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Abstract. Symbolic location of a user, like a store name in a mall, is
essential for context-based mobile advertising. Existing fingerprint-
based localization using only a single phone is susceptible to noise,
and has a major limitation in that the phone has to be held in the
hand at all times. In this paper, we present SensOrchestra, a col-
laborative sensing framework for symbolic location recognition that
groups nearby phones to recognize ambient sounds and images of a
location collaboratively. We investigated audio and image features,
and designed a classifier fusion model to integrate estimates from
different phones. We also evaluated the energy consumption, band-
width, and response time of the system. Experimental results show
that SensOrchestra achieved 87.7% recognition accuracy, which re-
duces the error rate of single-phone approach by 2X, and eliminates
the limitations on how users carry their phones. We believe general
location or activity recognition systems can all benefit from this
collaborative framework.

Key words: Collaborative sensing, mobile phone sensing, localization, context-
awareness, context-based advertising

1 Introduction

Context-based mobile advertising matches advertisement and e-coupons with
potential customers according to their locations, activities, or interests [20, 21,
25]. Symbolic location of a user, such as a store name, is important since a
user can get exclusive coupons based on their frequent visits, or receive product
recommendations from similar shops. In this work, we focus on the problem of
how to recognize the store (e.g. a café, an electronics store, or a clothing store)
that a user is in when the user is shopping at a mall with a variety of stores,
using only microphones and cameras on mobile phones.

GPS does not work in this scenario since most stores in malls are indoors.
Although extensive work has been done in indoor localization [2, 16, 23, 15], most
systems are still limited by infrastructure or specific hardware requirements,
thus they are unlikely to be widely deployed in every store. Even with an indoor



2 Heng-Tze Cheng et al.

Audio Feature 
Extraction

Store 
Classification

Proximity Detection

Sensor 
Module

Data Pre-
processing

Bluetooth 
Scan

Image Feature 
Extraction

Classifier Fusion

Ad-Hoc Group 
Formation

Group 
Information

Co
lla

bo
ra

tiv
e 

Se
ns

or
 D

at
a

Estimated Store

Visited Store
Database

Context-based
Mobile Advertising

Back-End ServerMobile Phones

Targeted Ads/Coupons

Phone Position 
Detection

Ambient 
Sound

Images

Indoor 
Shopping Mall

Fig. 1. The system architecture of SensOrchestra.

localization system with room-level accuracy, slight errors in coordinates often
place a phone at the wrong side of a wall dividing two adjacent stores [1].

Recent research, SurroundSense [1], achieved promising results on symbolic
location inference using mobile phones to fingerprint ambient sound, light, color,
and motion signatures. However, in order to capture images and audio, a major
limitation faced by SurroundSense is that the phone has to be held in the hand
at all times, which may not be the way general users usually carry their phones.
Simply putting a phone in one’s pocket renders the microphone muffled and
the camera useless [17]. Since only one single phone is used to detect a user’s
surroundings, if the phone is facing a source of noise, it is difficult to eliminate
the influence of noise and recover from an incorrect inference.

To address the challenges mentioned above, we have developed SensOrches-
tra, a multi-phone collaborative sensing framework for symbolic location recog-
nition. Using Bluetooth-based proximity detection, SensOrchestra groups nearby
phones to sense the ambience together, and then combines the correlated sensor
data using a classifier fusion model for location inference. Using multiple phones
implies concurrent sensing of the same environment from different positions, thus
increasing the chance of getting more useful raw data for context inference and
becoming less susceptible to ambient changes. This eliminates the major limita-
tion that the phone has to be held in the hand at all times to recognize a location.
Furthermore, SensOrchestra achieves promising results using only microphones
and cameras, which are the basic sensors on most of today’s mobile phones,
without the need of any custom-made hardware or specific infrastructure.

A natural concern is that as the number of stores increases, the fingerprint-
based approach seems impractical because it is unlikely that we can find unique
audiovisual signatures for every store in a city. However, it should be noted that
our approach does not need to be able to differentiate all the stores in distant
locations. Although existing GPS or GSM-based positioning system was shown
to be unable to identify different neighboring stores [1], it is accurate enough for
determining locations in a macro-scale, such as the name or a specific part of a
mall. Once the macro-location is known, the candidate symbolic locations can be
confined to a limited set. The importance of fingerprint-based indoor localization
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system is thus to discriminate the ambient signatures of the fine-grained symbolic
locations in the same macro-location, such as several neighboring shops in the
same part of a mall.

The main contributions of this paper are:

– The design, implementation, and evaluation of SensOrchestra, a collaborative
symbolic location recognition system that combines sensor data from multiple
nearby phones.

– The design of a classifier fusion model to integrate estimates from multiple
phones, and compensates the incorrect estimates caused by ambient noise.

– The investigation of multiple audio and image features, and a complete exper-
iment with realistic setting to compare the effect of different phone positions
and multi-phone sensor data fusion.

The paper is organized as follows. In Section 2, we discuss and compare re-
lated work. The system design and the method for collaborative location recog-
nition are elaborated in Section 3, and the implementation details in Section 4.
In Section 5 and 6 we discuss the dataset used for evaluation and the exper-
imental results. Discussion and conclusion are elaborated in Section 7 and 8,
respectively.

2 Related Work

In the field of physical indoor localization [16], the Cricket system [23] achieved
centimeter-scale localization using RF and ultrasound beacons installed in the
surroundings. While effective for high-budget applications, this kind of system
is unlikely to be widely installed in every store in a city. The RADAR [2] system
achieved 5-meter accuracy using Wi-Fi fingerprinting, with a tradeoff that careful
calibration of Wi-Fi signal strengths are needed at many physical positions in
the building, which may not scale over wide areas. In SensOrchestra, we use only
mobile phones that people already have. Therefore, our system is low-cost and
can be applied to most stores, without the need for additional infrastructure or
custom-made hardware.

There has been an emerging interest in user context inference using mo-
bile phones in recent years. While CenceMe [18] infers user activities and so-
cial context using microphone and accelerometer on mobile phones, SoundSense
[17] achieves general sound classification (ambient sound, music, speech) with
over 90% accuracy and learns new sound events in different users’ daily lifes.
SurroundSense [1] incorprates more modalities, including microphone, camera,
accelerometer, and Wi-Fi, to achieve ambience fingerprinting for symbolic local-
ization. However, one common feature is that no benefit is gained when there is
more than one phone nearby. Building on their ideas, we extend their work by
introducing a multi-phone collaborative framework that removes the limitation
on where users put their phones and lessens the susceptibility of a single phone
to ambient noise.
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Similar to fingerprint-based localization, the notion of scene classification has
been investigated extensively in the field of computer vision and audio recog-
nition. In [5], probabilistic Latent Semantic Analysis (pLSA) is used to model
the latent topics in the images, which are then classified into different scene
categories like coast, mountain, or city. In [9, 11], both time- and frequency-
domain features of audio are extracted to recognize high-level context like lo-
cations (street, home, office) or sound events (rain, thunder, train). A major
difference is that these works focus mainly on novel statistical learning tech-
niques, using high-quality audiovisual data recorded by standalone cameras or
microphones. On the contrary, our work addresses real-world challenges when
most phones are resource-limited and not in good positions to sense the envi-
ronment.

There has also been related work exploring the idea of collaborative or partic-
ipatory sensing [3, 7, 19, 22]. The PIER system [19] uses participatory sensing to
collect GPS traces and calculate personal environmental impact and exposure.
In VUPoint [3], nearby phones are grouped together to collaboratively record
video of social events triggered by ambient changes, but they did not use the
recorded video to infer high-level user context. In addition, rather than prompt-
ing the user to actively record events or take sensor readings, SensOrchestra
senses the ambience in the background without the need of user’s attention.
This introduces additional challenges because the sensor data can be noisy and
less informative. Different from them in terms of primary goal, sensor data type,
and statistical learning methods, our work is one of the earliest attempts to use
collaborative sensing for symbolic location recognition.

3 System Design and Method

Given a set of audiovisual observations of the ambience sensed by multiple nearby
phones, the goal of SensOrchestra is to estimate the symbolic location that a user
is most likely at. The system architecture is shown in Figure 1. We describe each
part of the system as follows.

3.1 Proximity Detection and Group Formation

The purpose of proximity detection is to assign the phones in the same symbolic
location to the same group for collaborative sensing. Among several candidate
techniques, such as the acoustic grouping using short high-frequency chirps out-
side the audible frequency range [3], we adopt Bluetooth for proximity detection
because it is simple and available for most devices without the need for ad-
ditional processing. While Bluetooth signal can sometimes pass through walls,
other state-of-the-art proximity detection techniques can be further incorporated
to ensure that all the phones in a group are in the same store.

Our approach works as follows. First, a phone performs a background Blue-
tooth scan and transmits a list of Bluetooth addresses of discovered devices to
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Fig. 2. An example of MFCC features extracted from three stores. The color shows
the feature value of each dimension at each time frame.

the server. The Bluetooth address for each device is a unique, 48-bit address
(e.g. 00:12:d2:41:35:e4). After receiving the address list, the server clusters two
devices in the same group if both of them appear in each other’s list. Since the
range of Bluetooth is roughly 10 meters (32.8 feet), it is suitable for forming a
group in a typical-size store. The reason why we do not use Bluetooth pairing
is the concern of intrusiveness and time. If a mobile phone prompts a user to
pair with another device every time a new device is found, it would be highly
intrusive, time-consuming and thus undesirable. To preserve the privacy of other
mobile phone users, the server discards the Bluetooth address coming from any
device that is not running SensOrchestra.

3.2 Mobile Phone Sensing

After an anonymous ad-hoc group is formed, each phone records audio at an
8 kHz sampling rate and take one image every 8 seconds. Each sensing session
is 30 seconds. After a sensing session ends, the sensor data and the list of dis-
covered Bluetooth addresses are transmitted to the server through 3G or Wi-Fi
connection.

3.3 Feature Extraction

Audio Feature Extraction For audio features, we adopt Mel-frequency cep-
stral coefficients (MFCC), one of the most important features for audio signal
processing, speech recognition, and auditory scene analysis [9, 12]. MFCC de-
scribes the short-term power spectrum over frequency bands from 20 to 16000
Hz, with finer details in the bands to which human ears are sensitive. For each
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Fig. 3. Example of images taken from two stores and the corresponding dominant
color distributions.

30-second audio, we extract MFCC using a window size of 256 samples (32 ms
when the audio sampling rate is 8kHz). The resulting feature is a 13-dimensional
vector for each time frame. We calculate mean and standard deviation of each
dimension over the 30-second interval, resulting in a 26-dimensional feature vec-
tor (13 for mean, 13 for standard deviation) for each sensing session. Examples
of MFCC features are shown in Figure 2, from which we can roughly observe
that different stores have different signatures (e.g. high-frequency coffee machine
sounds in a cafe) in each dimension of MFCC.

Image Feature Extraction Since different stores differ in light and dominant
colors, for image features we adopt the dominant color distribution [1, 10], a
widely used feature for image classification. In each 30-second time frame, we
first concatenate the 4 images taken in the session into one combined image,
and convert the image from RGB into Hue-Saturation-Value (HSV) color space.
The reason that we use HSV color space is because of its similarities to the way
humans tend to perceive color, and it is less sensitive to shadow and shading [5].
Since the dimension of the combined image is very high, dimension reduction or
a clustering algorithm is needed to extract the compact information for analysis
while discarding the redundancy. Therefore, in each image we cluster all pixels
by K-means clustering algorithm [13], so that the characteristics of each image
can be represented by a small number of clusters. The resulting clusters roughly
represents the dominant colors (e.g. red, brown, white, etc.) in a particular store.
As shown in Figure 3, the images from the two stores differ in cluster centroid
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Fig. 4. Classifier fusion model for multi-phone collaborative location recognition.

(HSV value of the dominant colors) and cluster size. In our implementation, K
is empirically set to 5.

To compare the similarity between the color distribution of two images, we
adopt the notion of color similarity measure described in [10] and [1]. The intu-
ition is that two images, I1 and I2, are similar if they both have many pixels of
similar colors. Let {C1,1, C1,2, ..., C1,K} and {C2,1, C2,2, ..., C2,K} represent the
set of pixel clusters in image I1 and I2, respectively. The intuition leads to the
following definition of color similarity S:

S(I1, I2) =
∑
i,j

1

δ(i, j)

n(C1,i)n(C2,j)

n(I1)n(I2)
(1)

where δ(i, j) denotes the Euclidean distance between the centroid of C1,i (the ith

cluster of I1) and C2,j (the jth cluster of I2). n(·) represents the total number
of pixels in a cluster or an image. In other words, if two images are similar, the
color cluster centroids are close to each other in the HSV color space, and a large
number of pixels belongs to the same dominant color cluster in both images.

3.4 Phone Position Detection

In SensOrchestra, we do not constrain the positions of phones when they are
sensing the ambience. Therefore, before using the audio and image features for
location recognition, we first detect the information of phone position (inside
or outside the pocket) to determine the reliability of sensor data from a certain
phone. We use average audio energy and mean of image luminance as features.
The intuition is that if the phone is in the pocket (or generally covered by clothing
or bags), the images will be dark and the average audio volume recorded will be
much lower. A two-class support vector machine (SVM) classifier [6] is trained
to classify whether the phone is “in the pocket” or “outside the pocket.” The
information is used in the next step for a final decision on location recognition.
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3.5 Classifier Fusion Model

The classifier fusion model is shown in Figure 4. Suppose there are N users in
store St at time t, observing features O1,t, O2,t, ..., ON,t, respectively. For each
individual observation, we use a k-Nearest Neighbor (k-NN) classifier [4] to es-
timate the most likely store. Specifically, for each sample of testing audio or
image features, we calculate the distance from each of the samples in the train-
ing set. For MFCC, Euclidean distance between two feature vectors is used. For
color distribution features, the pair-wise distance is computed by the similarity
measure defined in equation (1).

After each classifier outputs an estimate, we use a weighted majority vote ap-
proach for classifier fusion. The weighting is trained by the relative classification
accuracy using the data collected from ”inside-the-pocket” versus ”outside-the-
pocket.” The intuition is that if the data were sensed from a phone inside the
pocket, the estimate based on the data is less reliable because the microphone
was muffled. Thus, its vote is multiplied by a lower weight wpocket; otherwise,
the vote is multiplied by (1 − wpocket). According to the experimental results,
we set wpocket to 0.4. Finally, based on the weighted sum of votes from different
phones, the store class with the most votes is the final estimate S∗

t .
After a sequence of estimates S∗

t is produced, we apply a temporal-smoothing
process to take temporal continuity into account. The intuition is that a user’s
location trace is continuous in time and unlikely to switch swiftly between several
stores. Specifically, using a moving window of the size of 3 consecutive estimates,
the final smoothed store decision S∗

smooth,t at each time t is defined as:

S∗
smooth,t =

{
S∗
t−1 if S∗

t−1 = S∗
t+1 and S∗

t 6= S∗
t−1

S∗
t otherwise

(2)

4 Implementation

The client-side program of SensOrchestra is implemented in Python for Sym-
bian S60 [26] platform v1.4.5 on Nokia N95 phones. The background Bluetooth
scanning part is implemented using the code from the Personal Distributed In-
formation Store (PDIS) project [24] at Helsinki Institute for Information Tech-
nology. The audio is recorded in WAV format with a sampling frequency of 8
kHz, and the images are stored in 640× 480 JPEG format. The sensor data and
the timestamp information are transmitted to an Apache Server, handled by a
PHP script, and stored in a MySQL database. The sensor data from the phones
within the same group are analyzed by the classifier fusion model implemented
in MATLAB, and then the phones retrieve the recognition result from the server.
The Support Vector Machine classifier used in phone position detection is im-
plemented using LIBSVM [8].
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Table 1. The effect of phone positions (inside pocket vs. outside pocket) on store
classification accuracy.

Phone Positioin Inside Pocket Outside Pocket

Classification Acc. 59.5% 79.8%

Table 2. Comparison of store classification accuracy using single phone vs. multi-phone
collaborative sensing.

Single-Phone Approach Collaborative Sensing

Feature Phone1 Phone2 Phone3 Phone4 Avg. 4-Phones +Temporal

Color Distribution 68.8% 62.5% 59.4% 51.2% 60.3% 70.1% 73.0%
Audio MFCC 75.6% 73.6% 82.6% 70.7% 74.9% 84.8% 87.7%

5 Dataset

We evaluated SensOrchestra on a dataset containing 536 sensing sessions. The
dataset was collected in 10 different stores at the Stanford shopping mall. Six
graduate students from Carnegie Mellon University and Stanford University par-
ticipated in the data collection and annotation tasks at different times (daytime
and evenings on both weekdays and weekends). Four different Nokia N95 phones
are used, each running the client-side sensing program of SensOrchestra. Each
session consists of a 30-second audio and four images. To facilitate future research
in the related field, we will make our dataset available on our website.

Throughout the experiment, there were 4 users visiting one store at the same
time, each carrying one phone, browsing items in the store like other customers.
To simulate a realistic situation, the users were asked to generally keep their
phones in their pockets, and occasionally take out their phones for a while. The
users holding their phones were asked to mimic general customers’ phone usages,
e.g. making phone calls or reading messages. After each sensing session, the user
annotated the phone position and the store name, which serve as ground-truth
labels in experiments.

Due to the realistic settings, most of the data are low quality images caused
by motion blur, non-informative views (e.g. other customers or a close-up view of
a wall), and unusual camera angles. In addition, most of the audio are recorded
when the phones are put in the users’ pocket, resulting in muffled sounds and
loss of acoustic details of the surroundings. However, the results show that our
approach is reasonably robust to overcome these difficulties.
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6 Evaluation

Given each sample (audio and image features extracted from one sensing session),
the system classifies the sample as one of the stores in the training set. The results
are validated using 10-fold cross-validation. The classification accuracy metric
used in this section is calculated by:

accuracy =
# correctly classified samples

# total samples
(3)

6.1 Phone Position Detection Results

We first validate the hypothesis that two classes of phone positions (either
”inside-the-pocket” or ”outside-the-pocket”) can be accurately detected. Ex-
perimental results shows that either audio energy or mean image luminance is
discriminative enough to detect the phone position with 92% and 99% accuracy,
respectively. In the classifier fusion step, we determine the weighting of each
phone based on the phone position detected by image luminance.

6.2 Impact of Phone Position on Classification Results

Next, we investigate how the store classification accuracy will be affected by
where users put their phones. We divided the dataset into two subsets depend-
ing on whether a sample is sensed by a phone inside or outside the pocket, and
ran a store classification experiment on each subset. Only the result using au-
dio features is available since the images are all dark when cameras are put in
pockets. The result in Table 1 shows that putting a phone in the pocket severely
degrades the classification accuracy since the microphone is muffled. The result
also supports our claim that using only one phone can result in poor performance
if the user keeps the phone in the pocket most of the times, which suggests the
solution of collaborative sensing.



SensOrchestra: Collaborative Sensing for Symbolic Location Recognition 11

Table 3. Confusion matrix of store classification results (shown in percentage) using
collaborative sensing and audio features only.

Classification Results (Classified As)

Ground Truth Cafe Body Electr. M.Fash. W.Fash. Books Home Dining

Cafe 88.8 0 0 0 0 0 0 11.2
Body Care 0 88.2 7.4 0 2.9 1.5 0 0
Electronics 0 9.7 61.3 0 6.4 3.2 19.4 0
Men Fashion 4.4 0 0 95.6 0 0 0 0
Women Fashion 4.2 4.2 12.5 0 75.0 4.2 0 0
Books 0 0 0 0 5.3 94.7 1.3 0
Home Decor 0 6.9 5.2 0 0 22.4 63.8 1.7
Dining 2.0 0 0 0.7 0 0 0 97.8

6.3 Collaborative Store Classification Results

In this section, we validate our main hypothesis that the collaborative sens-
ing approach of SensOrchestra can improve store classification accuracy over
the single-phone approach. For the single-phone approach, we ran experiments
by switching the testing set among data from the four phones carried by four
users (Phone1 to Phone4). For the collaborative sensing approach, each sample
is connected with other samples that were sensed at the same time but from
different nearby phones. The individual estimates are aggregated using the clas-
sifier fusion approach, which generates the final classification decision. 10-fold
cross-validation was applied to both cases.

As shown in Table 2, image features (dominant color distribution) yield lower
accuracy, probably caused by the low quality of images in the dataset because
there was no limitation on phone positions or orientations when the pictures
were taken. When using the single-phone approach with only audio features
(MFCC) for classification, each phone achieved different performance, with an
average accuracy of 75%. Using the 4-phone collaborative sensing approach, we
improved the average accuracy to 85%. The result supports our hypothesis that
sensor data from different phones actually complement each other. Some errors
caused by ambient noise can be compensated if the majority of classification
estimates are correct. After the temporal-smoothing process, we achieved 87.7%
accuracy using only audio features, which is similar to the accuracy reported in
[1] using 4 modalities (audio, image, motion, Wi-Fi), but we do not require the
phones to be held in the hand at all times. Also, we used fewer modalities, which
implies substantial saving on energy consumed by sensors.

We also compare the results using different numbers of collaborators. As
shown in Figure 5, while accuracy gradually increases as more phones’ estimates
are combined, even adding only one collaborator can improve the accuracy by
6%. More insights can be drawn from the confusion matrix shown in Table 3.
The system is effective in recognizing café and the dining restaurant, but can
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Fig. 6. The power and CPU usage of the Nokia N95 phone when running SensOrchestra
phone sensing software. The operations performed on the phone are labeled as follows:
(a) Bluetooth scanning; (b) Microphone/Camera sensing; (c) Sensor data transmission
(audio only); (d) Location recognition result reception; (e) One shot of the camera; (f)
Sensor data transmission (audio and image).

still misclassify one as the other sometimes because of the high similarity of these
two kinds of store. Another example is that the electronics store (Sony Style) is
frequently misclassified as the home decoration store (Brookstone). A possible
reason is that Brookstone actually has a section selling home appliances and
electronics, probably resulting in images and sound signatures similar to Sony
Style.

6.4 Energy and CPU Measurements

In addition to store classification performance, we now evaluate the energy con-
sumption and CPU usage of SensOrchestra when running on the Nokia N95
phone. The measurements are collected using the Nokia Energy Profiler toolkit
[14], with a sampling rate of 4 measurements per second.

Figure 6 shows the power and CPU usage during one sensing interval. Two
configurations are tested for comparison: 1) Both microphone and camera are
turned on to sense and transmit audiovisual data; 2) Only the microphone is
turned on and the audio is transmitted. When the program starts, it takes 10
seconds on average to perform the Bluetooth scan for proximity detection, with
power consumption of 0.5 W on average. Although slightly increasing the need
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of power and CPU, Bluetooth scan is essential for ad-hoc group formation for
collaborative sensing. Then, the phone starts to capture audio and image for
30 seconds. If using only microphone to record audio, the energy consumption
rate is 0.3 W. While audiovisual data provide more information for context
inference, camera shots consume more than 0.9 W, which is three times as much
as the power consumed by audio recording. Also, audio features are shown to
be more robust than image features in Section 6.3. Therefore, to reduce energy
consumption, a possible solution would be turning off the camera or adopting
state-of-the-art duty cycle management techniques [27].

Sensor data transmission between the phone and the server is also a power-
consuming operation, which increases the CPU usage to over 80%, and drains
1.2 W in average. One solution is moving the feature extraction part to the
phone to save bandwidth in data transmission, with a tradeoff of increasing the
computational burden on the phone.

7 Discussion

7.1 Transmission Bandwidth

We first discuss the bandwidth required for data transmission. For the current
implementation, a 30-second WAV file is 472 kB, and a JPEG image is about
60 kB each on average. Each Bluetooth address in the discovered address list is
only 48 bit, so the additional overhead is negligible. Therefore, the total amount
needed for transfer is approximately 472 kB + 4× 60 kB = 712 kB, which takes
about 10 seconds in average to upload with Wi-Fi or 3G connection. If only
audio data are used, the data size for transmission can be reduced by 33%.

7.2 Response Time

Response time is also an important factor for a location recognition system, since
context-based advertisement or coupons may need to be delivered to the user in a
timely fashion. We define response time as the interval from the time that sensor
data are collected, to the time that location recognition result is received. As
shown in Figure 6, after the sensor data are collected, the system response time
is about 10 to 15 seconds (operation (c) and (d)), depending on the network
connection and the transmitted data size. Considering the whole sensing and
inference interval, the system can update the user’s location once every minute.
While this can be improved by reducing the sensing period, we believe it is timely
enough for symbolic location recognition since most customers are unlikely to
switch from store to store every minute. Extracting features locally on the phone
can further improve the response time by reducing the data size for transmission.

7.3 Applications to Mobile Advertising

We now discuss the potential of applying the system to context-based advertis-
ing. On the user’s side, SensOrchestra is a realistic solution since most of the
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time there is more than one person shopping in a store and carrying his/her
mobile phone. A user can simply opt out if there is any privacy concern. On the
advertisement provider’s side, SensOrchestra is low-cost and scalable enough
to be deployed to a wide variety of stores since it requires only a reasonable
amount of audio/image samples (less than 70 sensing sessions for each store in
our experiments) provided by each store for training, without the need for addi-
tional infrastructure. Furthermore, our multi-phone sensing framework enables
the opportunity of mobile group advertising. Since customers in proximity are
grouped together, the advertisement provider can send group-targeted coupons
(e.g., Three users in the same store may receive a ”buy-two-get-one-free” coupon
for them even if they do not know each other). Leveraging the strength of such
social connections or incorporating other context information can be interesting
directions for mobile context-based advertising.

8 Conclusion and Future Work

In this paper, we have presented the design and evaluation of SensOrchestra, a
collaborative sensing framework for symbolic location recognition that leverages
multiple nearby mobile phones. We showed that using only a single phone is
not robust enough to overcome muffling and ambient noise. Experimental re-
sults validate our hypothesis that recognition accuracy improves as more phones
collaborate. Using the proposed classifier fusion approach to combine correlated
estimates from different phones, we are able to achieve 87.7% accuracy with only
audio features and without any assumption on how users carry their phones dur-
ing the sensing process.

Our ongoing work is to balance the tradeoff between energy consumption,
transmission bandwidth, and accuracy. Improving the reliability of proximity de-
tection is another important issue. We are also applying the collaborative sensing
framework to group activity recognition, which provides richer information for
context-based mobile advertising.
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