hop. In the intra-realm case,Rn = RT and
Tn = S. ThusC sends the supposed TGTX, the authenti-
cator (C ’s name and a timestamp encrypted underAK), C ’s
name,Tn’s name (i.e.,the server’s name), and a freshly chosen
nonce toT . C stores these values using theL predicate and

retains theAuthC predicate as a ticket-granting ticket may be
reused. The second mode of operation is a cross-realm ticket
granting ticket request and is identical to the intra-realm case
exceptTn 6= S andS is not in the same realm asT . There are
two methods by which the authentication path may be con-
structed in a cross-realm request.C may allow the TGS to
determine the authentication path by simply always request-
ing a TGT for use with the destination realm, orC may know
the authentication path she wishes to use and explicitly re-
quest tickets for each of these ticket granting servers. These
methods can actually work together, for example whenC has
only partial knowledge of the nodes on a path toS. Tn and
the DesiredHop constraint are intended to capture both of
these methods of operation.Tn is the name of the TGS that
C wishes to use next on the authentication path.C sends the
same message over the network and stores the same informa-
tion as in the intra-realm request.

Ruleα1.4 receives a TGS response and results in a TGT or
service ticket for use withTj . Note thatTj is of typets and
thus may be a TGS or server. IfTj is a TGS, note thatTj

is not necessarily equal toTn sinceT may have not shared a
cross-realm key withTn. C expectsT ’s response to consist of
C ’s name, a TGT or service ticketZ, and some data encrypted
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∀K : KAS RC2666666664

∀C : client RC ∀T : TGS RC ∀n1 : nonce
∀kRC ,C : dbKRC C ∀kRC ,T : dbKRC T ∀tK : time.

N(C, T, n1)
α2.1=⇒

∃AK : shK C T"
N(C, {AK, C, tK , Rnil}kRC ,T

,

{AK, n1, tK , T}kRC ,C
)

#
if ValidK(C, T ), clockK(tK)

3777777775
Figure 7: The KAS’s Role in the Authentication Service Exchange

∀C : client RC266666666666666664

∀X : msg .
∀T : TGS RT .
∀Tn : ts Rn .
∀S : server RS .
∀AK : shK C T .
∀tC : time .

· α1.3

=⇒

∃n2 : nonce

N(X, {C, tC}AK , C, Tn, n2)
L′(C, Tn, T, AK, n2)

if AuthC(X, T, AK), DesiredHop(C, S, RT , Rn), clockC(tC)

∀Tj : ts RJ .
∀Z : msg .
∀AK′ : shK C Tj .
∀n2 : nonce .
∀tT : time .

N(C, Z, {AK′, n2, tT , Tj}AK)
L′(C, Tn, T, AK, n2)

α1.4

=⇒ AuthC(Z, Tj , AK′)

377777777777777775
Figure 8: The client’s role in TGS exchange.

∀Ti : TGS Ri26666666666664

∀Ri : realm .
∀C : client RC .
∀S : server Ri .
∀AK : shK C Ti .
∀kRi,Ti : dbKRi Ti.
∀kRi,S : dbKRi S .
∀n2 : nonce .
∀Rs : Rset .
∀tTi , tC , t : time .

N({AK, C, t, Rs}kRi,Ti
,

{C, tC}AK , C, S, n2)
α3.1

=⇒

∃SK : shK C S

N(C, {SK, C, tTi , (Rî Rs)}kRi,S
,

{SK, n2, tTi , S}AK)

if ValidTi(C, S, tC , (Rk̂ Rs)), clockTi(tTi)

37777777777775
∀Ti : TGS Ri2666666666666664

∀Ri−1, Ri+1, Rn : realm.
∀C : client RC .
∀AK : shK C Ti .
∀Tn : TGS Rn .
∀Ti+1 : rTGS Ri Ri+1 .
∀kRi−1,Ti : dbKRi−1 Ti .
∀kRi,Ti+1 : dbKRi Ti+1 .
∀n2 : nonce .
∀Rs : Rset .
∀tTi , tC , t : time .

N({AK, C, t, Rs}kRi−1,Ti
,

{C, tC}AK , C, Tn, n2)
α3.2

=⇒

∃AK′ : shK C Ti+1

N(C, {AK′, C, tTi , (Ri−1̂ Rs)}kRi,Ti+1
,

{AK′, n2, tTi , Ti+1}AK)

if ValidTi(C, Tn, tC , (Ri−1̂ Rs)), CloserRealm(Tn, Ti+1), clockTi(tTi)

3777777777777775
Figure 9: TGS response to a cross-realm TGT request or an intra-realm service ticket request.
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with AK. This data consists of a new shared keyAK′ that is
to be shared byC andTj , n2, a timestamp, andTj ’s name.C
uses theAuthC predicate to model storing the ticket, key, and
Tj ’s name.

Figure 9 shows the TGS’s role in the ticket granting ex-
change. Ruleα3.1 is used to create service tickets for use
with the serverS andα3.2 is used to create cross-realm ticket
granting tickets for the TGSTi+1. In α3.1 Ti receivesC ’s
request for a service ticket and checks that it is valid accord-
ing to the local policy using theV alidTi predicate. A ticket
is considered valid ifC is allowed to accessS, the timestamp
tC is within the allowed clock skew and theTRANSITED field
(Rs) is acceptable. If the request is valid,Ti chooses a fresh
key SK to be shared byC andS. Ti then sends a reply that
consists ofC ’s name, the service ticket, and some data forC
encrypted withAK. Note thatTi adds the name of the previ-
ously transited realm to the transited list. It knows this realm
because it shares a key with the KAS or TGS that produced
the TGT. The data forC consists ofSK, n2, a timestamp, and
the name of the server.

Ruleα3.2 is very similar toα3.1 except thatα3.2 is used to
grant cross-realm ticket granting tickets.Ti will invoke α3.2 if
it receives a valid cross-realm TGT request fromC. Checking
the validity of the ticket is the same as the intra-realm case
exceptTn is a TGS rather than an application server. The main
difference inα3.2 is thatTi must search its local database to
find a cross-realm keykRi,Tn that is shares withTn. If this
key does not exist,Ti searches for a cross-realm keykTi,Ti+1

shared with a closer TGSTi+1. This process is modeled with
theCloserRealm predicate, which is satisfied ifTi+1 = Tn

or if Ti+1 is the next TGS on the standard hierarchical path or
a preconfigured authentication path.Ti adds the name of the
previous TGS’s realm to theTRANSITED field. Ti’s response
is the same as the intra-realm case exceptTi+1 : rTGSRiRi+1

is substituted forS : server.

6.3 Client/Server Exchange
OnceC has obtained a service ticket,C may execute rule

α1.5 to connect to an application server. Note that inα1.5

S is of type server instead ofts. This typing allowsC to
distinguish betweenα1.3 andα1.5. C sends the service ticket
along with her name and a timestamp encrypted underSK to
S.

WhenS receivesC ’s requestS usesα4.1 to validate it. Val-
idation is modeled using theV alidS predicate. V alidS is
true if C is allowed to accessS, the timestamp is within the
allowed clock skew, and theTRANSITED field is valid. Note
thatC andS’s realms are added to theTRANSITED field be-
fore checking that it is valid. This is because those fields are
required to be on the authentication path sinceC must have
obtained a TGT for her realm first and the service ticket forS
may only by generated by the TGS inS’s realm. If the request
is valid,S sends the timestamp encrypted withSK to C.

7. CROSS-REALM INTRUDER
Formal specification and analysis work on Kerberos in the

literature [2, 6, 18] has concentrated on intra-realm authenti-
cation. All these efforts relied on the traditional Dolev-Yao
model of the intruder [11, 19], which gives an attacker com-
plete control over the network, short of guessing random val-

ues (such as keys and nonces) and performing cryptographic
operations without the required keys. In MSR, the knowledge
of the intruder is modeled as a collection of factsI(m) (“the
intruder knows messagem”) distributed in the state. Two typ-
ical intruder rules follow (see [6] for the complete set):

∀m : msg. N(m) ⇒ I(m)

∀m : msg. ∀k : key. I({m}k), I(k) ⇒ I(m)

The first describes the interception of a network messagem,
while the second shows how the intruder can decrypt a cipher-
text{m}k if he knows the keyk. Dishonest clients and servers
are easily modeled by having them share their long-term keys
with such an intruder: for each such keyk, the state contains
I(k). In the intra-realm case, considering the KDC to be dis-
honest trivially invalidates any authentication result.

The cross-realm setting naturally suggests a more elabo-
rate intruder model. Indeed, a realm often resides within the
boundaries of a local network, partially segregated from the
Internet by means of NATs, firewalls and other mechanisms.
Consequently, it makes sense to consider local attackers who
may form coalitions with each other or with an intruder over-
seeing the outside network. Finally, KDC’s and therefore en-
tire realms could be compromised and still allow some authen-
tications to be secure. While all these aspects are worth con-
sidering and could easily be modeled in MSR, we will focus on
the functionalities that are specific to the Kerberos cross-realm
setting. In particular, we refrain from modeling segregated
networks since they can be studied independently from Ker-
beros. We instead assume a worst-case scenario in which all
principals communicate on the same network, independently
of the realm they reside on. Similarly, we assume a single in-
truder rather than a distributed coalition as it has been shown
in [10] that any alliance of Dolev-Yao intruders can always be
simulated by a single such attacker.

This leaves us with a Dolev-Yao threat model in which the
global intruder can impersonate not only clients and end-servers
but also KDC’s. As mentioned earlier, a principal that is dis-
honest or compromised is modeled by giving all of its keys to
the intruder. In the case of the KDC of a realmR, this means
making the whole key database ofR available to the intruder,
including all the cross-realm keys it mentions. Note that there
is no distinction between compromising a KAS or a TGS since
both have access to the same keys. This is easily accomplished
in our setting by extending the traditional Dolev-Yao model
with the following MSR rule:

264∀R : realm ∀P : tcs R ∀k : dbKR P

· ⇒ I(k)

if compromised(R)

375
Here, the factcompromised(R) marks a realm as compro-
mised by the intruder. This simple rule will be sufficient to
enable all the anomalous behaviors outlined in the remaining
sections of this paper.

Additional cross-realm capabilities are conceivable, although
we are not aware of any realistic attack that relies on them.
First, the intruder can clearly create fake clients and end-servers
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∀C : client RC26664
∀S : server RS .
∀SK : shK C S.
∀tC,Sreq : time .
∀Y : msg .

· α1.5

=⇒ N(Y, {C, tC,Sreq}SK)

if AuthC(Y, S, SK), clockC(tC,Sreq )

37775
Figure 10: The client’s role in the application server exchange.

∀S : server RS266666664

∀C : client RC .
∀TS : TGS RS .
∀SK : shK C S .
∀tC,Sreq, tTS : time.
∀kRS ,S : dbKRS S .
∀Rs : Rset .

N({SK, C, tTS , Rs}kRS,S

{C, tC,Sreq}SK)
α4.1

=⇒
N({tC,Sreq}SK)
MemS(C, SK, tC,Sreq, Rs)

if ValidS(C, tC,Sreq, (RC R̂S R̂s))

377777775
Figure 11: The server’s role in the service ticket exchange.

in a compromised realmR:264∀R : realm

· ⇒ ∃P : client R. ∃k : dbKR P. I(P ), I(k)

if compromised(R)

375
(and similarly for a server). Second, the global intruder could
create fake realms, and populate them using the above method.
With the following rule, the intruder makes up a realmR′ and
sets up a cross-realm key from some other realmR it has com-
promised andR′:26664

∀R : realm

· ⇒ ∃R′ : realm. ∃P : rTGS R R′. ∃k : dbKR P.
I(P ), I(k), compromised(R′)

if compromised(R)

37775
8. PROPERTIES

This section formally describes the necessary conditions for
cross-realm authentication to be possible in Kerberos 5. In fu-
ture work, we expect to build on this result by extending the
traditional intra-realm confidentiality and authentication prop-
erties proved for Kerberos in [6, 7] to the cross-realm setting.

Kerberos’s only defense against compromised or untrusted
intermediate realms is the use of the transited field to enable a
server to determine if authentication should be performed. The
following property proves that if there are any compromised
realms involved in the authentication of a client then at least
one of them will appear in the transited field. This is a critical
property because it allows servers to make informed authenti-
cation decisions. In addition, this property shows that under
expected network conditions (i.e. when there are no compro-
mised ticket granting servers) the transited field of a service
ticket contains exactly the realms involved in authenticating
the client. While not following from this property, we expect
that under the assumptions that the client’s long-term key has
not been compromised and the set of transited realms contains
only non-compromised realms, then the client named in the
message did in fact request this authentication.

PROPERTY 1. If a serverS processes a request from a
client C and if R is the set of realms encoded by the tran-
sited field of the request, together with the realm of the TGS
that created the ticket in the request andC ’s realm, if no tick-
ets were present in the initial state of the trace, and if neither
keys between realms inR nor S’s long-term key have been
compromised, then some sequence of TGSs from realms inR,
starting with a TGS inC ’s realm, authenticatedC to S and
the TGS of each realm inR took part in this authentication.

We formalize this as Corollary 2 to Theorem 1; this theorem
also implies that if the intended authentication did not take
place, then at least one of a specified set of unintended behav-
iors occurred in the trace.

Our formal proofs make use of rank and corank functions;
these are inspired by Schneider’s rank functions [22] for anal-
ysis of protocols in CSP and were defined in [6, 7] in the con-
text of MSR and Kerberos. Rank functions are generally used
to prove results about data origin authentication, while corank
functions are used to prove confidentiality results. Intuitively,
the former class captures the amount of work done to produce
a certain message, while the latter class captures the amount
of work needed to extract a certain (hopefully secret) message.
We invite the reader to consult [6, 7] for additional details.

THEOREM 1. For all S : server RS , C : client RC , TS :
TGSRS , Rs : Rset, SK : shKCS, t1, t2 : time, andkRS ,S :
dbKRS S, if S fires ruleα4.1, consuming the factN({SK, C,
t1, Rs}kRS,S

, {C, t2}SK), if no fact of positive rank appeared
in the initial state of the trace, and ifR = RC R̂S R̂s, then at
least one of the following holds.

1. The intruder created the factI({SK, C, t1, Rs}kRS,S
).

Furthermore, the factI(kRS ,S) appeared in some previ-
ous state of the trace.

2. The intruder created the fact{AK, C, t, Rs′}kR′,T ′′
,

for someAK : shKCT ′′, t : time, Rs : Rset, R′, R′′ ∈
R, T ′′ : TGS R′′, and kR′,T ′′ : dbKR′

T ′′. Fur-
thermore, the factI(kR′,T ′′) appeared in some previous
state of the trace.
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3. The intruder created the fact{AK, C, t, Rs}kRC
TC

for
someAK : shK C TC , t : time, Rs : Rset, TC :
TGS RC , andkRC ,TC : dbKRC TC . Furthermore, the
fact I(kRC ,TC ) appeared in some previous state of the
trace.

4. For some sequence of realmsRC = R1, . . . , Ri =
RS fromR: Ti : TGS Ri fired rule α3.1, consuming
the factN({AKi, C, ti, Rsi}ki

, {C, t′i}AKi
, C, S, ni)

for someAKi : shK C Ti, ti, t
′
i : time, Rsi : Rset,

ki : dbKR Ti, whereR : realm is Ri−1 if i > 1 andRi

otherwise, andni : nonce; if i > 1, then for1 ≤ j < i,
someTj : TGS Rj fired ruleα3.2, consuming the fact
N({AKj , C, tj , Rsj}kj

,

{C, t′j}AKj
, C, S, nj) for someAKj : shKCTj , tj , t

′
j :

time, Rsj : Rset, kj : dbKRj−1 Tj , whereR0 = R1,
andnj : nonce.

COROLLARY 2. For all S : serverRS , C : clientRC , TS :
TGSRS , Rs : Rset, SK : shKCS, t1, t2 : time, andkRS ,S :
dbKRS S, if S fires ruleα4.1, consuming the factN({SK, C,
t1, Rs}kRS,S

, {C, t2}SK), if no fact of positive rank appeared
in the initial state of the trace, ifR = R̂C R̂SRs, and if the
intruder has never learnedkRS ,S , any keys between realms in
R, or the long-term key of anyTC : TGS RC , then for some
sequence of realmsRC = R1, . . . , Ri = RS fromR: Ti :
TGSRi fired ruleα3.1, consuming the factN({AKi, C, ti, Rsi}ki

,
{C, t′i}AKi

, C, S, ni) for someAKi : shK C Ti, ti, t
′
i : time,

Rsi : Rset, ki : dbKR Ti, whereR : realm is Ri−1 if i > 1
and Ri otherwise, andni : nonce; if i > 1, then for1 ≤
j < i, someTj : TGS Rj fired ruleα3.2, consuming the fact
N({AKj , C, tj , Rsj}kj

,

{C, t′j}AKj
, C, S, nj) for someAKj : shK C Tj , tj , t

′
j :

time, Rsj : Rset, kj : dbKRj−1 Tj , whereR0 = R1, and
nj : nonce.

PROOF. (Of Theorem 1)S’s firing of rule α4.1 consumes
a fact of positivekRS ,S-rank relative toSK, C, t1, Rs. As
no such fact existed in the initial state of the trace, some rule
fired earlier in the trace increased this rank. If the intruder
fired a rule that increased this rank, then she created the fact
{SK, C, t1, Rs}kRS,S

and the factI(kRS ,S) must have ap-
peared in the trace; case 1 of the theorem then holds. If the in-
truder did not increase this rank, then someprincipal rule must
have been fired to do so. By inspection of the various rules, the
only possibility for this isTS firing ruleα3.1, creating the fact
N(C, {SK, C, t1, Rs}kRS,S

, {SK, n, S}AK) and consuming

the factN({AK, C, t2, Rs′}kR′,TS
, {C, t3}AK , C, S, n) for

somet2, t3 : time, n : nonce, R′ : realm, kR′,TS
: dbKR′

TS ,
AK : shK C TS , andRs′ : Rset such thatR′̂ Rs′ = Rs. The
fact consumed by this rule firing has positivekR′,TS

-rank rel-
ative toAK, C, t2, Rs′; as no such fact existed in the initial
state of the trace, some rule firing must have increased this
rank. If the intruder increased this rank, then she created the
fact{AK, C, t2, Rs′}kR′,TS

and the factI(kR′,TS
) has previ-

ously appeared in the trace; this falls into case 2 of the theo-
rem.

If the intruder did not increase this rank andR′ 6= RC ,
then inspection of theprincipal rules shows that someT ′ :

TGS R′ must have fired ruleα3.2 to increase this rank, in
the process creating the factN(C, {AK, C, t2, Rs′}kR′,TS

,

{AK, n′, t2, TS}AK′′) and consuming the factN({AK′′, C,
t4, Rs′′}kR′′,T ′

, {C, t5}AK′′ , C, T ′′′, n′) for somet4, t5 : time,

n′ : nonce, AK′′ : shK C T ′, R′′, R′′′ : realm, kR′′,T ′ :

dbKR′′
T ′, T ′′′ : TGSR′′′, andRs′′ : Rset such thatR′′̂ Rs′′ =

Rs′. Note that this fact has positivekR′′,T ′ -rank relative to
AK′′, C, t4, Rs′′; as no such fact existed in the initial state
of the trace, some rule firing must have increased this rank.
If the intruder increased this rank, then she created the fact
{AK′′, C, t4, Rs′′}kR′′,T ′

and the factI(kR′′,T ′) previously
appeared in the trace; this falls into case 2 of the theorem.
If the intruder did not increase this rank, then we consider
whether or notR′′ = RC .

Either in the initialR′ = RC case or after some finite num-
ber of iterations of this argument, if we do not fall into case 2
of the theorem, then we have someR0 : realm in which T0 :
TGSR0 fires ruleα3.2 to consume the factN({AK0, C, t0, Rs0}k,
{C, t′0}AK0 , C, Tz, n0), wherek : dbKR0T0, AK0 : shKCT0,
t0, t

′
0 : time, Rz : realm, Tz : TGS Rz, Rs0 : Rset, and

n0 : nonce. (Otherwise, we could apply the argument again
and see that the initial state of the trace must have contained
a fact of positive rank, contradicting the hypothesis of the the-
orem.) This consumes a fact of positivek-rank relative to
AK0, C, t0, Rs0; as no such fact appeared in the initial state
of the trace, some rule firing must have increased this rank.
If the intruder fired a rule to do this, then she created the fact
{AK0, C, t0, Rs0}k and the factI(k) must have previously
appeared in the trace; this falls under case 3 of the theorem.
If the intruder did not increase this rank, by inspection of the
principal rules we see that someK : KAS R0 must have done
so, firing ruleα2.1 to produce factN(C, {AK0, C, t0, Rs0}k,
{AK0, n

′
0, t0, T0}k′), with Rs0 = Rnil, and consume the fact

N(C, T0, n
′
0) for C : R0, n′0 : nonce, k′ : dbKR0 C. This

implies thatR0 = RC , soT0 : TGS RC and case 4 of the
theorem holds.

We note that if theTRANSITED field preserved the order of
the transited realms, then we could show that the last compro-
mised realm of the authentication path, as well as all (uncom-
promised) realms subsequently traversed (except for the end-
points), appears in theTRANSITED field. However, Sec. 3.3.3.1
of [21] notes that theTRANSITED field of the ticket-granting
ticket “is treated as an unordered set of realm names[.]”

9. VULNERABILITIES
This section documents some attacks on Kerberos 5 cross-

realm authentication that may be executed by the cross realm
intruder presented in Section 7. It is important to note that this
behavior does not conflict with guarantees described in [21].
However, when an administrator is deciding whether to trust
another realm, the amount of damage that can be done on the
local realm by a compromised foreign realm must be consid-
ered. These sections document some of these attacks but are
not necessarily complete.

9.1 TGSs learn AKey and SKey
During cross-realm authentication all of the ticket granting

servers on the authentication path are capable of learningSK
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(i.e. the key shared between the server and the client). In addi-
tion, given an authentication pathR1, R2, . . . Rn, Ti : TGSRi

is capable of learningAKj : shK C Tj+1 ∀j ≥ i, where
AKj is the temporary session key shared byC andTj+1 when
authenticatingC along the specified authentication path [14].
For any TGSTi along the authentication path,Ti generates a
new keyAKi that is used to encrypt communication with the
next TGSTi+1 using ruleα3.2. SinceTi generatesAKi it
knows it and can store it in memory. Since the exchange of a
new keyAKi+1 betweenTi+1 andC is encrypted withAKi

(also ruleα3.2), Ti can learnAKi+1. Ti can repeat this pro-
cess for all of the TGSs on the rest of the authentication path
and is thus capable of learningSK. This means that all of
the ticket granting servers on the authentication path can learn
SK and thus use it to spoof the identify ofS or C or to eaves-
drop on the communication betweenS andC. Whether this
is a security threat depends on whether all of the TGSs on the
authentication path can be trusted. Note that in the intra-realm
case the same behavior described above occurs, however the
authentication path consists of just one TGS.

9.2 Remote TGS can Impersonate C
Any rogue TGS can impersonate a clientC anywhere out-

side ofC ’s realm, even ifC has never contacted this TGS. This
dishonest TGSTI can make up a ticket for a “next hop” and
spoofC ’s sending a request using this ticket.C does not need
to be involved, and not even to exist if the end-server doesn’t
knowC in the first place. To do thisTI creates the facts on the
right hand side ofα3.2. TI can do this since it shareskRi,Ti+1

with TGS Ti+1. Note that the rogue TGS is capable of fab-
ricating theTRANSITED field, however the property proved
in Section 8 still holds. The compromised TGS is not able to
masquerade asC in C ’s realm because local authentications
are not supposed to use the cross-realm mechanism.

9.3 Routing Attack
With no intruder present, a client is capable of determining

the authentication path by keeping track of the TGSs that she
uses. When a client receives a message as inα1.4, the client
believes that the next TGS on the authentication path isTj .
However, if there is an intruder TGS on the authentication path
then this field may be fabricated and the client will be tricked
into believing she is following a false authentication path. Sec-
tion 9.1 describes how every TGS on the authentication path
is capable of learningSK, and in the process learning all of
the session keys (AK) from that point on in the authentication
path. This implies that inα3.2 if x < i+1 thenTx is capable of
reading and modifying the factN({AK′, n2, tT , Ti+1}AK).
Thus, if there is an intruder TGSTI , then∀i ≥ I, Ti may or
may not be on the authentication path. Note that an intruder
TGS can trickC into thinking that it is not on the authentica-
tion path and is capable of manipulating the rest of the authen-
tication path in any way it wants withoutC ’s knowledge.

10. RELATED WORK
In spite of support in Kerberos, in particular as part of the

popular Windows operating system, and in other protocol suites
(e.g., [1]), the literature on cross-realm authentication is scant
and surprisingly old. The earliest paper in this arena appears to
be [5] which proposes organizing authentication servers into

a hierarchy for efficient authentication across administrative
boundaries, a design still recognizable in Kerberos. More re-
cently, Gligoret al. [14] undertook a general study ofinter-
realm authentication(as they call it) with particular focus on
defining local trust policies that mitigate global security ex-
posure. In particular, they studied an algorithm for finding
authentication paths that is very close to Kerberos’s own. The
original interest in research in cross-realm authentication seems
to have ended in the early 1990’s.

While that work was mostly concerned with designing a
solid cross-realm authentication infrastructure, our effort fo-
cuses on its formal specification and analysis. To this end, we
have defined a precise cross-realm intruder model, proposed
a machine-checkable formalization of Kerberos 5, and proved
an important property of cross-realm trust. Differently from
previous work, we point out specific threats that are likely to
be more useful to a system administrator than the generic lan-
guage in the Kerberos documents [17, 21].

11. CONCLUSIONS
In this paper, we formalized the support available in Ker-

beros 5 for cross-realm authentication. We also extended the
Dolev-Yao intruder model to account for threats specific to this
mode of operation. We characterized minimum requirements
in view of assessing confidentiality and authentication prop-
erties, and documented a range of harmful behaviors in the
presence of compromised or untrusted realms.

This preliminary investigation lends itself to extensions in
numerous directions. First, we can embark in proving that
cross-realm operation does satisfy similar confidentiality and
authentication properties already established in the intra-realm
case [6, 7]. Second, we want to extend our analysis to mech-
anisms that have been proposed to mitigate the harm that a
compromised KDC sitting on an authentication path can in-
flict. One promising approach is the public-key extension of
Kerberos through the PKINIT and especially PKCROSS sub-
protocols [8, 15]. Another involves a formal analysis of rele-
vant aspects of SESAME [1]. In both cases, we believe that
our approach can contribute to the active discussion within the
Kerberos working group.
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APPENDIX

A. PREDICATES
This appendix lists the protocol-specific predicates used in

our formalization of Kerberos 5 cross-realm authentication.
We give an intuitive explanation of what we intend to capture
with them.

• AuthC(X, S, AK)

The AuthC memory predicate is used to modelC ob-
taining a TGT or service ticketX for use with a TGS or
serverS. AK is the key associated with this ticket.

• V alidK(C, T )

This predicate is used to model the fact that the clientC
and TGST are valid inK ’s realm.

• DesiredHop(C, S, RT , Rn)

DesiredHop is the machinery used to modelRn as the
desired next hop used in authenticatingC to S if we are
currently in realmRT .
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• V alidts(C, S, t, Rs)

This predicate is used to model a valid service ticket or
cross-realm ticket granting ticker request.ts is the TGS
or server that validates the ticket,C is the client request-
ing the ticket,S is the TGS or server requested,tC is a
timestamp, andRs is theTRANSITED field.

• CloserRealm(Tn, Tj)

TheCloserRealm predicate is used to modelTi search-
ing for a cross-realm key.Tn is the TGS thatC requested
andTj is the TGS that is actually returned. IfT shares
a cross-realm key with the requested TGS then it will
return a TGT for use with it. Otherwise,T will use the
standard hierarchical path or a hard-coded authentication
path to determine a closer TGS.

• MemS(C, SK, t, Rs)

An application serverS uses theMemS memory pred-
icate to store information relevant to an authenticated
client. C is the client’s name andSK is the key they
share. The timestamp of the request and theTRANSITED
field are also stored for possible future use.

15


	Carnegie Mellon University
	Research Showcase
	1-1-2005

	Specifying Kerberos 5 Cross-Realm Authentication
	Iliano Cervesato
	A D. Jaggard
	A Scedrov
	C Walstad
	Recommended Citation



