








Figure A.2: Newsgroups clustered by cross-posting based on Jaccard coefficient. A thin edge
indicates a similarity of over 0.1, and a thick edge of over 0.2. In the center there are distinct
clusters for local U.S. politics groups and the main alt.politics groups. On the left are
topical groups for issues and some political philosophies, and on the right are clusters for local
Canadian groups and for other English-speaking countries. Otherwise, groups sharing language
or physical borders tend to group together.

greater than 0.10, and a thick edge similarity greater than 0.20. There are some interesting groups
forming: the large cluster on the right includes most of the Canada local groups joined with thick
edges. Notably, the group qc.politique was missing. We found that it actually had a higher
similarity with fr.politique than with any of the other Canadian groups, likely due to lan-
guage. Also joined to the Canada cluster (green) are other general politics groups for English
speaking countries, such as the U.K., Australia, and New Zealand. In the center there is a cluster
largely devoted to the U.S., with most of the regional and statewide groups on the bottom (blue).
There is a surprising rate of cross-posts in this area; however, some of the less-well-connected re-
gional groups tend to be connected in an intuitive manner: for instance, sdnet.politics (San
Diego, Cali.) and ba.politics (Bay-Area, Cali.) are connected, and houston.politics,
dfw.politics, and austin.politics, three groups for major cities in the state of Texas,
along with tx.politics, form a clique. Above the local-U.S. cluster (in red) is a cluster of
most of the alt.politics.* hierarchy; cross-posting is very high among these groups. To
the left is a fourth cluster (yellow), mainly centered around topical groups such as guns, drugs,
or specific political philosophies, with fairly intuitive connectedness. Otherwise, groups joined
by language or physical borders tend to cluster together. Groups focused on Sweden, Taiwan,
Norway, Hong Kong/China, and Netherlands/Belgium are related. About half of the groups are
not shown, as they had no edges above the threshold.

We also measured similarity based on Jaccard coefficient of the author participation in each
newsgroup, where similarity is the ratio of the size of the intersection of authors in each group
to the union of authors (in the same manner we assessed cross-posts). Here we thresholded
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edges at an coefficient of 0.2, thick edges at 0.3, which resulted in about half of the groups being
connected to at least one other group. The visualization is omitted for space; however, we found
that the structure formed similar clusters to those in Fig. A.2.

Next we will study patterns of diffusion, exploring whether similarity leads to more informa-
tion flow. We do this by providing a method of assigning cross-posts to groups.

A.3 Proposed thread ownership method
In the previous section we completed a multi-scale analysis of the Usenet sample, both contrast-
ing differences between the groups and clustering them based on similarity measures. We next
analyze threads themselves, particularly focusing on how threads move between groups. Often
times even when a thread is initially posted to one or a few groups, it may be later cross-posted
to others. The thread may be picked up by the new groups, but even if members in the old groups
are no longer interested in the discussion (or never were), people in other groups may still cross-
post to that group (the “reply-to-all” effect). Therefore, as we describe the interactions we try to
consider when we can truly consider a discussion as occurring in a given group. To that end, we
propose a measure of ownership for authors and for articles, and show how it aids in studying
diffusion patterns.

A.3.1 Post ownership
Since nearly half of all posts are cross-posted, it is difficult to assign ownership from articles
alone. However, based on the authors’ posting patterns, we can often discern where their loyal-
ties lie, so to speak. If an author usually posts into g1 and only occasionally cross-posts into both
g1 and g2, then it is a safe assumption that posts written by that author “belong” to g1. To aid in
formalization, we define the following expressions:

Author-group activity, act(a, g) is defined as the percent of author a’s posts that are posted
into group g. These may be cross-posted, so

∑
g act(a, g) ≥ 1.

While this may give a realistic distribution of where an author is cross-posting, we feel that
in order to capture whether an author truly considers himself a member of a group, we need to
determine where that author is writing unique posts, because many cross-posts are unintentional
“reply-to-alls.” Therefore, we define Author-group devotion, dev(a, g), as the percent of author
a’s posts that are only posted into group g, and not cross-posted into any other groups. Therefore,
0 ≤ ∑g dev(a, g) ≤ 1. From there, we can define a group gi’s degree of ownership of a post,
based on how devoted the post’s author is to the groups it is posted into.

own(gi, p) =
dev(a(p), gi)∑

gj |p∈gj dev(a(p), gj)

A simple extension gives us the ownership of a set P of posts, taking the mean of the own-
ership of each post. One can apply this ownership score to the set of all posts that have oc-
curred, whether uniquely or as a cross-post, into a group2. In this manner we have aggregated

2For some posts dev(a(p), g) is 0 for all groups in question. This is a relatively rare occurrence, particularly on
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ownership for posts and devotedness scores for authors. We find that some groups “own” a
large amount of their posts, while others have much sparser relative ownership. For instance,
fr.soc.politique has a ratio of 0.92 while alt.politics.bush has an aggregate owner-
ship score of 0.56: so under this score, alt.politics.bush actually has less activity. Some
groups had even lower ratios of ownership; for example, tw.bbs.soc.politics.kmt’s was
around 0.003.

We illustrate the importance of ownership using an example. In Fig. A.3, we show a con-
versation cross-posted to several groups, and then label each node with the group that the author
most “belongs” to (based on highest ownership). The original article, “Kiss the national parks
goodbye,” was cross-posted to several large newsgroups, including talk.politics.misc and
alt.politics. The second node from the left on the second level was a reply to that post,
which was cross-posted to talk.politics.misc, seattle. politics, or.politics,
and a few other local politics groups. According to our ownership rules, the bulk of the thread was
made by authors that mainly posted to seattle.politics (16,000 members, marked in green)
and or.politics (10,000 members, blue). Authors posting primarily onto talk.politics.misc
(a much larger group, with over 50,000 participants) are marked in red. Even though nearly all
of the posts were cross-posted to talk.politics.misc, few of the “devoted authors” of that
group participated. Considering the subject line, it is not surprising that such a subject would
appeal more to members of groups in the Pacific Northwest, which has a higher concentration of
national parks.

The largest thread was over 9000 posts, occurring in major alt.politics subgroups and
talk.politics.misc, and focused on the 2004 election. It was cross-posted to 38 groups
during its tenure, yet, 85% of ownership was concentrated in three groups.

A.3.2 The effects of cross-posting on threads in groups

Once we have established which groups dominate conversation for a given thread, we can de-
velop a better understanding of how cross-posting affects how well-received a thread becomes
inside a group. We can start to answer the questions: How does cross-posting affect a conver-
sation? Does a conversation pick up when cross posted, or die off? How does a thread fare if
it begins in a group, compared to when it begins elsewhere? To assess whether cross-posting
helps or hurts activity in groups, we can divide conversations happening in a group gi into the
following four categories:

1. An article is initially posted to gi and never cross-posted to other groups in our data set.
(No X-post)

2. An article is initially cross-posted both to gi and another group in the data set. (Initial
X-post)

3. An article is initially posted to gi and, later in the conversation, a reply is cross-posted to a
different group. (Late X-post, original group)

4. An article is initially posted to another group, and later in the conversation debuts in gi.
(Late X-post, late group)

the thread level.
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Figure A.3: An example of a thread that is posted into several groups but is “owned” by a very
small number. It is described in detail in the text. While the original article was cross-posted
to several large newsgroups, including talk.politics.misc and alt.politics, most of
the posts are from authors who primarily make their non-cross-posts into or.politics and
seattle.politics.

To compare these cases, we took the ownership of the set of posts in the thread. (In the fourth
case this means taking the ownership of all posts below the point in the conversation where gi
appears). In Fig. A.4, we show the distribution of thread sizes, for the different “types.” All types
follow a heavy-tailed distribution. However, it is clear that most of the largest threads are of the
“late-cross-posting” type. Furthermore, there is not much difference in overall thread size for
threads with no cross-posts and those that are only initially cross-posted to multiple groups, so
simply the act of cross-posting may often be associated with spam.

We recognize that there is some correlation between natural thread size and type (by defi-
nition, threads of type 3 and 4 must be at least of size 2, for instance). We can make a better
assessment by instead examining what happens not simply to the thread overall, but what hap-
pens within each group. If we measure the cascade size based on ownership for a given group,
we can more confidently state whether the act of cross-posting induces conversation. In doing
this, we find that Type 4 threads do indeed have more activity. We are only measuring the size
below the point where it reaches the group, making it a comparable measure to types 1 and 2. The
resultant PDF is shown in Fig. A.4, normalized as there are relatively few Type 4 occurrences.

In other words, mass initial cross-posting does not lead to high activity within any given
group. However, if somewhere in a thread an author decides it is relevant to group gi and cross-
posts, then gi tends to gain more activity than it would for a post that was not cross-posted at all.
Perhaps this is indicative of authors “discovering” threads that are relevant to a given group, and
“recommending” these threads to the group by cross-posting their replies. Indeed, we find that
for cases where a post is later cross-posted to a new group, about half the time the person who
introduces the post is “devoted” to both the old group and the new group.
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Figure A.4: Top: Histogram of thread sizes, where each thread is either never cross-posted,
cross-posted only at the root, or cross-posted later. Most of the largest threads tend to have
late-occurring cross-posts. Bottom: PDF distribution for per-group thread ownership. Here,
threads are double-counted for each group they appear in. however, posts are divided amongst
the groups such that each post is only counted once. For the first two types, a higher proportion
of the probability mass is concentrated in less activity, while late cross-posting leads to higher
activity in the new groups.

One example of this phenomenon occurs in a thread with subject line “The truth about British
Racism & Imperialism.” It begins by being cross-posted to alt.politics.british and
uk.politics.misc. At one point in the conversation, one author replies saying “If you can
be Scottish and British, why not Asian and Scottish?” A second author, who we have labeled as
most “devoted” to scot.politics, then posts “Why not be Asian and Scottish? Most Asian
people in Scotland consider themselves to be both.” In the process of replying the author also
sends the reply to scot.politics. At that point, there is an explosion of conversation; in fact,
we find that 79 percent of the conversation occurs below this point, and largely among authors in
scot.politics. We show a diagram of the conversation in Fig. A.3.2, emphasizing the point
at which the late cross-posting occurs. Taking into account this mechanism of “discovery,” we
next assess diffusion in terms of thread ownership.

A.4 Applications of post ownership
Next, we propose applications of our method, including a way of measuring diffusion and a way
of measuring group similarity.

A.4.1 Information flow based on post ownership

Without an idea of where posts are truly occurring, measuring how information flows across
groups becomes difficult to assess. If a parent post pp is cross-posted to g1, g2, g3, and an author
then replies to it by adding a child post pc into g4, how does one assess where the new author
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Figure A.5: An example of a thread that is first posted to alt.politics.british and
uk.politics.misc, but later is cross-posted into scot.politics. At the point which the
third group is added (denoted by a large black square node), the conversation takes off, and 79
percent of all nodes occur below that point. scot.politics-owned posts are marked in black.

read the original post; that is, which group influenced her to form edge epc?
The goal is to find an influence measure for any two groups, based on a given edge, which we

can extend to the entire set of threads. We would like a score Inflepc(gp, gc) for each possible
pair of groups. Without ownership information, one might assign the influence as a distribution
from all of pp’s groups and all of pc’s groups. For each pair,

SimpleInflepc(gp, gc) =
1

|(gk|pp ∈ gk)|
∗ 1

|(gl|pc ∈ gl)|
Under this case, since there are three groups in the parent post, and one in the child post,

SimpleInflepc(g1, g4) = 1
3
. To get an influence score between two groups over an entire group of

threads, one would simply sum the influence scores for each pair of parent-child posts. However,
this measure has shortcomings: it ignores the fact that some cross-posting may be meaningless
to authors who post only to a certain group. Therefore, we introduce ownership. We may decide
to assign influence based on how devoted the parent post’s author, a(pp), and the child post’s
author, a(pc), are to each group. The score for any pair of groups (gp, gc|pp ∈ gp, pc ∈ gc) is
then:

OwnInflepc(gp, gc) = dev(a(, gi) ∗ dev(a, gj)

Still, we would like to take it a step further, to answer the question, How often do authors in
gc respond to a post they first saw in gp?. One would then measure not gp’s influence based on
the parent distribution, but rather the child author’s distribution:

ChildOwnInflepc(gi, gj) = dev(a, gi) ∗ dev(a, gj)

These three potential measures allow us to attribute influence over the entire set of threads. Sum-
ming over each epc where an edge is a reply, and normalized based on the “influencees” we can
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get a total score of influence from each group to another. Under SimpleInfl, we find that a slim
majority of the mass (57%) is along the diagonal of the adjacency matrix. By using OwnInfl,
attributing the flow from an ownership distribution of the parent post, into an ownership distri-
bution of the child’s post, 67% of the mass is along the diagonal. Taking it a step further, by
attributing influence based only on the newer author, under ChildOwnInfl, 85%. This would
seem the most intuitive measure of influence, as one would expect most influence to occur within
a group.

Based on the third measure we can claim that perhaps 15% of the time, information
is traveling from one newsgroup to another. Which groups are responsible? Based on
ChildOwnInfl, we found that the most influential were often the ones with the largest mass,
such as alt.politics.bush and alt.politics, but were more often simply the larger
groups in a cluster, such as can.politics in the Canadian groups, seattle.politics in
the local US groups, or talk.politics.guns for topical groups. The following edges had the
highest influence scores:

Influencer Influencee
swnet.politik se.politik.diverse
de.soc.politik.miscbln.politik.rassismus
can.politics man.politics
can.politics ab.politics
can.politics bc.politics
can.politics ont.politics
uk.politics.misc uk.politics.constitution
uk.politics.misc uk.politics.parliament
talk.politics.drugsuk.politics.drugs

A.4.2 Group similarity based on shared “devoted” authors and shared
posts

This new framework of ownership brings previous measures of group similarity into a new light.
We can re-assess group similarity based on “devoted” authors. By redefining group membership
from “any member who posts into a group” into “any member who, at some point, single-posts
into a group,” and then taking the Jaccard coefficient, we paint a different picture of which
groups truly share members. Naturally, the similarity scores are lower. One can also build a
network using similarity of shared ownership of posts: a post is shared between two groups
if dev(a(p), gi) > 0 for both groups. While the general structure is similar, there are a few
interesting differences. For example, the devoted-author network has a much more distinct divide
in the local U.S. groups; with a couple of exceptions, the groups appear to be neatly divided
between cities/states on either side of the Mississippi River (see Fig. A.6).

A.5 Contributions

Our contributions in this case study are the following:

• We compare structures of different politically-oriented Usenet groups. We find superlinear
behavior between the number of authors and number of edges (similar to “densification”
discussed in Section 2.1, only using snapshots of several different groups).
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Figure A.6: Similarity based on devoted authors, focusing on the local US groups. A thin edge
represents a Jaccard coefficient of ≥ 0.08, and a thick edge ≥ 0.1.

• We show that degree distribution and reciprocity vary widely across groups, even though
each group may discuss many of the same topics and have overlapping membership.

• We are among the first to deeply study cross posting behavior in online groups. We show
that cross-posting may lend insight into which groups are most similar (without requiring
heavy text analysis!).

• We propose a post ownership method to help demystify which groups find a cross-post
most interesting.

• We use our post ownership model to infer diffusion between groups, and to improve upon
our similarity measures.

While cross-posting aids in analyzing similarity between groups, when it comes to assessing
relevance within groups, cross-posting becomes a barrier to understanding. Therefore, we have
proposed an ownership measure, which assigns posts in a thread to groups based on how “de-
voted” the post authors are to the various groups. Our ownership measure is an excellent tool for
many applications in data analysis. By assigning ownership of posts to groups, we observed how
threads evolved as cross-posts occurred. By looking at different “types” of cross-posting activity,
we demonstrated that while cross-posting, when initially in a thread, does not lead to more activ-
ity, a cross-post that occurs later in the thread is correlated with higher activity. Furthermore, we
were able to create an influence measure between groups, based on the ownership of parent and
child threads. These experiments in cross-posting activity that examine the devoted authors and
activity in groups are particularly relevant, as identifying individuals who are devoted to multiple
groups serves to better understand how information is transferred across social group boundaries.
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Appendix B

Case study in blogs:
Labeling blogs using cascade features

PROBLEM STATEMENT: Can we use cascade features to cluster blogs by genre, or to
characterize a certain blog?

We use a method known as principal component analysis to cluster blogs. PCA is defined
as follows. Given many vectors in D-dimensional space, how can visualize them, when the
dimensionality D is high? This is exactly where Principal Component Analysis (PCA) helps.
PCA will find the optimal 2-dimensional plane to project the data points, maintaining the pair-
wise distances as best as possible. PCA is even more powerful than that: it can give us a sorted
list of directions (“principal components”) on which we can project. See [113] or [126] for more
details.

B.1 Clustering blogs by CASCADETYPE

Our first experiments involved performing PCA on a large, sparse matrix where rows represented
blogs and columns represented different types, or shapes, of cascades (shapes, such as those
shown in Figure 6.4 on page 71). Each entry was a count, and in order to reduce the variance,
we took the log of each count. Our dataset consisted of 44, 791 blogs with 8, 965 cascade types.

It was of interest to impose social networks upon the blogs, based on what topics the blogs
tended to focus on. We hand-classified a sample of the blogs in the ICWSM data by topic, and
found that we could often separate communities based on this analysis. For the purposes of
visualization we chose to focus on two of the larger communities, politically conservative blogs
and “humorous” blogs (such as blogs for different web-comics and humorists). Figure B.1(a)
shows these blogs plotted on the first two principal components, and Figure B.1(b) shows them
plotted on the second and third principal components. Ovals are drawn around the main clusters.
We notice a distinct separation between the conservative community and the humor community;
this means that the two communities engage in very different conversation patterns.

Based on our CASCADETYPE analysis, we make the following observations:
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Figure B.1: Principal components for blogs by CASCADETYPE labeled by topic. PC’s were
generated by analyzing a matrix of blogs by counts of cascade types. Note that there is a clear
separation between conservative blogs (represented by red crosses), and humorous blogs (repre-
sented with by circles), both on axes of the first and second PC (a), and on axes of the second
and third PC (b). Ovals indicate the main clusters

Observation B.1.1 Communities often cluster around the same types of cascades, with distinct
conversation patterns.

It seems that conservative blogs and the “humorous” blogs form separate clusters. We believe this
is the case because conservative blogs tend to form deep, chainlike graphs whereas the humorous
blogs form stars. Some similar observations may be made for other communities; we used these
two because they were the most distinct. This result shows that blog communities tend to follow
different linking patterns. We believe that by looking at a blog’s cascade types that one can better
make inferences about what community a blog might belong to.

Observation B.1.2 The number of trivial cascades that a blog participates in (that is, its number
of solitary posts with no in- or out-links) may be a key indicator of its community.

Removing the trivial cascades caused the clusters to become less clear, which indicates that these
trivial cascades still play a significant role in the inferences one can make about that blog.

B.2 Clustering based on post features
We next sought to find how posts themselves behave. In order to do this, we performed PCA on
a 6-column matrix. Each row represented a post, while the columns were as follows:
• Number of inlinks
• Number of outlinks
• Conversation mass upwards
• Conversation mass downwards
• Depth upwards
• Depth downwards

There were 6, 666, 188 posts in the dataset. When we ran PCA, we found that the major two
components that determined the blog’s place in this space were conversation mass upwards and
downwards. Therefore, we also plotted the posts on the two axes of conversation mass upwards
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Figure B.2: Conversation mass for posts, an aspect of POSTFEATURES6. The top figure shows
the Dlisted and MichelleMalkin clusters superimposed over points for all posts. The next two
show the clusters separately, superimposed on all blog points for reference. Ovals are drawn
around the main clusters. Note that while there is overlap between posts features of two blogs,
they have different centers. This tells us that different blogs maintain different means and vari-
ances in conversation masses

and conversation mass downwards (See Figure B.2. To illustrate, we have plotted all posts, with
special markers for two distinct popular blogs, Dlisted 1 and MichelleMalkin 2. We have circled
the main clusters in the plots. Notice that while Dlisted and MichelleMalkin points overlap, their
clusters are centered differently. The mean and variance of these clusters can serve as another
viewpoint into the profile of a blog.

Our POSTFEATURES6 analysis provided us the following observation:

Observation B.2.1 Posts within a blog tend to take on common network characteristics, which
may serve as another means of classification.

Individual posting patterns may serve as another way of clustering blogs, because different blogs
maintain different posting patterns.

B.3 Contributions

These findings have potential applications in many areas. One could argue that the conversation
mass metric, defined as the total number of posts in all conversation trees below the point in
which the blogger contributed, summed over all conversation trees in which the blogger appears,
is a better proxy for measuring influence. This metric captures the mass of the total conversation
generated by a blogger, while number of in-links captures only direct responses to the blogger’s
posts.

For example, we found that BoingBoing, which a very popular blog about amusing things, is
engaged in many cascades. Actually, 85% of all BoingBoing posts were cascade initiators. The
cascades generally did not spread very far but were wide (e.g., G10 and G14 in Fig. 6.4). On the

1dlisted.blogspot.com, a celebrity gossip blog.
2www.MichelleMalkin.com, a politically conservative blog.
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other hand 53% of posts from a political blog MichelleMalkin were cascade initiators. But the
cascade here were deeper and generally larger (e.g., G117 in Fig. 6.4) than those of BoingBoing.

In summary, our contributions here are:
• We propose using PCA to cluster blogs based on the cascade shapes (CASCADETYPE)

appearing. We show that this will successfully separate “humorous” blogs from “politically
conservative” blogs.

• We design POSTFEATURES6 to characterize blogs based on their influence in cascades,
and show that some blogs have much more varied cascade behavior than others (e.g.
MichelleMalkin vs. DListed).
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Appendix C

List of publications

Part I: Topology and formation of networks
• M. McGlohon, L. Akoglu, and C. Faloutsos. Weighted Graphs and Disconnected Compo-

nents: Patterns and a Generator. SIG-KDD Las Vegas, Nev., August 2008.
• L. Akoglu. M. McGlohon, and C. Faloutsos. RTM: Laws and a Recursive Generator for

Weighted Time-Evolving Graphs. ICDM IEEE Int’l Conference on Data Mining Pisa,
Italy, Dec. 2008

• U Kang, M. McGlohon, L. Akoglu, and C. Faloutsos. Patterns on the Connected Compo-
nents of Terabyte-Scale Graphs. Under review.

Part II: Conversation patterns in networks
• M. McGlohon, J. Leskovec, C. Faloutsos, N. Glance, and M. Hurst. Finding patterns in

blog shapes and blog evolution. International Conference on Weblogs and Social Media.
Boulder, Colo., March 2007. January 2007.

• J. Leskovec, J, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst. Patterns of Cascad-
ing Behavior in Large Blog Graphs. Society of Industrial and Applied Mathematics- Data
Mining. Minneapolis, Minn., April 2007.

• R. Kumar, M. Mahdian, M. McGlohon. Dynamics of Conversations SIG-KDD. Washing-
ton DC, July 2010.

• M. Goetz, J. Leskovec, M. McGlohon, and C. Faloutsos. Modeling Blog Dynamics. In-
ternational Conference on Weblogs and Social Media (ICWSM09). San Jose, Cali. May
2009.

Part III: Network effects in action
• L. Akoglu, M, McGlohon, C. Faloutsos. OddBall: Spotting Anomalies in Weighted

Graphs. The 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining,
Hyderabad, India, June 2010. (Chapter 8)

• M. McGlohon, S. Bay, M. Anderle, D. Steier, and C. Faloutsos. SNARE: A Link Ana-
lytic System for Graph Labeling and Risk Detection SIG-KDD Paris, France. June 2009.
(Chapter 9)

• M. McGlohon, N. Glance, and Z. Reiter. Star Quality: Aggregating Reviews to Rank Prod-
ucts and Merchants. International Conference on Weblogs and Social Media (ICWSM10),
Washington DC, May 2010. (Chapter 10)
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Appendices
• M. McGlohon and M. Hurst. Community Structure and Information Flow in Usenet: Im-

proving analysis with a thread ownership model. International Conference on Weblogs
and Social Media (ICWSM09). San Jose, Calif. May 2009.

• M. McGlohon and M. Hurst. Considering the Sources: Comparing linking patterns in
Usenet and blogs. International Conference on Weblogs and Social Media (ICWSM09).
San Jose, Calif. May 2009.
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