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Bifurcating DNS Thresholds in a Model of
Organizational Bridge Building *

Jonathan P. Caulkins!  Gustav Feichtinger! — Dieter Grasst®
and Gernot Tragler

Abstract

A simple optimal control model is introduced, where “bridge building”
positions are rewarded. The optimal solutions can be classified in regards
of the two extern parameters, (1) costs for the control staying at such
an exposed position and (2) the discount rate. A complete analytical
description of the bifurcation lines in parameter space is derived, which
separates regions with different optimal behavior. These are resisting the
influence from inner and outer forces, always fall off from the boundaries
or decide based on one’s initial state. This latter case gives rise to the
emergence of so-called Dechert-Nishimura-Skiba (DNS) points describing
optimal solution strategies. Furthermore the bifurcation from a single
DNS point into two DNS points has been analyzed in parameter space.
All these strategies have a funded interpretation within the limits of the
model.
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1 Introduction

Connectors that tie together disparate objects are often under stress, but they
are crucially important, whether the objects are physical or social. Welding
joints and metal fasteners are common failure points in mechanical structures,
and they are appropriately the focus of design effort. Social networks can be
similar.

People who straddle two groups or organizations may be pulled in compet-
ing directions, but they can also exploit their position to control information
flows and create value. E. g. , they can market their home organization to the
outside world and serve as a conduit for ideas and information flowing into the
organization from the outside. It takes effort to maintain connections with di-
verse audiences; it is usually easier to establish relationships with people who
are similar and to maintain relationships with people one sees routinely than to
do so with outsiders. Yet people who manage to be bridge builders are rewarded
for their special position.

Social network researchers have found that being “in the middle” of an orga-
nization (known as “centrality”) confers advantages, including power (Refs. Krack-
hardt, 1990; Brass and Burkhardt, 1992). They distinguish among (at least)
three types of centrality (Ref. Freeman, 1979). “Degree centrality” refers to
the number of people to whom one is connected. “Closeness” is self-explanatory;
individuals connected to many others by relatively direct paths, with few inter-
mediaries, score high on closeness measures. “Betweenness” centrality refers to

the extent to which an actor falls between pairs of other actors on the shortest



paths (geodesics) connecting them.

The focus here is on betweenness. Its value is intuitive. If one person is the
sole connection between two others, that intermediary has unique bargaining
power with respect to any beneficial exchanges among those so connected. In
effect, he or she has a monopoly over brokerage services between those pow-
ers. When the intermediary connects not just individuals but distinct groups
each with multiple internal connections but with no overlap between groups the
bridging person benefits all the more.

This idea is at least as old as Medieval Venice profiting by connecting West-
ern Europe with the Orient, but in modern social network theory it is closely
associated with Mark Granovetter’s classic (Ref. Granovetter, 1973) article on
“The Strength of Weak Ties.” Subsequent authors e.g., (Ref. Burt, 1992) have
argued that the key is not that the ties are weak, but that they be nonredundant
“information bridges” that overcome “structural holes” in the organizational
network. “Information benefits are expected to travel over all bridges, strong or
weak. ... The task for a strategic player building an efficient-effective network is
to focus resources on the maintenance of bridge ties.” (Ref. Burt, 1992, p. 75)

This paper introduces a very simple model that reflects the challenges and
benefits of building bridges by standing at the edge of one’s home organization
and reaching out to the external world. It describes when various professional
strategies are preferred as a function of one’s level of patience (discount rate) and
the cost of adjusting one’s social position. For many sets of parameter values,

the solution is characterized by so-called Dechert-Nishimura-Skiba (DNS) points



(Refs. Dechert and Nishimura, 1983; Skiba, 1978). At such points the decision
maker is indifferent which policy to choose as there exist at least two optimal
policies which are equally optimal. In particular, as the rate of time preference
varies, a single DNS point bifurcates into two, a phenomenon not previously

observed in applied models of this sort.

2 The Model

Consider an individual who holds a position vis a vis an organization. The or-
ganization is abstracted as a all of unit radius where distance from the origin
measures the number of connections (“ties”) the individual maintains with peo-
ple outside of the organization relative to ties to people within the organization.
So the origin represents being fully inward looking, immersed in one’s own orga-
nization. The effort-minimizing path is for individuals within the organization
to interact with and build relationships with others within the organization and
for people outside the organization to interact with and build relationships with
others outside the organization. So, in the absence of conscious effort, people
outside the organization will tend to lose touch with what the organization is
doing and people inside the organization will become more and more inwardly
focused, (cf. Ref. DeGroot, 1974).

In such circumstances, organizations can become too incestuous, recycling
ideas that were “invented here” and overlooking developments in the wider

world. So it can be valuable for some people to stand at the “edge” of the or-



ganization, connected to it but also strategically positioned as a bridge between
the organization and the outside world.

For simplicity, assume the individual optimizing his or her position vis a
vis the organization does so along a single dimension x. Generalizations to
multiple dimensions would be of interest, but even this one-dimensional case
proves insightful. Let the origin denote the “center” of the organization on this
dimension and -1 and 1 denote its boundaries. As a further simplification, we
will consider here a case in which the organization is symmetric about its center
of gravity, but asymmetric cases could also be considered.

Our model of the natural evolution of social interaction is that the bound-
ary is unstable. People within the organization gravitate toward its center.
Those outside it are drawn toward other organizations and activities. Thus, the

uncontrolled state dynamics might be take a form such as:

j::m3—x7

so © = 0 at both boundaries, the state converges toward the origin for |z| < 1,
and it diverges for |z| > 1.

The individual can modify this trajectory in either direction by exerting some
effort, denoted by the control variable v. It is conventional to assume that costs
are a convex function of effort, and we will assume a quadratic dependence for
simplicity. Ideally the individual would like to stand on the boundary between
the organization and the outside world. We presume no distinctive benefit to
being on the left-hand boundary vs. the right-hand boundary, but do assume

that it is better for an individual to be a little too “close” to his or her own



organization than a little too far. That is, we are imagining a situation in which
the individual is an “employee” or otherwise receives compensation from the
organization that is centered at the origin, so the individual is better off being
“inside” the organization’s boundary rather than a similar distance outside the
boundary. Perhaps the simplest cost function satisfying these considerations is

(22 — 1)2, so our overall optimization problem becomes

v

min/ exp(—rt) ((mQ - 1)2 + 01/2) dt
0

3

s.t. t=z—x+v (1)

where 7 is the individual’s discount rate, and c is a positive constant reflecting

the cost of adjusting one’s position.

3 Analysis of the Model

To solve this problem by applying Pontryagin’s minimum principle (see, e.g.,
Refs. Feichtinger and Hartl, 1986; Leonard and Long, 1992) we consider the

current value Hamiltonian
H:(x2—1)2+cy2+)\(m3—x—|—u), (2)

where A denotes the co-state variable in current value terms.
Following the standard methods of optimal control theory we derive the

necessary optimality condition

v* = arg myin H, (3)



which implies

A= 2cv & v=-)\2, 4)

by setting H,, = 0.
Since the Legendre-Clebsch condition H,,, = 2¢ > 0 is satisfied the continuity
and uniqueness of the minimizing control v* along an optimal path is assured.

Furthermore, the co-state equation is given by
/'\:r)\—HxZ/\(l—sz—i—r)—4x(x2—1). (5)
Considering Eq. 4 we derive the differential equation for the control variable v
v=v(l-32"+r)+2z/c(z®—1). (6)

The state equation Eq. 1 and the adjoint equation Eq. 5, where v is given by the
Hamiltonian minimizing condition Eq. 4, yield the canonical system as necessary

optimality conditions for our control problem.

3.1 Regions of Stability Properties and Bifurcations

We next examine the steady states of the canonical system as functions of
its two parameters r and ¢ and determine their stability properties. As we
can see in Fig. 1, the parameter space is divided into five main regions, with
different numbers of steady states and different stability properties. (See also
Tab. 1.) The exact computations of the steady states and their properties for
these regions can be found in Appendices A and B, respectively. The origin and
the boundary states +1 are always steady states. The steady states at +1 are

referred to as boundary steady states. One additional pair of steady states can



emerge. These additional steady states are between the origin and the boundary
steady states when the boundary steady states are saddles; otherwise they are
outside the boundary steady states.

These five regions are divided by bifurcation lines. (See Fig. 1.) Crossing
these curves can mean a change in the system’s dynamic or optimal behav-
ior. New equilibria can emerge while others disappear or change their stability
properties. As the possibility of such limiting cases is zero, they are of no vital
importance for applications, but they nevertheless give insight into the math-
ematical formulations of radical changes in the model behavior as parameters
vary. While finding explicit formulae for the bifurcation lines was not surprising
it was furthermore also possible to numerically calculate the heteroclinic bifur-
cation line u. Whereas changes in the model’s dynamic behavior can take place
at the other bifurcation lines, a change in the model’s optimal behavior is given

at the continuous policy line ¢ and the heteroclinic bifurcation line p.

Region 1

For parameters lying in Region I the only steady states are at the origin and
at the boundaries +1. While the origin is an unstable focus the boundaries are
saddles, and the region is delimited by the positive r and ¢ axes and the curve

(labeled «) defined by ¢ = 8/(r + 2)2.



Region 11

The only difference between Region I and Region II is the nature of the steady
state at the origin, which in this case is an unstable node. As can be expected,
there is an intermediate state of the origin at line a;, where the origin becomes
a degenerate node.

Region II is bounded by the line « and bifurcation line 3, defined by ¢ =

2/(r+1).

Region III

Region IIT has five equilibria. The unstable node at the origin trifurcates into
a saddle at the origin and two unstable nodes, while the boundary equilibria
remain saddles. Moving from Region II to Region III, bifurcation line 3 has to
be crossed. As the origin trifurcates into a saddle and two unstable nodes we
have the important case of a pitchfork bifurcation. As an intermediate state
the origin becomes a degenerate fixed point. Its importance is indicated by
the change in the optimal solution strategy as will be investigated in the next
section.

Region III lies between the curves 3,§ and -y, where the exact formulae for

the latter is derived in Appendix B.

Region IV

Moving to Region IV the equilibria lying between the origin and the boundary

equilibria, mutate from unstable nodes (Region III) to unstable foci. The prop-



erties of the other equilibria remain unchanged. The bifurcation line ~ forms
the boundary of this region, and the inner equilibria become degenerate nodes

when crossing this curve.

Region V

While the saddle at the origin does not change in Region V, the boundary
equilibria become unstable nodes and the other pair of equlibria, now outside the
boundary, change from unstable nodes to saddles, which is called a transcritical
bifurcation. The curve labeled § defined by ¢ = 2/(r — 2) delimits Region V.
At curve § a substantial change in the boundary equilibria takes place. Below
this curve they were saddles. As parameter ¢ increases, approaching ¢ from be-
low, the equilibria lying inside the boundary approach the boundary equilibria,
until they collide with the outer equilibria at the bifurcation line §. The colli-
sion of the equilibria produces degenerate fixed points at the boundary. Moving
on into Region V leaves unstable nodes behind at the boundary, whereas the
former inner equilibria lie now outside the boundary and become saddles. This

change has a considerable effect on the optimal solution. (See 3.2).

Bifurcation line y and line ¢

While the bifurcation lines mentioned so far separate regions with different
properties and/or number of equilibria the heteroclinic bifurcation line y and
continuous policy line ¢ lie inside such regions. Where the term continuous

policy line denotes the fact that crossing this curve the optimal control at the
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DNS point becomes (dis)continuous. Both of them have been computed numer-
ically, considering the behavior of the corresponding stable manifolds. These
calculations give rise to the conjunction a heteroclinic bifurcation occurs, where
two equilibria previously not connected by any orbit are now connected by a
so called heteroclinic orbit (see cf. Ref. Guckenheimer and Holmes, 1983). In-
vestigating such heteroclinic bifurcations is very interesting as they may give
rise to DNS points (see Ref. Wagener, 2003), which is the case for our model.
Crossing bifurcation line p produces a dramatic change for the global optimal
policy. Line ( separates regions with only a slightly different local optimal be-
havior, viz the continuity of the optimal policy at the occuring unstable nodes.
In contrast, when crossing the part of ( lying in Region II, the optimal behavior
at the origin changes, while for the part lying in Region III the inner equilibria

are affected.

3.2 Optimal Strategies

Having analyzed the dynamic systems in terms of equilibria and their properties,
we next explore when various strategies are optimal. It turns out that there are
essentially three strategies that may be optimal depending on the values of
parameters r and ¢: (A) move to the boundary (£1), (B) (almost) always fall
off from the boundary to the origin or a state outside the boundaries, and (C)
move either to the origin or the boundaries depending on one’s initial position.

Strictly speaking it is not possible to give a theoretical argument that the

extremals satisfying the necessary optimal conditions are really the unique opti-
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mal solutions of the problem. The convexity of the Hamiltonian in regard of the
control v alone is not strong enough to ensure global optimality of the extremal
solution.

Nevertheless for the occurring saddles it can analytically be shown, via the
Riccati differential equation (Ref. Maurer and Pickenhain, 1995), that they are
at least locally optimal. The same holds true for the saddlepaths, whereas in
this case the local optimality can only be shown numerically.

Summing up there is strong evidence for the global optimality of the ex-
tremals and it is consistent within the models interpretation. But as strong
evidence is no mathematical category one should, strictly speaking, only clas-
sify the optimal solutions as extremals. When we use the term optimal solution
after all, we do that for easier notational reasons and within the restrictions
I mentioned before. Hence we can speak about the stability of the optimal
solution, which are assumed to coincide with the calculated extremals.

The stability regions and bifurcation lines play an important role in defining
when the various strategies are optimal. Bifurcation line p in particular sepa-
rates regions with different optimal behavior but the same dynamic behavior. In
particular p separates stability Region IV into two subregions, with that falling
on the left of © denoted IVa, respectively, and that to the right denoted IVb. In
addition Region III is subdivided into three subregions by p and ¢, with Region
IITa to the left of line u, Region IIIb between p and line ¢, and Region IIlc to
the right of {.(See Appendix B for details.) So different strategies are optimal in

different parts of a single stability region (namely Regions II, IIT and IV), and

12



the same strategy may be optimal for different stability regions (e.g., Regions

I, ITa, Illa and IVa).

Strategy A: Always Move to the Boundary

In stability Regions I, Ila, I1la and IVa, it is always optimal to move to one
of the boundary states +1, depending only on the sign of the initial starting
position zg. That is for ¢ > 0 it is optimal to tend to state 1, while state -1 is
the long run optimal state for zy < 0. Only in the case when starting exactly at
g = 0 both options, moving to the left or right boundary, are equally optimal,
whereas staying at the origin would be more expensive and hence be suboptimal.
Therefore the origin is a so called DNS point (cf. Ref. Tragler et al., 2001). Note
that an infinitesimally small deviation from the starting position o = 0 leads to
a finite change in the optimal initial level of effort v, that is to say the optimal
policy is discontinuous at xo = 0.

Moving to the boundaries makes intuitive sense because in these regions
parameters r and/or ¢ are small. Clearly the boundary points are the most
advantageous points. If the discount rate is small (decision maker is far sighted)
and/or the cost of adjusting one’s position is low enough, it is always worth
investing the effort needed to reach one of these advantageous points.

Models with parameters r and c lying either exactly at p or in Region IIb
show slightly different optimal behavior at zo = 0. Moving to the boundary
continues to be optimal for starting positions g # 0, but if ¢ = 0 it is optimal

to remain at the origin. Moreover, deviating an infinitesimal distance from a

13



starting position at zg = 0 leads only to an infinitesimally small change in
the optimal initial level of effort v§. That is, the optimal policy is continuous
at xg = 0. This stands in contrast to the strategy described before, where
we observed a discontinuous optimal policy. The continuity of optimal policy
means moving to one of the boundaries optimally from xy ~ 0 involves only
an infinitesimally small exertion of effort and the cost for such a policy differs
only infinitesimally from that of staying at the origin. Furthermore, the starting
position zy = 0 is no longer a DNS point. But as the optimal policy left and
right of x( differs we denote such a point of continuous optimal policy DNS

threshold.

Strategy B: (Almost) Always Fall Off from the Boundary

Stability Region V represents the opposite case to strategy A. If the starting
position is exactly at the boundary, it is optimal to stay there. Otherwise,
parameters r and ¢ are large enough that if the decision maker deviates even
from the boundary, the decision maker is short-sighted to such a degree and the
costs of control are so high that the benefits of returning to the boundary are
not worth the effort. So for starting positions inside the boundary (|zo| < 1) it is
optimal to tend to the origin, while for starting positions outside the boundary
it is optimal to move to the equilibria outside the boundaries. The optimal
policy at the boundary equilibria is continuous and therefore starting exactly
at this equilibria means staying put. Therefore the long run optimal behavior

is sensitive to the exact initial starting position near the boundary equilibria.
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Strategy C: Move to the Origin if One Starts Nearby; Otherwise move

to the boundary

Regions ITIb and IVb present an intermediate case to some extent. If the decision
maker’s initial position is inside the boundary and close to the origin, then it is
optimal to move to the origin. But if the initial position is inside the boundaries
(Jzo| < 1) but farther from the origin, it is optimal to move out to a boundary,
specifically the closer one. In between there are points of indifference, one on
either side of the origin, from which the decision maker is equally happy moving
left or right. Note that the optimal policy is discontinuous at these points of
indifference (especially for Region IIIb, where the inner equilibria are unstable
nodes). Therefore these points of indifference are DNS points. If one starts
outside the boundaries returning to the boundaries is always worth the effort,
presumably because of the heavy penalty in the objective function for being
far from the boundary, and the cubic term in the state dynamics that tends to
drive states that are outside the boundary further away from the boundary at
an ever increasing rate.

Models with parameters r and ¢ lying in Region IIIc show a slightly different
optimal behavior at the inner equilibria (unstable nodes). In contrast to the
strategy considered before the optimal policy is continuous at these equilibria.
Hence staying at these points become optimal and they are no longer DNS

points but DNS thresholds.
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3.3 Change in Optimal Strategy As Parameters Vary

This section examines in more detail how the optimal strategy varies as one of

the two parameters in turn is increased.

Increasing r for Fixed Values of the Cost Parameter c

Figure 2 shows how the optimal solution changes for a given cost parameter c
as the discount rate parameter r increases, i.e., as the decision maker gets more
and more myopic. In particular, Figures 2a-d show phase portraits when ¢ = 2.5
and the discount rate parameter r is 0.2, 0.4, 2.5 and 3.5 respectively.

When ¢ = 2.5 and r is small it is always optimal to converge to a boundary,
specifically the closer one. If one starts at the origin moving left or right gener-
ates the same costs while remaining at the origin is more expensive. Therefore
a decision has to be made arbitrarily between moving to the left or right bound-
ary. (See Fig. 2a). This statement holds true for every parameter r and c lying
below bifurcation lines a or . Increasing r leads the stable manifolds of the
boundary equilibria at the v-axis to approach the origin, until the origin lies
precisely on the stable manifolds for » = 1/2.5. This is the case of a heteroclinic
orbit. For this hairline case the origin becomes a point with continuous optimal
policy at zg = 0. (See Fig. 2b). If r increases further the DNS point at the origin
bifurcates into two DNS points. Starting between these points moving to the
origin is optimal, while converging to the boundary is optimal for initial start-
ing positions outside the DNS points. This optimal behavior does not change

upon crossing bifurcation line -y, however the equilibria inside the boundaries
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change from unstable foci to unstable nodes and the inner equilibria become
points with a continuous policy function. (See Figs. 2c and 3d) Le. to the left
of p (in Region IVb) a decision maker - starting at the inner equilibria - should
choose (arbitrarily) to move left or right. To the right of u (in Region IIlc) a
decision maker should stay put. Letting r grow further, the equilibria inside the
boundaries move towards the boundary equilibria. Reaching bifurcation line §
these equilibria coincide leaving degenerate fixed points behind at +1. At this
limiting case the optimal behavior can only be analyzed with standard meth-
ods for initial starting positions inside the boundaries, where the optimal paths
converge to the boundary equilibria. For discounting rates r above bifurcation
line ¢ the optimal behavior changes dramatically. As the boundary equilibria
become unstable nodes, it is never optimal to converge to these equilibria. In-
stead the origin becomes optimal for every state starting inside the boundary,
while outside the boundaries the optimal solution paths converge to equilibria
with absolute state values greater than 1. (See Fig. 2d.)

For ¢ < 1 two other cases can occur as r increases. Letting e.g. ¢ = 0.8, a
small r implies optimal paths converging to the boundaries and xy = 0 becoming
a DNS point where the costs for moving to the left or to the right equilibria
are the same. Crossing bifurcation line o the optimal behavior at the origin
remains unchanged until bifurcation line ( is reached. As long as we are in
Region IT there is no change in the global optimal behavior as described in the
Sec. 3.1 for bifurcation line . But for starting positions at xg = 0 the possible

optimal solutions change. Below bifurcation line ( it is optimal to exert a finite
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initial effort v to move to the boundary. That means if the decision maker is
farsighted enough he or she accepts a higher initial effort and moves to one of
the boundaries. Getting more myopic the decision maker no longer invests in a
high initial effort, and staying at the origin becomes optimal. This is the case
when the Policy function at the origin becomes continuous as described in the
Sec. 3.2.

Increasing r further and crossing bifurcation line § the unstable node at the
origin trifurcates into two unstable nodes at the inner equilibria and a saddle at
the origin. For our choice of ¢ we get a continuous policy function at the unstable
nodes. Therefore if one starts near the origin, one returns to the origin. For
all initial starting positions outside the unstable nodes moving to the boundary
equilibria is worth the effort. While starting exactly at the unstable nodes,

means staying put.

Increasing c¢ for Fixed Values of the Discount Rate r

Figure 3 shows phase portraits when r = 0.8 and the cost parameter c is
0.5,1.05,1.15, and 2.5, respectively. When costs are low (¢ = 0.5; Fig. 3a)
starting left (right) from the origin it is optimal to move to the left (right)
boundary, while if starting at xg = 0 the decision maker can choose arbitrarily
between moving to the left or right boundary. As c increases further towards
the bifurcation line ¢, the initial level of effort v for starting positions deviating
only slightly from zy = 0, shrinks to 0, while the optimal behavior remains the

same as before. This is clear from the decision maker’s point of view as the
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effort is getting more and more costly. (See Fig. 3b.) Crossing u the stable
manifolds coincide at the origin and the difference in the initial level effort is 0.
Therefore the optimal policy becomes continuous at the origin and we achieve
the hairlinecase where staying at the origin becomes optimal. Crossing u the
region where moving towards the origin is optimal expands and two DNS points
appear. To the left (right) of the left (right) DNS point it is optimal to converge
to the left (right) equilibrium, while between the DNS points moving to the ori-
gin becomes optimal. Now the costs are so high that it is not worth moving to
the boundaries when starting near the origin. (See Fig. 3d.)

The cases described before characterize the behavior for all models with
r < 1, while two slight differences take place for » > 1, as can be explained
considering Fig. 1. Whereas p make up the limiting case for the emergence of
two DNS points for » < 1 the continuation of p (part of ¢ lying in region II)
only divides regions with different local optimal behavior at the origin for r > 1
as described in the Sec. 3.1. Increasing the costs c¢ leads to a shrinking gap
between the initial level effort 1 for starting positions on either side of zy = 0.
Nevertheless costs are low enough to be worth the effort of moving to one of
the boundaries, even if one starts at g = 0. As the costs get higher (above
¢) moving to the closer boundary is only infinitesimally more expensive then
staying at the origin and therefor staying at the origin becomes optimal. If
one starts near the origin it is optimal to stay near the origin for a while and
not move away too quickly. The higher the costs are increasing the longer the

duration for staying near the origin. Crossing bifurcation line # the movement
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near the origin comes to a stillstand. This is the case where the origin becomes
a degenerate fixed point. Raising the costs above the bifurcation line § the
movement near the origin is reversed and moving to the origin becomes optimal
when starting nearby. As a consequence, two starting positions zy become
points of indifference between moving to the origin and moving to the boundary.
Augmenting the costs further moves these points of indifference out toward the
outer equilibria. But for r < 2 the outer equilibria still remain optimal at
least for starting positions with |zg| > 1 and in a shrinking neighborhood inside
the boundaries. If r > 2 the situation changes and crossing bifurcation line
¢ the boundary equilibria are only optimal in the case of starting exactly at
+1. For every other case the origin is optimal, starting inside the boundaries
|zo] < 1, and equilibria outside the boundaries become optimal for starting

positions meeting |zo| > 1.

4 Conclusion

In this model, positioning oneself as a bridge between one’s own organization
and the outside world yields benefits but also takes effort. Whether moving
to a bridging position is worthwhile depends on how costly it is to alter one’s
position and on how far sighted one is. Individuals who are sufficiently myopic
and for whom such movement is sufficiently painful should not bother. Those
who are sufficiently far-sighted and/or flexible should always become bridges.

For others, the optimal strategy depends on whether one is initially close to or

20



far from being such an organizational bridge.

Because of the relative simplicity of this model, the model’s structure and
resulting optimal behavior could be fully characterized in the parameter space.
In particular, it was possible to find explicit solutions for every bifurcation
line, including the heteroclinic bifurcation at the origin. Furthermore the lines
where the optimal policy becomes continuous at the relevant unstable nodes
were numerically calculated.

This solution yielded quite a number of mathematically interesting struc-
tures. Even though it is a one state model, varying a single parameter generates
instances of zero, one, or two DNS points and even instances in which a single
DNS point trifurcates into two DNS point and a saddle point. More generally
we found regions with the same number and properties of equilibria but different
optimal behavior, divided by a heteroclinic bifurcation line, and regions where
the optimal solution was sensitive to the exact starting position

This simple model may have interesting extensions. One would replace the
one-dimensional (one-state) model of the organization with a two-dimensional
or even n-dimensional model. The unit circle or unit sphere, respectively, could
still denote the boundaries of the organization. The state dynamics could still be
taken such that people within the organization gravitate toward its center at the
origin whereas those outside the boundary are drawn further away. And the cost
function could still reflect the ideal of staying at the boundary or some selected
points along that boundary. Considering such a model, one could expect to find

two-dimensional DNS curves and a DNS point at the origin with an arbitrarily
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large number of alternative optimal strategies available.

Another variation would recognize that people can be members of more
than one organization simultaneously, so the objective function could be the
sum of distances from the centers of several different organizations. Again, in a
two- or higher-dimensional model, this might likewise yield rather complex and

interesting solutions.

A Existence of equilibria

Considering the dynamical system

a:3fx+1/

ISy
Il

vo= v(1-32%+r)+2z/c(z?-1).

the equilibria must satisfy

v = 20(1—2)/(c(1-32"+7)).

Setting these expressions for v equal to each other we get the following solutions

for x:

ry = 0
o3 = +1
ra5 = V(1 +r—2/c)/3,

22



and therefore abbreviating w = /(1 +r — 2/c) /3 the formal solutions of the

fixpoints are

z 1
E,| 0 0
Ey 1 0
Es | -1 0

Ey w w (1 — w2)

Es | —w | —w (1 — w2).

Having in mind the interpretation of -1 and 1 as the boundary states, we refer
to Es and Fs5 as the boundary equilibria. While E1-FE3 are global solutions for
Eq. 8, we have to determine the regions of existence for the equilibria F; and
Es5. As they only depend on w we have to consider the case where w is real,

implying
1+r—2/c > 0

c > 2/(r+1). (8)

That is for ¢ sufficing Eq. 8 the equilibria F4 and Ej5 exist.
At least we determine the cases where these equilibria coincide with the

other equilibria.

Case 1: w=0<« c¢=2/(r+ 1) the equilibria coincide with the origin.

Case2: w = 1 & ¢ = 2/(r —2) Ey, E4 and E3, Ej respectively coincide.

Beneath this curve the value of the state variable of E4 and E5 are smaller
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than 1, while above this curve the equilibria are lying outside the boundary

equilibria.

These results are summarized in Tab. 1.

B Stability properties

Knowing the number of equilibria for the different regions, we analyze now their
stability properties. The characterization of the equilibrium behavior ensues
from calculating the determinant, trace and discriminant of the Jacobi matrix
J.

We get the common form of J, by linearizing the system of differential equa-

tions Eq. 7

322 -1 1
J(z,v) = (9)

—6av +2/c (322 —1) 1-3z%+r

calculating A, 7 and D gives

To=
A = (32°-1)(1-32"+r—2/c) + 6av
D = 7r*—4((32*-1) (132> +r—2/c) + 6zv)
with
T tr(J)
A L. det(J)
D ... T —4A.
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In the following subsections these formal results will be analyzed for the different

equilibria.

Origin

At the origin the Jacobi matrix Eq. 9 simplifies to

-1 1
J(0,0) = , (10)
—2/c r+1
and so we get
T =7 (11)
A = —r—1+4+2/c (12)
D = r?4+4r+4-8/c (13)

The stability properties are completely determined by the signs of the three
parameters A, 7 and D. As 7 = r > 0 always holds we only have to consider

the occurrence of A =0 and D = 0. Solving these equations we get
A=0 & c¢=2/(r+1)

D=0 & c=8/(r+2)

Distinguishing the cases where the sign of A and D change we get five regions
in parameter space.

Case 1: ¢ < 8/(r+2)? = A > 0A D < 0 characterizes an unstable spiral.

Case 2: ¢ =8/(r+2)? = A > 0AD = 0 gives the limiting case of a degenerated

node at the origin (labeled as «).
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Case 3: 8/(r +2)2 <ec<2/(r+1) = A >0AD > 0 is associated with an

unstable node.

Case 4: ¢=2/(r+1) = A =0AD > 0 implies the critical case of a degenerate

fixed point (labeled as ().

Case 5: While for ¢ > 2/(r +1) = A < 0A D > 0 the origin is a saddle.

Boundary Equilibria

In case of a boundary equilibria the Jacobi matrix Eq. 9 becomes

2 1
J:
4/c r—2
and
T =T
A = 2r—4—4/c
D = r* -8 +16+16/c. (14)

As Eqg. 14 has no real root for ¢ > 0, D does not change sign and hence D > 0
in the whole parameter space. Therefore only the regions where sgn(A) differs
have to be considered.

But A=0<c¢=2/(r+1), so we can distinguish three different regions

Case 1: ¢ < 2/(r+2) & A < 0 characterizes a saddle.

Case 2: ¢ =2/(r+2) & A = 0 gives the critical case of degenerate fixed points.

Case 3: ¢>2/(r+2) < A > 0is associated with an unstable node.
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Equilibria F, and E;

In case of equilibria E4 and E5 the Jacobi matrix Eq. 9 becomes

3w? — 1 1
J:
—6w? (1 —w?) +2/c(3w? —1) r—3uw?+1
and
T =7
A = (3w’ —1)(1-3w’+7r-2/c)+ 6w’ (1-w?) (15)
D o= Pt 1) (1= - 2/0) 20 (1 ).

Resubstituting w in Eq. 15 the factor 1 — 3w? +r — 2/c = 0 and therefore

A and D reduce to

A

6w? (1 - w2)
D = 7r? -2 (1 — w2)
Setting A = 0 we find the solutions

c = 2/(r+1) Vr

c = 2/(r+1) r>2.

Finding the solutions for D = 0 is straight forward.
D=0 & r*-24w’(1-w?) =0
e w—w?+r%/24=0
& w?=1/2+£/(6—-12)/24
& (r+1-2/¢)/3=1/24+/(6—12)/24
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For notational simplicity we set k = 2/c and get

2r—1-2k = +6/(6-1r2)/24
(2r—1-2k)° = 3/2(6—r?
P +k(1-2r) = —(11r* —8r—16) /8

a quadratic in k and after resubstituting 2/c¢ for k we find the solutions
cro=4(4r =24 /66— 77)) / (11r* — 87~ 16) . (16)

These solutions ¢; and ¢y form a curve in the parameter space which are contin-
uously connected at 7 = v/6. As the polynomial in the denominator of Eq. 16
has a positive real root at r = 4/11 (1 + 2\/§) the solutions have a singularity
at this point, that can be lifted in the case of co, while it is a real singularity in
the case of ¢;.

Summarizing these considerations we can distinguish six different regions,

for the properties of the equilibria.

Case 1: ¢=2/(14+r) = A =0AD > 0 entails that E4 and E5 coincide with

the origin and can be characterized as degenerate fixed points.

Case 2: 2/(147r) < ¢ < 2/(r—2) and ¢ not inside region ITT then A > 0AD > 0

implies that the equilibria are unstable nodes.
Case 3: ¢ € v gives the limiting case of a degenerated node.

Case 4: If ¢ lies in region IIT then A > 0 A D < 0 is associated to the case of

unstable foci.
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Case 5: ¢ = 2/(r —2) = A = 0A D > 0 let the equilibria coincide with the
boundary equilibria and have the properties of degenerate fixed points

(labeled as 9).

Case 6: ¢>2/(r—2) = A <0AD >0 gives the case of saddles.

These results are summarized at Tab. 1.
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Figure 1: Regions of different stability and optimality divided by bifurcation lines «, 3,7, ¢
the heteroclinic bifurcation line y and line (.

Region III is separated into three parts Region IIla-IIlc by p and the line ¢. The line ¢ in
Region II, divides Region II into two parts Region Ila and Region IIb. To avoid cluttering
the figure Regions Ila, I1la and IIIb are not marked in Fig. 1.

® and X indicate different parameter sets for models depicted in Fig. 2 and Fig. 3.

31



Caption
—— awithe=28/(r+2)°
- —— pBwithe=2/(r+1)

—— ~ywithe= (4 (47« 24+ ./6(6- r?))) /(1172 — 87 — 16)
—--— Swithe=2/(r—2)
— — - numerically approximated

---------- ¢ numerically approximated

32



-1

Figure 2: For constant cost ¢ = 2.5 and different discount rates r the system dynamics is
shown together with its optimal behavior and direction, starting in the upper left and moving
clockwise the four cost parameters are

a)r=02b)r=04c)r=25d)r=23.5
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Figure 3: For constant discount rate r = 0.8 and different costs ¢ the system dynamics is
shown together with its optimal behavior and direction, starting in the upper left and moving

clockwise the four cost parameters are
a)c=05b)c=105¢c) c=115d) c=2.5
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Character of Equilibria at:

Region/Curve Origin Boundary Equilibria | £y and FEs | # of DNS points
I unstable focus saddle — 1
IIa unstable node saddle — 1
IIb unstable node saddle — —
IIT a saddle saddle unstable node 1
IITb saddle saddle unstable node 2
Il c saddle saddle unstable node —
IV a saddle saddle unstable focus 1
IV b saddle saddle unstable focus 2
A\ saddle unstable node saddle —

Table 1: Number
bifurcation curves.

and properties of equilibria.

See Fig. 1 for

36

definitions of regions and
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