Carnegie Mellon University
Research Showcase

Paralle] Data Laboratory Research Centers and Institutes

9-1-2008

Ganesha: Black-Box Fault Diagnosis for
MapReduce Systems (CMU-PDL-08-112)

Xinghao Pan
Carnegie Mellon University

Jiaqi Tan
Carnegie Mellon University

Soila Kavulya
Carnegie Mellon University

Rajeev Gandhi
Carnegie Mellon University

Priya Narasimhan
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/pdl

Recommended Citation

Pan, Xinghao; Tan, Jiaqi; Kavulya, Soila; Gandhi, Rajeev; and Narasimhan, Priya, "Ganesha: Black-Box Fault Diagnosis for
MapReduce Systems (CMU-PDL-08-112)" (2008). Parallel Data Laboratory. Paper 14.
http://repository.cmu.edu/pdl/14

This Technical Report is brought to you for free and open access by the Research Centers and Institutes at Research Showcase. It has been accepted for
inclusion in Parallel Data Laboratory by an authorized administrator of Research Showcase. For more information, please contact research-

showcase@andrew.cmu.edu.


http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fpdl%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/research?utm_source=repository.cmu.edu%2Fpdl%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl/14?utm_source=repository.cmu.edu%2Fpdl%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

Ganesha: Black-Box Fault Diagnosisfor MapReduce
Systems

Xinghao Pan, Jiagi Tan, Soila Kavulya, Rajeev Gandhi, Priya Narasimhan

CMU-PDL-08-112
September 2008

Parallel Data L aboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Ganesha aims to diagnose faults transparently in MapReduce systentglipygiag OS-level metrics alone. Ganesha'’s approach
is based on peer-symmetry under fault-free conditions, and can diegaalis that manifest asymmetrically at nodes within a
MapReduce system. While our training is performed on smaller Hadoogduend for specific workloads, our approach allows

us to diagnose faults in larger Hadoop clusters and for unencounterellleaats. We also candidly highlight faults that escape
Ganesha’s black-box diagnosis.
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1 Introduction

Performance problems in distributed systems can be hard to diagnose acaielto a specific node or a
set of nodes. There are many challenges in problem localization (i.e. gtheproblem back to the culprit
node) and root-cause analysis (i.e., tracing the problem further to trexlying code-level fault or bug,
e.g., memory leak, deadlock). As we show, performance problems canategt one node in the system
and then start to manifest at other nodes as well, due to the inherent coratamacross components—this
can make it hard to discover the original culprit node.

A black-boxdiagnostic approach aims to discover the culprit node by analyzing paafae data
from the OS or network, without having to instrument the application or to nstaied its semantics. The
most interesting problems to diagnose are not necessarily the outright(Gasstop) failures, but rather
those that result in a “limping-but-alive” system, i.e., the system continueseratg) but with degraded
performance.

We describe Ganesha, our black-box diagnostic approach that Wetamliagnose such performance
problems in Hadooplf2], the open-source implementation of MapRedutle [Ganesha is based on our
hypothesis (borne out by observation) that fault-free nodes in Mdpé&behave similarly. Ganesha looks
for asymmetric behavior across nodes to perform its diagnosis. Ineyitaidyblack-box approach will
not have coverage—faults that do not result in a consistent asymmedssawodes will escape Ganesha’s
diagnosis.

Black-box diagnosis is not new. Other black-box diagnostic technicjel p] determine the root-
cause of a problem, given the knowledge that there is a problem in thersyite techniques differ in
how they “know” that a problem exists). In a MapReduce system with itsytiatly long-running jobs, the
system might not provide us with quick indications of a job experiencing bl@no. Thus, in contrast with
other techniques, Ganesha attempts to determine, for itself, whether anpreikts and, if so, traces the
problem to the culprit node(s).

In this paper, we explore when such a black-box diagnostic appreacine cannot work, based on our
hypotheses of MapReduce system behavior. We demonstrate the bbadikagnosis of faults that manifest
asymmetrically at “peer” nodes in the system. More interestingly, we can akagrii) different faults by
training on fault-free data, (ii) faults in larger MapReduce clusters althewgytrain on smaller MapReduce
clusters, (i) faults for unencountered workloads, although we trainpaciic workloads. We candidly
discuss our experiences with faults (such as those that manifest symiheaical nodes, or those that
travel around the system) that escape Ganesha'’s diagnosis, ardtswgys in which we can address them.

2 Target System: MapReduce

Hadoop 2] is an open-source implementation of Google’s MapRedugdrgdmework that enables dis-
tributed, data-intensive, parallel applications by decomposing a masbiu@gosmaller tasks and a massive
data-set into smaller partitions, such that each task processes a diffarétion in parallel. Hadoop uses
the Hadoop Distributed File System (HDFS), an implementation of the Google $#es)fL8], to share
data amongst the distributed tasks in the system. HDFS splits and stores filesdaside blocks (except
for the last block).

Hadoop uses a master-slave architecture, as shown in Figwith a uniqgue master host and multiple
slave hosts. The master host typically runs two daemons: (1) the JokTithek schedules and manages
all of the tasks belonging to a running job; and (2) the NameNode that matlagé&lDFS namespace by
providing a filename-to-block mapping, and regulates access to files byscfien, the executing tasks).
Each slave host runs two daemons: (1) the TaskTracker that lautaskesson its host, as directed by the
JobTracker; the TaskTracker also tracks the progress of eaclomais& host; and (2) the DataNode that
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Figure 1: Architecture of Hadoop, showing our instrumentation points.

serves data blocks (on its local disk) to HDFS clients.
We explore fault-diagnosis for three candidate MapReduce workloads)ich the first two are com-
monly used to benchmark Hadoop:
e RandWriter write 32 GB of random data to disk;
e Sort sort 3 GB of records;
e Nutch open-source distributed web crawler for Hadobg] [fepresentative of a real-world workload

3 Problem Statement & Approach

We seek to understand whether Ganesha can localize performantanmsarcurately and non-invasively,
and whether Ganesha can assist us in understanding the limitations oblobackagnosis for MapReduce
systems.

Hypotheses. We hypothesize that MapReduce nodes exhibit a small number of distinavibes, from
the perspective of black-box metrics. In a short interval (e.g. 1s) of tinessystem’s performance tends to
be dominated by one of these behaviors. We also hypothesize that, antidrde operation, MapReduce
slave nodes will exhibit similar behavior over moderately long durations. Mo this peer-symmetrfor
Ganesha’s fault diagnosis. We make no claims about the symmetry or laebtheder faulty conditions.

Goals. Ganesha should run transparently to, and not require any modificafiopst the hosted appli-
cations and any middleware that they might use. Ganesha should be uspbbeluiction environments,
where administrators might not have the luxury of instrumenting applicationsduld instead leverage
other (black-box) data. Ganesha should prodoeefalse-positive ratesn the face of a variety of work-
loads for the system under diagnosis, and more importantly, even if thekéaads fluctuate as in the
case of Nutch. Ganesha’s data-collection should impose minimal instrumerdaédreads on the system
under diagnosis.

Non-Goals. Ganesha currently aims for (coarse-grained) problem diagnosis btifyilem the culprit
slave node(s). Clearly, this differs from (fine-grained) root-caarsalysis, which would aim to identify
the underlying fault or bug, possibly even down to the offending line diecdVhile Ganesha can be sup-
ported online, this paper is intentionally focused on Ganesha’s offlingsasdor problem diagnosis. We
also do not target faults on the master node.

Iworkload fluctuations can often be mistaken for anomalous behavioe #stem’s behavior is characterized in terms of OS
metrics alone. Ganesha, however, can discriminate between the twasbdealt-free peer nodes track each other in workload
fluctuations.



user % CPU time in user-space

system % CPU time in kernel-space
iowait % CPU time waiting for 1/O job
ctxt Context switches per second

rung-sz Number of processes waiting to run

plist-sz | Total number of processes and threads

Idavg-1 | system load average for the last minute

eth-rxbyt Network bytes received per second
eth-txbyt | Network bytes transmitted per second
pgpgin KBytes paged in from disk per second

pgpgout | KBytes paged out to disk per second
d

d

|

fault Page faults (major+minor) per secon
bread Total bytes read from disk per secon
bwrtn Total bytes written to disk per seconc

Table 1: Gathered black-box metricsafic-vector).

[Source] Reported Failure [Fault Name] Fault Injected
[Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resultg@PUHog] Emulate a CPU-intensive task that cgn-
from running master and slave daemons on same machine sumes 70% CPU utilization
[Hadoop users’ mailing list, Sep 26 2007] Excessive messagiskHog] Sequential disk workload wrote 20GB
logged to file during startup of data to filesystem
[HADOOP-2956] Degraded network connectivity between DataNPacketLoss] 50% packet loss
odes results in long block transfer times
[HADOOP-1036] Infinite loop at slave node due to an unhandletHADOOP-1036] Revert to older version and trig
exception from a Hadoop subtask that terminates unexpectedly, Tger bug by throwing NullPointerException
offending slave node sends heartbeats although the subtask has ter-

minated.

Table 2: Injected faults, and the reported failures that they simulate. HAB{QX represents a Hadoop
JIRA entry.

Assumptions. We assume that the target MapReduce system is the dominant sourceitf adtievery
node. We assume that a majority of the MapReduce nodes are probleanftéeat all nodes are homoge-
neous in hardware. We also assume that MapReduce’s speculativgierds disabled.

4 Diagnostic Approach

For our problem diagnosis, we gather and analyze black-box (i.e., @§-ferformance metrics, without
requiring any modifications to Hadoop, its applications or the OS to collect thesdcs. For black-box
data collection, we usgysstat’s sadc program [L4] to periodically gather a number of metrics (14, to be
exact, as listed in Tabl® from /proc, at a sampling interval of one second. We use the texéie-vector to
denote a vector containing samples of these 14 metrics, all extracted attbénstant of time. We collect
the time-series ofadc-vector samples from each slave node and then perform our analysetetmihe
whether there is a performance problem in the system, and then to tracelfenpback to the culprit slave
node.

4.1 Approach

From our hypothesis, Hadoop’s performance, over a short intefitahe, can be classified intd distinct
profiles Effectively, these profiles are a way to classify the obsesseit-vectors intoK clusters (or cen-
troids). While profiles do not represent semantically meaningful informatiay are motivated by our ob-
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Figure 2: Ganesha’s approach.

servation that, over a short interval of time, each Hadoop slave noftempsrspecific resource-related activ-
ities, e.g., computations (CPU-intensive), transfering data (networksingn disk access (I/0O-intensive).

The profiles, thus, represent a way to capture Hadoop’s differdmdiors, as manifested simultaneously
on all of the 14 metrics. We useto denote the number of slave nodes.

There are two phases to our approach—training and deployment—an ghbBigure2. In the training
phase, we learn the profiles of Hadoop by analyziagc-vector samples from slave nodes, gathered over
multiple jobs and multiple workloads in the fault-free case. In the deploymestpkha determine whether
there is a problem for a given job, and if so, which slave node is the culwie that we train on multiple
workloads, but can test with any given workload—this is a fairly importaptat of our technique. We val-
idate Ganesha’s approach by injecting various faults at one of the idatine nodes, and then determining
whether we can indeed diagnose the culprit node correctly. The re$ults walidation are described in
Section5.2

Preprocessing First, prior to using received trace data, all nodes must have an egprden of samples
spaced at equal intervals. While we collected data at a rate of 1 samplequerds this collection was
best-effort and samples could have been missed. We performed a L@tited Linear Regression to
interpolate data before processing (Fig8ye

Next, we normalized the data by taking the logarithms of each value (F&ur&/e observed that
samples with large values in particular metrics corresponded to high levetdidfyawith respect to the
metrics, and small values corresponded to low levels of activity. The samaplesvalso tended to have
higher variance during high levels of activity as compared to the variahesarople values during low
levels of activity. Since the metric values are larger during periods of highidef activity, by taking the



logarithm of the metrics, we are able to greatly reduce the variance dunimmgip®f high activity. Hence,
the logarithm of the metrics during periods of both high and low activities havias variances.

Finally, we normalized the logarithms of the values by the standard deviatiogescbf metric as ob-
served in the training data. lR-means clustering, the Euclidean distance is used as the distance measure
between data points. By normalizing all values by the standard deviationsewent the scenario where a
few metrics of large variance dominate tiemeans process. We can thus be more confident that the resul-
tantK-means clusters are truly representative of the distinct behaviorsy threa separation of samples
based on the few dominant metrics.

Training. We apply machine-learning techniques to learnKhprofiles that capture Hadoop’s behavior
(Figure6). We model our training data (a collection sddc-vector time-series of fault-free experimental
runs ofSort, RandWriterandNutch as a mixture oK Gaussian distributions. The fault-free training data
is used to compute the parameters—means and covariance matrices—koGgugssians. We enforce an
equal prior over th& Gaussians, since the prior distributions of ki&aussians may differ over different
workloads. We daot assume that our training data is labeled, i.e., we do not know, a priori, whitie o

K Gaussians each gathersgalc-vector is associated with. Instead, we use the expectation-maximization
(EM) algorithm [1] to learn the values of the unknown parameters in the mixture of Gaussiarte t8e
convergence time of the EM algorithm depends on the “goodness” of thd iratiges of these unknown
parameters, we ud€-means clustering to determine the initial values for the EM algorithm. In fact, we
run theK-means clustering multiple times, with different initializations for Kxneans clustering, in order

to choose the best resulting centroid values (i.e., those with minimum distortidhg asitial values for

the EM algorithm. The output of the EM algorithm consists of the means andianea matrices(L;, Z;),
respectively of each of th€ Gaussians. We chose a valuekof= 6 in our experiments.

Deployment. Our test data consists ekdc-vectors collected from the slave nodes, under a single job
of a given workload. At every sampling interval, Ganesha classifies Hiesdéc-vector samples from
each slave node into one of tie profiles, i.e., each testadc-vector is mapped to the best Gaussian,
(ui, %) (Figureb). If the testsadc-vector differs significantly from all of th& Gaussians, it is classified
as “unknown”. Next, in the deployed phase (Figiije Ganesha examines these classifications of each of
the data points. For each of theslave nodes, we maintain a histogram of all of the Gaussian labels seen
so far. Upon receiving a new classifieddc-vector for a slave nod¢, Ganesha incrementally updates
the associated histograi;, as follows. The histogram count values of all the labels are multiplied by an
exponential decay factor, and 1 is added to the count value of the labelaissifies the curreatdc-vector.
From our hypothesis, slave nodes should exhibit similar behavior oveenaialy long durations; thus, we
expect the histograms to be similar across all ofrttstave nodes. If a slave node’s histogram differs from
the other nodes in a statistical sense, then, Ganesha can indict thatléwddaut” as the culprit.

To accomplish this, at each time instant, we perform a pairwise comparisore dfistogramHj,
with the remaining histogramsl,,| # j, of the other slave nodels, The square root of the Jensen-Shannon
divergence, which is a symmetric version of the Kullback-Leibler divecgdB] and is known to be metrfg
is used as the distance measure to compute the pairwise histogram distareentsive nodes. An alarm
is raised for a slave node if its pairwise distance is more than a thresholdwilumore than”;z1 slave
nodes. An alarm is treated merely as a suspicion; repeated alarms aeel fieeithdicting a node. Thus,
Ganesha maintains an exponentially weighted alarm-count raised for ethehstave nodes in the system.
Ganesha indicts a node as the culprit if that node’s exponentially weiglaten-aount exceeds a predefined
threhold value.

2A distance between two objects is "metric" if it has the properties of sympigamgular inequality, and non-negativity.



1: function FiLL DATA(sampleTimegdata)

2 initialize completeSampleTimes 0

3 initialize completeData— 0

4 for all t from min sampleTimgdo maxsampleTimgslo

5: if t Z sampleTimeshen

6 h — 3rd smallest value ifabgs—t) : s€ sampleTimes
7 for all t’ € sampleTimesdo

8
9

. I_$\2
weightt') — exp(— ")

: end for
10: d — LWLRt,weightssampleTimeslata)
11: else
12: d — data, wheret = sampleTimgs
13: end if
14: completeSampleTimes-t
15: completeData— d

16: end for
17: return (completeSampleTimesompleteData
18: end function

Figure 3: Fill in missing data points using locally weighted linear regressiote: &/ LR(t,weights)?,\?)
performs locally weighted linear regression using the training setyi) } where each data poifx;,y;) has
weightweight. The function returns the predicted value yovhenx =t.

1: function NORMALIZEDATA (data)
2 for all d in datado

3 d—log(d+1)/o

4: end for

5 return data

6: end function

Figure 4: Normalize a given set of data

[EnY

. function CLASSIFYDATA(data U, )
for i from 1 tosize ) do
W « —= exp{—1(data— )= *(data— )}
! \/E‘ 2 i
(U,A) = eig(Z;) such that; = UAUT = UAY2(UAY2)T
dist «— (U/\l/z)‘l(data— i)
end for
label «— max w;
if distapel > fixed thresholdhen
label — sizeu) + 1
10: end if
11: return label
12: end function

© o NGO

Figure 5: Classify data point to a cluster (or identify as unknown behgavior



1. function TRAINING(sadc_data K) > sadc_datais a set ofsadc-vectors, i.e. eachadc_datg is a
sadc-vector

2: M «— sizgsadc_data)
3: o « standardDeviatioflog(sadc_data+ 1))
4 trainingData+«— normalizeDatésadc_data o)
5: for i from 1 to 5do
6: (centriods, labels) « kMeanstrainingData K)
7: distortion «— z'j\":labs(trainingData,— —centriodsg(labels(j)))
8: end for
9: index«— argmindistortion
10: [ < centriod$hgex
11: for i from 1 toK do
12: S(i) — covariancé{trainingData; : labelSngex(j) =i})
13: end for
14:  (u,%) — EM-GMM(trainingData K, fi,3)
15: return (o,u,%)
16: end function
Figure 6: Training phase
1: procedure GANESHA(0, 4, Z, A, {sampleTimagssadc_data}N, thresholg
2 for i from 1 toN do
3 initialize H; — 0
4: data < normalizeDatésadc_data, o)
5: (sampleTimgsdata) < fillData(sampleTimgsdata)
6: end for
7 for all timet do
8 for i from 1toN do
o: label < classifyDatddata(t), u,2)
10: Hi — AH;
11: Hi(label) < H;(label) + 1
12: end for
13: for all node paii,j do
14: distMatrix(i, j) < /JSDO(H;, Hj)
15: end for
16: for all nodei do
17: if count (distMatrix(i, j) > threshold > ZN then
18: raise alarm at nodie
19: if 20 consecutive alarms rais#uken
20: indict nodei
21: end if
22: end if
23: end for

24: end for
25: end procedure

Figure 7: Deployed phase. NotéSDO(H;, H;) is the Jensen-Shannon divergence between the histograms at
nodes andj.



small-cluster small-cluster cross-validated
Injected Fault RandWriter Sort Nutch RandWriter Sort Nutch
Fault Manifestation TP | FP TP | FP || TP | FP || TP | FP TP | FP || TP | FP
CPUHog Static asymmetric || 1.0 0 1.0 0 1.0 0 1.0 0 10| 003 | 1.0 0
DiskHog Static asymmetric || 1.0 | 0.03 || 1.0 | 0.03 || 1.0 0 1.0 0 09| 02 10 0
PacketLoss | Traveling asymmetric| 0.7 | 0.03 || 0.6 | 0.2 0.7 | 0.33 || 0.6 0 10| 048 || 0.7 | 04
HADOOP-1036 Symmetric 1.0 0 0 0 0 0 0.9 0 0 0 0 0
large-cluster large-cluster cross-validated
CPUHog Static asymmetric || 0.9 | 0.03 || 1.0 0 10| 004 1| 10| 005 || 10| 011 || 1.0 | 0.04
DiskHog Static asymmetric || 1.0 | 0.06 || 1.0 0 10| 001} 10| 0.05 || 1.0 | 0.07 || 1.0 | 0.01
PacketLoss | Traveling asymmetric| 0.5 | 0.06 || 0.9 | 0.53 || 0.7 | 0.06 || 0.5 | 0.04 || 1.0 | 0.63 || 0.8 | 0.09
HADOOP-1036 Symmetric 1.0 | 0.02 0 0 0 0 1.0 | 0.04 || 0.4 | 0.06 0 0

Table 3: Diagnosis results for Ganesha on faults injected in Hadooputinfarkload pairs;T P = true-
positive ratio,FP = false-positive ratio. Traveling asymmetric and symmetric fault-manifestatioms a
grayed-out because they are outside Ganesha'’s current diagnosis

5 Experimental Validation

We analyzed system metrics from two Hadoop 0.12.3 clubtessall-cluster (6-node: 5-slave, 1-
master) andlarge-cluster (16-node: 15-slave, 1-master). Each node consisted of an AMD (@pete
1220 dual-core CPU with 4GB of memory, Gigabit Ethernet, and a dedic&2@GB disk for Hadoop,
running amd64 Debian/GNU Linux 4.0.

We selected our candidate faults from real-world problems reported bgdfausers and developers
in: (i) the Hadoop issue trackelL]] from October 1, 2006 to December 1, 2007, and (ii) 40 postings
from the Hadoop users’ mailing list from September to November 2007. \Weride our results for the
injection of the four specific faults listed in Talie We intentionally chose these four faults for discussion
in this paper to show where Ganesha work®(UHogand DiskHog, where it does notRacketLossand
HADOOP-1036, and to describe why. We describe our goals for experimentation.

[Goal #1] What kinds of faults escape Ganesha's diagnosis? We sought to explore what kinds of faults
manifested in a way that escaped our diagnosis, namely, (i) faults that stedifeymmetrically across
all nodes (violating our hypothesis) or (ii) faults that manifested asymmetridalily where the fault-
manifestation traveled across the system.

[Goal #2] Can we train on fault-free data alone and diagnose a variety of faults on Hadoop clusters?
We performed our training on fault-free runs. We then deployed Ganeslihe fault-injected runs. The
goal was to study Ganesha'’s ability to diagnose faults without needing tatahrem.

[Goal #3] Can wetrain on smaller Hadoop cluster sand diagnosefaultson larger Hadoop clusters? We
performed our training on fault-free runs on theall-cluster for each of the three workloads (30 runs
total). We then deployed Ganesha on 10 fault-injected runs for eachwatktoad pair orLlarge-cluster.
The goal was to study Ganesha’s ability to diagnose faults on a cluster wbdés, when training was
performed on a 6-node Hadoop cluster.
[Goal #4] Can we train on any two workloads, and then diagnose faults for the third workload? We
termed this phase of evaluatioross-validation We performed our training on 10 fault-freeall-cluster
runs of only two of the three workloads (20 runs total), and then depl@gaetsha for 10 fault-injected runs
for the third workload on themall-cluster. The goal was to assess Ganesha’s ability to diagnose faults
for unencountered (untrained) workloads.

We then combined goals #2, #3 and #4 to extrapolate our diagnosis to largiers and to unencoun-

SWe recognize that 16 nodes is, by no means, a realistically large Hadlosiprc We use the adjectives “large” and “small”
simply to denote the clusters of two different sizes.



tered workloads, both at once, while avoiding the need to gather fault@ddwaining data.

5.1 [Goal #1] Fault-Manifestation Types

With the fault injected only on a single node, we were able to observe integdatitt manifestations.
Static, asymmetric manifestation: The culprit node behaves differently from other nodes, and this mani-
festation does not travel to other nodes. ExamplesCigdHogandDiskHog These faults are detectable
and diagnosable correctly by Ganesha, based on our hypotheseslaf slave-node behavior.
Traveling, asymmetric manifestation: Nodes affected by the fault behave asymmetrically, but the asym-
metry travels to nodes other than the culprit. An examplesisketLosswhere nodes that attempt to com-
municate with the culprit node also exhibit slowdown in activity as they wait orctierit node. These
faults are detectable, but not diagnosable, by Ganesha.
Symmetric manifestation: All nodes are affected by the fault, leading to symmetric (faulty) behaviar. A
example iHADOOP-1036 These faults are not detectable or diagnosable by Ganesha. Hpthéevéault
was detectable for thRandWriterworkload, because the workload is such that each node independently
writes random data to disk, so that only the culprit node halted procesginilg, the remaining nodes did
not.

Thus, there are different kinds of fault manifestations, from a blankviewpoint. Based on our peer-
similarity hypothesis, only some of them are detectable and diagnosable leglizmblack-box approach.

5.2 Results

We evaluated Ganesha’s approach using the true-positive (TP) larepfasitive (FP) ratios9] across all
runs for each fault-workload pair. TabBsummarizes our results. A node with an injected fault that is
correctly indicted is a true-positive, while a node without an injected fauttishacorrectly indicted is a
false-positive. Thus, the true-positive and false-positive ratios@rgpated as:

# faulty nodes correctly indicted
# nodes with injected faults
# nodes without faults incorrectly indicted
# nodes without injected faults

TP =

FP =

In addition, we compute the the false-alarm rate to be the proportion of stalasrindicted in fault-
free runs. Tabld summarizes these results. The low false-alarm rates suggest that, indhveheas nodes
are indicted by Ganesha, a fault is truly present in the system, albeit oessarily at the node(s) indicted
by Ganesha.

[Goal #2] Table3 demonstrates that we can, indeed, train on fault-free data alone to diafgudts. We
achieved high TP ratios and low FP ratios for faults with static asymmetric manidesta

[Goal #3] Ganesha was successful at diagnosing faults with static asymmetric maifesstachieving

TP ratio< 0.9 across all workloads with very low FP ratios, in teall-cluster (non cross-validated)
case. This applied also to therge-cluster case, demonstrating Ganesha’s ability to extrapolate from
behaviors learned from a small cluster to diagnose faults on a largerrcluste

[Goal #4] Ganesha was able to extrapolate its diagnosis across workloads; TReatased high and FP
ratios remained very low, in moving from diagnosing using non-cross-ataigtito the cross-validated cases.
This extrapolation across workloads was effective even when eXatappto the size of the cluster, as the
TP ratios remaineg 0.9, and FP ratios remained low across all workloads, going fronaiih&l -cluster
cross-validated to thearge-cluster cross-validated cases.



Non cross-validated Cross-validated

Workload | 6-node| 16-node | 6-node| 16-node
RandWriter 0 0.05 0 0.04
Sort 0 0.02 0 0
Nutch 0 0.05 0 0.04

Table 4: False alarm rates on fault-free runs.

6 Related Work

Diagnosing faults in distributed systems involves: (i) collecting data about/ters, (ii) localizing faults
to individual requests or nodes, and (iii) identifying root-causes oftlpesblems. We compare Ganesha’'s
approach with recent work. We note that Ganesha targets systems wilvedpbs, as compared to work
on Internet services with many short-lived jods§, 5, 2, 15].

Instrumentation sources. Both Ganesha and Magpid][use black-box system metrics. Magpie uses
expert-input to associate resource-usage with individual usersexjuehile Ganesha does not need expert-
input as we extract coarse-grained aggregate observationsl BiXftrace [L0] and Pinpoint 5] extract
white-box metrics about individual request paths through systems bjntagiessages between compo-
nents. P] infers request paths from unmodified messaging layer messages. Whidee<modifies the
messaging layer in the system, Ganesha is transparent to the system.

Fault localization. Pip identifies failed requests via violations of programmer-inserted expewatitag-

pie clusters fine-grained resource-usage profiles of requests;aanidlentify anomalous ones with large
numbers of observed request$] fises externally-supplied violations afpriori performance thresholds

to identify failures, while in many Internet-service systems dealt with by atitezhniques, failed requests
are easily detected at egress poifts?, 15]. Current techniques do not identify problems before requests
fail. This is difficult because problems can occur at many points. Garmkthats and localizes problems in
such systems.

Root-cause analysis. Given knowledge of failed requests$, ] perform root-cause analysis on requests
known to have failed by using clustering and decision trees respectité|\2] identify components along
request paths that contribute to failures or slowdowns. These tecknimpeever root-causes of a failure
given known failed requests, while Ganesha identifies problematic resgues/stems where this is hard.

In addition, X-trace has been applied to MapReduce systems to build aradizéstequest path4d.§],
but not yet to automatically detect problems. Ganesha automatically identifies oo which problems
occurred.

7 Conclusion and Future Work

We describe Ganesha, a black-box diagnosis technique that examirleseDBetrics to detect and diag-
nose faults in MapReduce systems. Ganesha relies on peer-symmetrynosgidggults. Ganesha is able to
extrapolate its fault diagnosis to larger MapReduce clusters and to unseldonads.

We propose to diagnose faults with traveling asymmetric manifestations by idegtfult propaga-
tions using data- and control-flow dependencies extracted using whitexmomation that we previously
explored [L9]. Also, we intend to extend Ganesha to include white-box metrics, which nebleaxtended
diagnosis. Also, Ganesha’s learning phase of Ganesha assumes migtriaussian distributions; we plan
to investigate if the diagnosis can be improved by using other, possibly am@metric, forms of cluster-
ing. We also expect to run our diagnosis online by deploying Ganesharaslale in our ASDF online
problem-diagnosis frameworg]

Symmetric Ganesha was not able to detect symmetric failures, achieving TP ratearbf Bgas we rely
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on detecting nodes with behaviors significantly different from other sosie that such symmetric mani-
festations escape our diagnosis. However, the symmetric failure wasedetectheRandWriterworkload,
because the workload is a special case in which each node independeridyrandom data to disk, so that
only the node with the injected failure stopped processing, while the remaiodesrdid not depend on it.
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