
Carnegie Mellon University
Research Showcase @ CMU

Software Engineering Institute

4-2010

Considerations for Using Agile in DoD Acquisition
Mary Ann Lapham
Carnegie Mellon University, mlapham@sei.cmu.edu

Ray Williams

Charles (Bud) Hammons
Carnegie Mellon University, cbh@sei.cmu.edu

Daniel Burton

Alfred R. Schenker
Carnegie Mellon University, ars@sei.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/sei

This Technical Report is brought to you for free and open access by Research Showcase @ CMU. It has been accepted for inclusion in Software
Engineering Institute by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-
showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fsei%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/sei?utm_source=repository.cmu.edu%2Fsei%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/sei?utm_source=repository.cmu.edu%2Fsei%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

Considerations for Using Agile in DoD

Acquisition

Mary Ann Lapham

Ray Williams

Charles (Bud) Hammons

Daniel Burton

Alfred Schenker

April 2010

TECHNICAL NOTE

CMU/SEI-2010-TN-002

Acquisition Support Program – Air Force

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN ―AS-IS‖ BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and ―No Warranty‖ statements are included with all reproductions and

derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

i | CMU/SEI-2010-TN-002

Table of Contents

Acknowledgments vii

Abstract ix

Organization of This Report xi

Executive Summary xiii

1 Overview 1
1.1 Original Tasking and Approach 1
1.2 What Is Not Addressed 2

2 What is Agile? 3
2.1 Agile Manifesto and Principles—A Brief History 3
2.2 A Practical Definition 5
2.3 Example Agile Method 5
2.4 Waterfall and Agile Methods Compared 6

2.4.1 Frequency of Usable Releases 6
2.4.2 Executable and Testable Product 7
2.4.3 Internal Integration and Test Group 9

3 Interview Observations and Findings 11
3.1 Overview of Common Topics 11
3.2 Acquisition 12
3.3 Knowledge of Agile 14
3.4 Culture 15
3.5 Oversight 16
3.6 End-User Involvement 18
3.7 Integration and Test 19
3.8 Infrastructure 20

4 DoD 5000 Series and Agile—Potential Issues and Conflicts 23
4.1 Use of Agile Is Not Prohibited by DoDD 5000.01 23
4.2 Regarding DoDI 5000.02 27

4.2.1 Agile Impact to Acquisition: Scenarios 27
4.2.2 Agile within the Acquisition Life Cycle Phases 28

4.3 Foundational Concerns 34

5 Considerations for Applying Agile in the DoD 35
5.1 Acquisition Life Cycle 36
5.2 Team Environment 37
5.3 End-User Access 39
5.4 Training and Coaching 40
5.5 Oversight 40
5.6 Rewards and Incentives 42
5.7 Team Composition 42
5.8 Culture 43

6 Conclusion 44

Appendix A: Examples of Agile Methods 46

ii | CMU/SEI-2010-TN-002

Appendix B: Common Objections to Agile 49

Appendix C: Areas for Consideration 52

Appendix D: Acronyms 54

Appendix E: FIST Manifesto 56

References/Bibliography 58

iii | CMU/SEI-2010-TN-002

List of Figures

Figure 1: Waterfall and Resulting Value/Time Curve 7

Figure 2: Agile/Incremental Build 8

Figure 3: Agile and Resulting Value/Time Curve 8

Figure 4: Notional Illustration of Agile Versus Waterfall Integration/Test Efforts 9

Figure 5: The Defense Acquisition Management System [6] 28

iv | CMU/SEI-2010-TN-002

v | CMU/SEI-2010-TN-002

List of Tables

Table 1: Agile Considerations for DoDD 5000.01 Guidance 25

Table 2: Analysis of Acquisition Life Cycle Phases and DoDI 5000.02 31

Table 3: Areas to Consider for Using Agile in the DoD 52

Table 4: Acronyms Used in This Report 54

vi | CMU/SEI-2010-TN-002

vii | CMU/SEI-2010-TN-002

Acknowledgments

The authors would like to express our appreciation to all those who took time out of their busy schedules

to allow us to interview them. Special thanks go to the Joint Mission Planning System (JMPS) Program

Management Office (PMO) and BAE Systems staff. Thank you to all the Carnegie Mellon Software

Engineering Institute (SEI) colleagues who provided articles, blogs, and encouragement.

To all those who tolerated endless questions during the 2009 Agile Development Practices Conference,

many thanks as you were all gracious and so willing to share your knowledge and excitement about Agile

concepts and application.

To our reviewers—your thoughtful and precise insights added great value, which we greatly appreciated.

We extend our sincerest thanks to the following people:

 Jim Highsmith, Signer of Agile Manifesto

 Linda Rising, Independent Agile Consultant

 Sean Mullen, Mitre

 Jim Corbin, BAE Systems, Geospatial Solutions Engineering Director

 Lt Col Daniel Ward, USAF

 Dr. Doug Buettner, Aerospace

 Joe Tatem, Raytheon

 Stephany Bellomo, SEI

 Nanette Brown, SEI

 John Foreman, SEI

 Dr. John Goodenough, SEI

 Harry Levinson, SEI

 Dr. Robert Nord, SEI

 Ipek Ozkaya, SEI

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

viii | CMU/SEI-2010-TN-002

ix | CMU/SEI-2010-TN-002

Abstract

This report explores the questions: Can Agile be used in the DoD environment? If so, how? Lessons

learned from actual DoD programs that have employed and are employing Agile are provided as well as

information gleaned from the myriad articles and books available on Agile. While this report does not

pretend to cover every paper or thought published about Agile in the DoD world, it provides an overview

of some challenges in using Agile; an overview of how some programs have addressed these challenges;

and some additional recommendations on dealing with these challenges. The intended audience is policy

makers, program office staff, and software development contractors who are contemplating proposing the

use of Agile software development methods.

It is the hope of the authors that this paper stimulates discussion about and appropriate adoption of Agile

in the DoD world. We hope to obtain further data so that our list of considerations can be updated and

expanded for use by all practitioners.

x | CMU/SEI-2010-TN-002

xi | CMU/SEI-2010-TN-002

Organization of This Report

This report is organized as follows:

Executive Summary (page xiii) contains highlights of this report, specifically Agile methods and their use

in the DoD.

Overview (page 1) describes the approach taken to develop this report, what is included and what is ex-

cluded.

What is Agile? (page 3) provides a definition/history of Agile, a generic Agile example, and a short com-

parison of Agile to Waterfall.

Interview Observations and Findings (page 11) presents the results from interviewing specific programs

and includes pitfalls, issues, and potential solutions.

DoD 5000 Series and Agile—Potential Issues and Conflicts (page 23) details the results of an analysis of

the DoD 5000 Series and how it impacts Agile use within the DoD.

Considerations for Applying Agile in the DoD (page 35) provides multiple considerations for applying

Agile in the DoD. It also includes discussions of various Agile concepts and addresses potential hurdles

for implementing them within DoD.

Conclusion (page 44) contains a summary of this report and suggestions for future research on using

Agile within the DoD.

Appendix A (page 46) provides a variety of Agile methods and their definitions.

Appendix B (page 49) identifies and debunks common objections to using Agile.

Appendix C (page 51) details areas of concern and their considerations for using Agile in the DoD.

Appendix D (page 54) defines acronyms used throughout this report.

Appendix E (page 56) contains the text of the ―FIST Manifesto.‖

xii | CMU/SEI-2010-TN-002

xiii | CMU/SEI-2010-TN-002

Executive Summary

In 2009 the SEI was tasked by Mr. Blaise Durante, Air Force Deputy Assistant Secretary for Acquisition

Integration (SAF/AQX), to assess the state of the practice of Agile development in government software

acquisitions. This team was assembled to complete that assessment.

This report is the result of this assessment, and is meant to debunk the prevalent myth that Agile and De-

partment of Defense (DoD) practices are incompatible. Our focus is on the software development arena,

basing our information on actual acquisition experience and a sampling of the relevant literature availa-

ble. We will not discuss specific Agile methods beyond describing Agile and providing a list of the most

common Agile methods. We do, however, provide some helpful hints on considerations that need to be

addressed when deciding to use Agile in the DoD environment.

The audience for this paper is:

 Senior DoD acquisition policy makers, to advise them on the practicality and policy pitfalls of en-

couraging the application of Agile software development methods in their programs

 Members of DoD program offices who may be challenged to undertake a software development ac-

quisition with a contractor who will be using Agile software development methods

 Software development contractors who are contemplating responding to a DoD Request for Proposal

(RFP) with a proposal based on using Agile software development methods

Agile and the DoD

Agile has existed for many years, and, in fact, is based on concepts that have been around for decades.

Agile achieved its greatest success in small- to mid-sized, commercial applications. There has been li-

mited documented usage in the DoD/government arena.

In recent years, Agile matured and personnel became skilled in applying Agile; some DoD contractors

started to build internal Agile capabilities and use Agile on DoD programs. Some DoD acquisition pro-

grams proposed and used Agile processes, attempting to take advantage of contractor capabilities, but

without (as yet) any formal DoD guidance, templates, or best practices.

Given this backdrop, can Agile produce a better product developed within cost and schedule parameters?

If barriers interfere with the DoD adopting Agile, how can they be addressed?

Our interviews and research into whether Agile can benefit the DoD resulted in a resounding, but quali-

fied, ―Yes.‖ Agile is another tool that can provide both tactical and strategic benefits. The tactical benefits

of lower cost within schedule and increasing quality are important; however, the strategic benefits of be-

ing responsive and being able to adjust to the current situation more rapidly might be of even greater val-

ue. This could be a huge factor in today‘s world, where the DoD needs to get results faster and be better

aligned with changing needs. In fact, reports
1
 available about Agile are impressive. Even if experience

1
 Several results show that by using Agile methods costs decrease from as little as 5 to as much as 61 percent, with sche-

dule decreasing from as little as 24 to as much as 58 percent, and cumulative defects decreasing from as little as 11 to
as much as 83 percent [8].

xiv | CMU/SEI-2010-TN-002

provides savings for DoD programs on the low-end of the spectrum, these savings can be significant over

time. We also found that there are no prohibitions for using Agile in the DoD 5000 series. In fact, the

IEEE
2
 is currently working on a standard for Agile. To date the standard is unpublished, but the fact that

the IEEE has deemed it worthy of a standard is a step in the direction of obtaining formal guidance for

Agile.

During our research we noted that in the current, traditional Waterfall method commonly employed with-

in the DoD, there is an established practice that uses some form of controlled experimentation. Current

Waterfall practices create experimental code or prototypes and then throw them away. Rather, Agile

builds software iteratively, refining or discarding portions as required to create increments of the product.

The idea is to have some working code at the end of each iteration that can be deployed. There are some

programs within the DoD today that are employing Agile to do just this.

Embracing Agile Methods

Agile processes are based upon good ideas derived from successful industry practices. We believe the

DoD should embrace Agile for some programs and traditional Waterfall methods for others. There is no

―one size fits all‖ Agile process. Just like any set of processes, implementation of Agile must be tailored

to fit the situation and context. For example, Agile teams responsible for developing high-risk, core com-

ponents of the software architecture might apply less-aggressive release schedules than Agile teams de-

veloping less critical pieces of the software system. Some Agile teams might pick a two-week iteration

cycle where others might determine their optimum iteration cycle is three weeks. Agile is not a silver bul-

let but rather another ―lead bullet‖ for the Program Management Office‘s and contractor‘s arsenal.

Sometimes a hybrid approach of traditional Waterfall methods and Agile is the best for a particular pro-

gram. For example, due to safety considerations some mission critical systems might require certain tradi-

tional milestones and documentation deliverables to remain in place. However, Program Management

Offices (PMOs) might work with the Agile development teams to agree upon a hybrid approach that

bridges these requirements with the need for agility and responsiveness. Perhaps the PMO agrees upon

fewer, less formal reviews and delivery of smaller sets of high-value documentation in exchange for get-

ting a beta version the user can start evaluating in the field more quickly.

Moving to Agile will require considerable work from the DoD entity (PMO, DoD, OSD, and perhaps

Congress), and is not without hurdles, most notably the following:

Acquisition Life Cycle

Each life cycle phase (e.g., Materiel Solution Analysis, Technology Development, Engineering and

Manufacturing Development, Production & Deployment, and Operations & Support) presents

unique challenges and opportunities. Some phases lend themselves to the use of Agile better than

others. You must consider the Agile processes and practices you want to use early in the acquisition

life cycle; it is of critical importance to make sure that contractually binding documents, such as

RFPs and Statements of Work (SOWs), support those processes and practices. For example, if you

embrace Agile you need to determine how you will meet the standard milestone criteria such as

PDR and CDR. Typically, the types of documentation expected at these milestone events are not

2
 IEEE P1648 is a draft standard. See http://standards.ieee.org/announcements/pr_1490p1648.html

http://standards.ieee.org/announcements/pr_1490p1648.html

xv | CMU/SEI-2010-TN-002

produced using Agile. Thus, you should create expectations and criteria that reflect the level and

type of documentation that would be acceptable for those milestones and yet work within the Agile

constraints.

Team Environment

A central concept to Agile is the small, dynamic, high-performing team. The challenge is this: How

do I provide an environment that fosters the creation of self-forming or dynamic teams in a culture

that is accustomed to static, centralized organizational structures? To complicate this further, con-

sider that the software team might be a small part of an overall system procurement for something

like a tank, ship, or plane. The system environment might call for centralized configuration man-

agement, highly defined legacy interfaces, and a predetermined architecture, all of which constrain

the software. This environment, then, should be treated as a constraint by the Agile team and can

provide boundaries within which the Agile team can operate. These system boundaries could act to

encapsulate the Agile team environment.

End-User Access

Access to end users can be complex and difficult when dealing with any single service but it can be

even more complex with multi-service programs. Agile developers need to have a single voice for

the user and one that can commit to changes for the product being developed. In some Agile ap-

proaches, the ―one voice‖ is a product owner or manager who brings decisions to the Agile team that

have been made through collaborative interaction. Within the DoD, the acquisition organization typ-

ically is the proxy for the end-users and only duly warranted personnel can commit the program. To

mitigate these issues, end-users should be invited to all demos where they can provide feedback that

only becomes binding with PMO approval. The end-users need to work closely with the PMO, as

with any acquisition.

Training and Coaching

While Agile concepts may not be new, the subtleties and nuances of each Agile method can be new

to the uninformed PMO. To overcome this, train the PMO staff before starting and employ an expe-

rienced coach or knowledgeable advocate for the PMO to help guide them throughout the process. It

is important to set aside funding for initial and ongoing training and support.

Oversight

Traditional methods have well-defined oversight methods. Agile oversight methods are less defined

and require more flexible oversight to accommodate the fluidity of Agile implementation. Resolu-

tion of the specific type of oversight needs to be done in advance. One aspect of the Agile manage-

ment philosophy is that the primary role of manager is more of a team advocate than overseer. The

management function of roadblock remover is critical to the success of an Agile team. Thought

needs to be given to what day-to-day PMO activities might need to be altered to support this type of

change.

Typically, documentation is used by the PMO throughout the development cycle to monitor the

progress of the contractor. Documentation produced using Agile methods is just enough to meet the

need and provide continuity for the team. This type of documentation is usually not sufficient for the

capstone reviews or monitoring progress. The PMO needs to create different ways to meet the same

objectives for monitoring while leveraging the advantages of Agile.

xvi | CMU/SEI-2010-TN-002

Rewards and Incentives

Agile rewards and incentives are different from the typical structure of traditional methods. In the

DoD environment, the challenge is finding ways to incentivize teams and individuals to support

Agile goals such as innovation, rapid software delivery, and customer satisfaction. At the same time,

we need to eliminate rewards that incentivize the wrong things. For example, rather than rewarding

contractors for fixing defects we may want to reward the developer for early delivery of beta soft-

ware to a limited set of users in a constrained environment. This way the beta users get to test the

product in the field sooner while at the same time providing feedback that helps to improve the qual-

ity of that iteration of the software. One other type of incentive that should be considered is incen-

tives that encourage a collaborative relationship between the PMO and the contractor‘s staff.

Team Composition

The composition of the PMO staff might look somewhat different in order to accommodate the use

of Agile. The government should consider adding a knowledgeable Agile advocate or experienced

coach to their team. End-user representatives are essential for Agile. This position will be difficult to

fill in a timely and consistent manner. Some programs have used rotating personnel to fill this posi-

tion.

Another challenge is keeping high-performing Agile teams together long enough for them to achieve

peak performance. This is a challenge because developers change at the end of a contractual period

of performance. One recommendation might be to look at putting key Agile technical developers or

technical leads under a separate contract vehicle or hire them to work for the government organiza-

tion itself.

Culture

The overall organizational culture needs to support the Agile methodology in use. The Agile culture

is counter to the traditional Waterfall culture in everything from oversight and team structure to end-

user interaction throughout development. This will require a mindset change for the PMO and other

government entities such as OSD. In order to employ any of the Agile concepts, the DoD organiza-

tion will have to plan for them, anticipate the changes needed in their environment and business

model, and apply the hard work to make the changes a reality. Organizational change management

is essential during the transition to Agile.

1 | CMU/SEI-2010-TN-002

1 Overview

Agile methods for software development have existed for many years. These methods have achieved their

greatest success in small- to medium-sized commercial applications. To date, based on our research, they

have had limited usage and success in the DoD/government arena.

In recent years, as Agile methods have matured, personnel have become more skilled, and educa-

tion/training programs have become available, some DoD contractors have begun to build internal Agile

capabilities and initiate pilot usage efforts on DoD programs. Many DoD acquisition programs have also

begun to propose and use Agile processes, attempting to take advantage of contractor capabilities; how-

ever, they have done this without (as yet) any formal DoD guidance, templates, or best practices.

In 2009 the Carnegie Mellon Software Engineering Institute (SEI) was tasked by Mr. Blaise Durante,

SAF/AQX, to assess the state of the practice of Agile development in government software acquisitions.

This team was assembled to complete that assessment.

This report provides the results of the SEI study of the current utilization and future applicability of Agile

for software development in DoD acquisitions. The study was conducted in the latter half of 2009 and

completed in January 2010. This report is intended for:

 Senior DoD acquisition policy makers, to advise them on the practicality and policy pitfalls of en-

couraging the application of Agile software development methods in their programs

 Members of DoD program offices who may be challenged to undertake a software development ac-

quisition with a contractor who will be using Agile software development methods

 Software development contractors who are contemplating responding to a DoD Request for Proposal

(RFP) with a proposal based on using Agile software development methods

1.1 Original Tasking and Approach

Our team set out to document lessons learned and/or best practices in as many programs as we could find

in the DoD acquisition community that are using or have used Agile for software development. For this

report, we made the assumption that we were dealing with software only or software intensive systems.

Our purpose was to answer two questions:

 Is the use of Agile beneficial to the DoD; that is, can it produce a better end product developed within

cost and schedule parameters?

 If the answer is ―Yes,‖ what are the barriers to using Agile in the DoD acquisition environment, and

how might these barriers be addressed?

Our approach was to address both questions simultaneously because we believed that, regardless of any

of the theoretical benefits of Agile (and it was quickly evident that there were many), it would only re-

main an academic interest if there were not solid experience available on the actual use of Agile within

the DoD acquisition environment. Thus, we looked for current and recent DoD software development

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

2 | CMU/SEI-2010-TN-002

acquisitions that claimed to have used one or more of the methodologies generally accepted as Agile (e.g.,

eXtreme Programming, Scrum, Lean Software Development, and others
3
). We found a small number of

such programs willing to share their experiences; these were weapons systems programs including Joint

Mission Planning System (JMPS), Single Integrated Air Picture (SIAP), Operationally Responsive Space

(ORS), Virtual Mission Operations Center (VMOC), Space Radar, an Army tank program, and some oth-

er classified programs. The programs ranged in size from small to fairly large. The amount of detail we

were able to obtain from each program was a function of program constraints such as security. With this

in mind, we conducted interviews with development team members, program office personnel, or other

members of the SEI staff who had intimate knowledge of those programs to do the following:

 Document lessons learned and/or best practices from the case study of the multiple programs using

Agile, to include contractor capabilities, government management (strengths and weaknesses), and

conflict points with standard DoD methods, etc.

 Examine the viability of developing an approach that can be used within the DoD 5000 acquisition

environment to take advantage of the benefits of using Agile methodologies with minimal need for

policy waivers.

 Provide guidelines on how DoD technical milestone reviews (SSR, PDR, and CDR) should be al-

tered/augmented to account for Agile software development practices.

After our interviews, we prepared an ―Agile Study Lessons Learned‖ draft presentation and sent it to the

interviewees for comment. We did this to assure that we understood the points that interviewees made

and to lay out an initial argument addressing the primary questions. We incorporated comments we re-

ceived resulting in a final, annotated version of the presentation, which was given limited distribution.

Finally, we created this report to document our findings and provide recommendations.

1.2 What Is Not Addressed

―Agile,‖ in the context of software development, is a term that encompasses many different tools, tech-

niques, and methods, some of which are briefly described in Section 2: What is Agile? We give the reader

context and awareness of Agile, but do not attempt to provide a comprehensive review or tutorial of spe-

cific Agile methodologies for application in software acquisitions. Rather, we provide questions to ask

and guidance on how Agile could be useful and have relevance to DoD organizations.

We have not attempted to address the question of whether DoD PMOs themselves could become ―Agile‖

in their own internal operations. While this was discussed at length, we decided that such a discussion

would go too far beyond the current experiences of the interviewees.

We have also not attempted to discuss the relationship between CMMI and Agile software development

methodologies. In our view, CMMI is a framework of best practices that can be applied in any software

development program (whether or not that program uses Agile). We recognize that some of the Agile ad-

vocates have equated CMMI with ―traditional‖ and/or ―Waterfall‖ software development approaches [1],

but we believe that this is only a misunderstanding of CMMI on their part. Others have suggested that

Agile and CMMI should be embraced together [2].

3
 Appendix A contains several examples of Agile methods.

3 | CMU/SEI-2010-TN-002

2 What is Agile?

On the surface it seems that there is really nothing ―new‖ about Agile. However, upon close inspection

there are new components (ideas, practices, theories, etc.) and new combinations of those new compo-

nents with ―old‖ components. The explicit value statements used within Agile are also new. However in a

way, Agile has simply swept up software development practices that have been used since the earliest

days of software and added a few new twists. Philosophically, Agile also borrows heavily from approach-

es that have been successfully used in manufacturing throughout the world for decades, such as ―just-in-

time,‖ Lean, Kanban, and work-flow-based planning. Another new development is that Agile is becoming

codified, evolving from a collection of disjoint, separately developed software development methods into

a philosophically coherent family of such methods.

This philosophical coherence—and the current energy driving advocacy of Agile—was the result of a

remarkable meeting among thought leaders and consultants
4
 in software development who would normal-

ly have been competitors. In February 2001 seventeen people met to try to find common ground and ulti-

mately produced the Agile Software Development Manifesto. This ―manifesto‖ detailed all of their com-

monalities overlooking, for the moment, areas where they had differences of opinion.

2.1 Agile Manifesto and Principles—A Brief History

The self-named Agile Alliance shared allegiance to a set of compatible values promoting organizational

models based on people, collaboration, and building organizational communities compatible with their

vision and principles.
5

Jim Highsmith asserts that ―the Agile ap-

proaches scare corporate bureaucrats—at

least those that are happy with pushing

process for process' sake versus trying to do

the best for the ‗customer‘ and deliver some-

thing timely and tangible ‗as promised‘—

because they run out of places to hide.‖
5

As the Agile Alliance noted, the four dicho-

tomies listed in the manifesto (―individuals

and interactions over processes and tools‖)

are not intended to suggest that what is on

the left is important and what is on the right

is unimportant; rather, what is on the right,

while important, is simply less important

than what is on the left. For example, some

4
 The signatories were representatives from Extreme Programming, SCRUM, DSDM, Adaptive Software Development,

Crystal, Feature-Driven Development, Pragmatic Programming, and others: Kent Beck, Mike Beedle, Arie van Benne-
kum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas.

5
 http://agilemanifesto.org/history.html

Manifesto for Agile Software Development

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

http://agilemanifesto.org/history.html

4 | CMU/SEI-2010-TN-002

believe that the Agile approach advocates providing no documentation other than the code itself. The

Agile community would argue instead that documentation is important, but no more documentation

should be created than is absolutely necessary to support the development itself and future sustainment

activities. In fact, Agile emphasizes collaboration and the notion that when documentation replaces colla-

boration the results are problematic. Documentation should be the result of collaboration.

The Agile Alliance says the following principles underlie the Agile Manifesto:

Our highest priority is to satisfy the customer through early and continuous delivery of val-

uable software.

Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a develop-

ment team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity—the art of maximizing the amount of work not done—is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and ad-

justs its behavior accordingly.
6

From these principles, it is understood that Agile is really a philosophy or development approach, and it

comprises a number of more specific methods, for example, eXtreme Programming (XP), Scrum, and

Adaptive Software Development (ASD). (A synopsis of Agile methods is provided in Appendix A.)

6
 http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

5 | CMU/SEI-2010-TN-002

2.2 A Practical Definition

While this history provides a context for Agile, it does not provide a specific definition. The authors

struggled with defining Agile. Since there are plenty of definitions to choose from, we picked one that

closely reflects our intended use of the term ―Agile‖ within this paper and one that is more concise:

Agile: An iterative and incremental (evolutionary) approach to software development which is

performed in a highly collaborative manner by self-organizing teams within an effective gover-

nance framework with “just enough” ceremony that produces high quality software in a cost ef-

fective and timely manner which meets the changing needs of its stakeholders.
7

This definition is rather long but it covers our purposes. If a shorter definition is desired by the reader,

Alistair Cockburn has said that Agile is

…early delivery of business value. That involves early and regular delivery of working software,

a focus on team communications, and close interaction with the users.
8

2.3 Example Agile Method

In order to provide the reader with further context of how Agile might be used, a simplistic generic ex-

ample for a software development project might include the following.

Initial planning
9

 The overall scope of the project is examined. The business side sets the overall priorities and the de-

velopment team members select and estimate work items.

 A fixed iteration length is determined (usually between one and four weeks; a two-week iteration

appears to be common).

 The functional scope is broken down into a set of ―user stories‖ (capabilities) that initially are de-

scribed in a coarse-grained manner. Prior to implementation within an iteration, the ―stories‖ are ela-

borated at a level detailed enough to allow each story to be implemented within a single iteration

 The highest risk and highest priority ―stories‖ are moved to the front of the queue for implementation

in the development iterations. The ―stories‖ at the front of the queue tend to be those with highest

stakeholder value, which would include priority and risk.

Iterations
10

 Each iteration starts with the team planning session; stories are selected from the queue until a full

iteration‘s worth of work is identified.

 Each story (capability) is refined further into specific tasks as noted above.

7
 http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm

8
 http://bradapp.blogspot.com/2006/05/nutshell-definitions-of-agile.html

9
 For large programs, initial planning would be done during Iteration 0. Iteration 0 is a planning iteration only. Release

planning, overall program planning, and high-level architecture creation are some of the tasks accomplished during Itera-
tion 0.

10
 Note that the customer or user is available for feedback throughout the iteration.

http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm
http://bradapp.blogspot.com/2006/05/nutshell-definitions-of-agile.html

6 | CMU/SEI-2010-TN-002

 Development work first begins with the writing of unit tests that will be used once the software is

developed if using the Test Driven Design [TDD] method.
11

 Coding does not begin until the unit tests have been written (if using TDD).

 At the end of the iteration, the output is an executable, testable product that could actually be used

and unfinished stories could slip into the next iteration. Typically, automated testing is used exten-

sively in Agile.

 A retrospective is usually held at the end of the iteration. The retrospective gives the team an oppor-

tunity to reflect on the iteration and determine lessons learned (what went well and what needs to im-

prove).

2.4 Waterfall and Agile Methods Compared

All authors and Agile advocates compare and contrast Agile techniques and methodologies with the Wa-

terfall model of software development. We will only discuss a few of the differences.

For our purposes, the definition of the Waterfall Model (referred to as Waterfall) is

A software life-cycle or product life-cycle model, described by W. W. Royce in 1970, in which

development is supposed to proceed linearly through the phases of requirements analysis, de-

sign, implementation, testing (validation), integration and maintenance.
12

The Waterfall development model
13

 has its origins in the manufacturing and construction industries, high-

ly structured physical environments in which after-the-fact changes are prohibitively costly, if not im-

possible. Since no formal software development methodologies existed at the time, this hardware-oriented

model was simply adapted for software development.
14

2.4.1 Frequency of Usable Releases

One of the primary differences between Waterfall and Agile is the frequency with which usable releases

are produced. With Waterfall, development goes through a series of distinct phases: requirements analy-

sis, design, implementation, testing, integration and maintenance. For instance over a two-year project

duration, each phase might range from three to six calendar months. At the conclusion of each phase, a

formal milestone review is typically conducted as a capstone event (also a user validation). There is only

one product release at the end of testing.

11

 For more information see: http://agiledata.org/essays/tdd.html or http://en.wikipedia.org/wiki/Test-driven_development

12
 http://www.websters-online-dictionary.org/Wa/Waterfall+Model.html

13
The first formal description of the waterfall model is often cited to be an article published in 1970 by Winston W. Royce

(1929–1995), although Royce did not use the term ――waterfall‖― in this article. Royce was presenting this model as an ex-

ample of a flawed, non-working model (Royce 1970). This is in fact the way the term has generally been used in writing

about software development—as a way to criticize a commonly used software practice.

14
 http://en.wikipedia.org/wiki/Waterfall_model

http://agiledata.org/essays/tdd.html
http://en.wikipedia.org/wiki/Test-driven_develop
http://en.wikipedia.org/wiki/Test-driven_development
http://www.websters-online-dictionary.org/Wa/Waterfall+Model.html
http://en.wikipedia.org/wiki/Waterfall_model

7 | CMU/SEI-2010-TN-002

In contrast, Agile breaks the development into a series of short iterations, between one and eight weeks

(most typically two weeks), that produce a usable product at the end of each iteration.
15

 The idea is that

the stakeholders receive usable code much sooner when using Agile.

As shown in Figure 1, Waterfall typically decomposes the system into subsystems that address specific

requirements in ―stovepipes‖ and provides the user with limited user value until subsystems are integrated

at the end of the entire project. All requirements established during the life cycle phases are considered to

be equally ―required,‖ regardless of their ultimate value to the end user or their risk to the project if they

cannot be successfully achieved. If strictly followed, Waterfall culminates in ―big bang‖ integration, in

which any issues not anticipated in the pre-coding phases emerge.

16

Figure 1: Waterfall and Resulting Value/Time Curve

2.4.2 Executable and Testable Product

Another significant difference between Agile and Waterfall is that the output of each Agile iteration is an

executable, testable product that could actually be used. Therefore, the original scope of work could be

modified dynamically by the project team. For example, the customer could decide that the cumulative

scope of work built into an iteration might be all that is actually required, and could potentially terminate

the project at the conclusion of any iteration. Conversely, scope could be added, or priorities and delive-

rables could be modified. Figure 2 shows a view for Agile, where a snapshot was taken after each itera-

tion to show the actual state of the various subsystems (or components) that make up the software system.

15

 Usable means code that provides a coherent piece of functionality. However, the code from a single iteration might not
have sufficient functionality to be useful to external stakeholders. Sufficient functionality might only be available through
releases (multiple iterations) which are provided to external stakeholders.

16
 The value/time graph was adapted from Jim Highsmith.

1 2 3 4 5
0

25

50

100

75

%

C
o

m
p

le
te

Component

Initial

Design

Critical

Design

Build

Integrate

and Test

Waterfall

User

Value

Cost$

Time

8 | CMU/SEI-2010-TN-002

Figure 2: Agile/Incremental Build

Because Agile forces an executable product to be produced, the Agile team learns about integration and

testing issues very early in the project. Lessons learned from early integration and testing will influence

future iterations.

If we were to extend the iteration builds to the same scope as we included in the Waterfall diagram shown

in Figure 1, we arrive at the depiction in Figure 3. The ―stories‖ that typically encapsulate the system re-

quirements in Agile cut across the various elements of the business logic structure and incrementally real-

ize user value. Optimally, high-value and high-risk requirements have been completed as part of stories

completed early in the project, and system integration has been carried out at the end of each iteration,

risk has been steadily worked off (at least in principle), and the user value of the project has been

achieved incrementally as the project progresses.

Figure 3: Agile and Resulting Value/Time Curve
17

17

 The value/time graph depicted in this figure was adapted from Jim Highsmith.

1

1 2 3 4 5

I1

Component

1 1 1 1

2

1 2 3 4 5

I2

I1

F
u

n
c

ti
o

n
a

li
ty

Component

2

1

2

1 1

2

1

2

1 2 3 4 5

I2

I1

I3

F
u

n
c

ti
o

n
a

li
ty

Component

2

1

3

3

2

3

1

3

1

2

3

1

2

1 2 3 4 5

I2

I1

I3

I4

F
u

n
c

ti
o

n
a

li
ty

Component

2

1

3

4

3

4

2

3

1

3

4

1

2

3

F
u

n
c

ti
o

n
a

li
ty

Increment 1 Increment 2 Increment 3 Increment 4

1

2

1 2 3 4 5

I-2

I-1

I-3

I-4

I-5

I-6

I-7

0

25

50

100

75

%

C
o

m
p

le
te

Component

Agile/Incremental

2

1

3

4

5

6

3

4

6

7

2

3

5

6

7

1

3

4

6

7

1

2

3

5

6

7

User

Value

Cost$

Time

9 | CMU/SEI-2010-TN-002

2.4.3 Internal Integration and Test Group

One additional point can be made to illustrate the difference between Waterfall and Agile. If we were to

compare two project teams working on equivalent scope (one using Waterfall, and the other using Agile),

we should expect their staffing profiles to be quite different. Because each Agile iteration produces an

executable, testable product, there is obviously more staff members that are usually allocated to the inte-

gration and test functions for both internal components and components of the system early in the life

cycle. The Agile workforce seems to have a more stable distribution of effort among the various discip-

lines than when using Waterfall. Figure 4 provides a notional illustration of how this might appear for the

Integration and Test groups.

Figure 4: Notional Illustration of Agile Versus Waterfall Integration/Test Efforts

To a certain extent, the difference is that, with Agile, the integration and test are largely internal to the

Agile team, while with Waterfall integration and test is a separate group. The reality is that when you be-

gin integration and test activities, you begin to identify unintended behavior (defects) that require effort to

fix. In Agile, the effort associated with this rework takes away from the time available to build new func-

tionality. Under some conditions, this effect could escalate and lead to iterations that do nothing but fix

defects.
18

 On the other hand, in Waterfall, waiting until the end of the life cycle to perform the integration

and test activities can lead to extensive delays when there are significant problems found; this can result

in significant rework. Obviously, arguments can be made that support either side in the analysis of this

distinction between Waterfall and Agile. The rationale behind Waterfall is that with more time to antic-

ipate integration issues, a better design could have been taken from the outset, avoiding the defects entire-

ly. The rationale behind the continuous integration approach is that a certain percentage of defects would

18

 The team uncovers the issues but the users/customer/business side decides what is done to address the issues. They
could decide to fix them and reduce or eliminate functionality to allow time for the fixes.

Integration and Test Effort

Agile Life Cycle

(Notional)

Integration and Test Effort

Waterfall Life Cycle

(Notional)

E
ff
o

rt

Iteration

E
ff
o

rt

Time

10 | CMU/SEI-2010-TN-002

not have been created or would have been found sooner since integration and test start sooner. The early

detection of these defects results in significantly less overall effort to resolve them.

As we have discussed, Agile can have multiple advantages over using Waterfall. So, then, why are so few

DoD software acquisitions using Agile? For those DoD software acquisitions that have used Agile me-

thods, what lessons have they learned? We interviewed a select group of programs about their use of

Agile, and what we learned is grouped into the following topics, which are discussed in more detail in the

next section.

 Acquisition

 Knowledge of Agile

 Culture

 Oversight

 End-User Involvement

 Integration and Test

 Infrastructure

11 | CMU/SEI-2010-TN-002

3 Interview Observations and Findings

The results from interviews with Agile practitioners and other observations of Agile within the DoD envi-

ronment are presented in this section. The results are lessons learned from actual application of Agile

within the DoD environment. We reviewed the interview notes and other observations and found seven

common topics, which we use to frame the discussion of the overall results. Each topic is structured to

provide a context and the associated finding/observation. These topics are related to each other and there

is overlap between their findings.

Note: We also provide additional information about Agile concepts and how to apply them in Section 5;

Section 3 only presents what we learned from the interviews and observations.

The material in this section was derived from interviews that we conducted with the following people and

organizations:

 BAE—experiences as contractor for Joint Mission Planning System (JMPS) and other programs us-

ing Agile methods

 JMPS Program Management Office (PMO)—experiences with Agile on JMPS

 Fred Schenker—SEI technical staff experiences with Single Integrated Air Picture (SIAP) program

 Harry Levinson—SEI technical staff experiences with Joint Mission Planning System (JMPS) Inde-

pendent Technical Assessment

 Mike Bandor—SEI technical staff experiences with Operationally Responsive Space (ORS) , VMOC

(Virtual Mission Operations Center), and Space Radar programs

 Keith Korsac—SEI technical staff experience with army tank program

 Major Daniel Ward (now Lt Col)—discussions of FIST applications

3.1 Overview of Common Topics

Acquisition

It is widely believed, both by program offices and DoD contractors, that the DoD 5000 series and

other regulations and guidance documents limit the government and contractors from using a non-

Waterfall approach. A particular sticking-point is that Agile does not readily accommodate large

capstone events such as Critical Design Review (CDR). However, the programs that have used

Agile in software development have found that the DoD 5000 series has great flexibility and does

not, in fact, preclude the use of Agile.

Knowledge of Agile

Agile methods have been developed and used most extensively in the non-DoD commercial sector

with small- to medium-sized projects. Experience with larger projects has recently started to accu-

mulate in the commercial sector. As a result, few DoD acquisition professionals and DoD contrac-

tors are familiar with the use of Agile or possess the necessary experience to effectively implement

it.

12 | CMU/SEI-2010-TN-002

Culture

Culture is the customary knowledge, beliefs, behaviors, and traits displayed by an acquisition organ-

ization or contractor. The government is heavily invested in the use of Waterfall for acquisition of

all equipment and systems, whether they are software intensive or not. As a result, a large segment

of the DoD acquisition community (and that of long-time DoD contractors, as well) is more com-

fortable with Waterfall and skeptical about using Agile.

Oversight

Tracking and measuring progress while using Agile in a way that is clear to and trusted by the gov-

ernment is a particular challenge. The metrics applied on past software acquisitions, including the

use of the Earned Value Method System (EVMS), do not work well for Agile at best, and at worst

do not work at all. Agile also does not support the kind of granularity of estimates and task detail

that is typically shown across the entire project in an Integrated Master Schedule (IMS). Rather,

Agile provides high granularity task-level estimates for just the upcoming iteration.

End-User Involvement

The close involvement of end-user participation in the development process, reviews, and demon-

strations, upon which successful Agile implementations depend, is extremely difficult to achieve

with the many stakeholders typical of DoD acquisitions. In addition, the continuous availability of

the end user is an issue in the DoD environment, as end users are usually in operational not acquisi-

tion organizations. Acquisition personnel tend to be isolated in acquisition organizations, rather than

integrated into operational units.

Integration and Test

Because integration and testing activities are part of Agile development iterations, the approach to

these activities might significantly change from those used in Waterfall. The biggest change is that

integration and test need to be done throughout the project as opposed to waiting until the end of the

release cycle. This is another particularly challenging issue of culture-change since, historically, in-

tegration and test organizations have been outside the development teams once you get beyond unit

testing.

Infrastructure

No matter whether one uses Waterfall or Agile is used, the group undertaking the project needs to

have an infrastructure supporting it. This would include the organization of the team and the context

within which the team operates. The overall organization of a project using Agile is different from

the traditional program structure. The structure for an Agile project reflects Agile precepts and is re-

liant on the context in which it will be applied.

3.2 Acquisition

Context

A strong belief that is prevalent across the DoD community is that the DoD 5000 series, and other acqui-

sition policies, instructions, and regulations are rigid in requiring a traditional Waterfall process for the

development of software. It is true that most acquisition personnel have been specifically trained in apply-

ing the Waterfall method to these acquisition regulations, irrespective of whether they are acquiring tanks

13 | CMU/SEI-2010-TN-002

and aircraft or acquiring software that might be used in stand-alone software applications, such as pure IT

acquisitions (e.g., enterprise resource planning or personnel/pay systems).

Finding/Observation

Those programs that have used Agile in software development have found that the DoD 5000 series has

great flexibility and does not in fact preclude the use of Agile. It appears that with careful review and

some tailoring an alternate interpretation can be created so that Agile can be used on DoD programs.

Context

An interesting corollary to the prevalent belief of using traditional methods is that many Request for Pro-

posals (RFPs) are written in such a way that a non-Waterfall response would appear to be or might be

noncompliant. Most traditional RFPs require a full complement of Contract Data Requirements Lists

(CDRLs) for documentation of progress.

Finding/Observation

This level of documentation is contrary to Agile precepts of creating ―just enough‖ documentation. ―Just

enough‖ will vary from situation to situation depending on the needs and regulation requirements of the

project. In order for Agile to become common place within the DoD, the acquisition organizations should

encourage, and contractors should provide, a compliant proposal with suggested alternatives that use

Agile. It is important for the acquirer to understand Agile benefits and to include project-specific guide-

lines
19

 in RFP language for how Agile responses should be framed.

Context

A very specific acquisition issue and sticking point is that Agile methodology does not accommodate

large capstone events such as Critical Design Review (CDR), which is usually a major, multi-day event

with many smaller technical meetings leading up to it. This approach requires a great deal of documenta-

tion and many technical reviews by the contractor.

Finding/Observation

A software developer using Agile typically does not complete the design before beginning implementa-

tion of it, so the scale and comprehensiveness of a CDR is quite foreign to Agile development teams.

Some experienced Agile providers have accommodated this issue by breaking the typical Waterfall-based

CDRs into multiple Interim Design Reviews (IDRs), which is an example of the type of ―flexibility‖ in

implementing DoD 5000 requirements. These IDRs need to reflect the iterative nature of Agile, and they

can be held more frequently and with tighter focus for only a few hours at a time, as opposed to the sever-

al days needed for CDRs. The entry and exit criteria for an IDR need to be dependent on the current itera-

tion, and the results of a combination of all IDRs completed should be functionally equivalent to a CDR

using Waterfall.

19

 As of publication, the authors are not aware of the existence of any guidance for how to frame Agile responses.

14 | CMU/SEI-2010-TN-002

3.3 Knowledge of Agile

Context

A good understanding of the fundamentals of Agile development methods is required by both the gov-

ernment and contractor personnel. Without this understanding and knowledge, misunderstandings will

certainly happen and could have disastrous consequences.

Finding/Observation

One example we found of a typical misunderstanding arose as early as contract negotiations. The contrac-

tor specified that they would deliver documentation in accordance with best Agile practices. The govern-

ment included a list of required documents in the contract. The contractor understood that the Agile best

practice meant that there would be minimal detail and documentation (what, when, and how much detail

would be done) up front. Even though the contractor understood this, the government did not and still

expected all the detail that was traditionally provided for the documents. The government had trouble

accepting less detail and documentation even though the complete content would become available at a

later date.

The issue was not only how many documents were produced but the expected level of detail in the docu-

ments and when the documents would be complete. One way to increase the amount of knowledge of

Agile and avoid this type of misunderstanding is through education. For example, courses at the Defense

Acquisition University (DAU) and other institutions could be updated to include discussions of Agile, its

pros and cons, and the challenges Agile presents to the Program Management Office (PMO). One such

pro is that the Agile forces closure on requirements analysis for the iteration and flushes out problems

early in each iteration; these are very desirable attributes. One potential con is the resistance to the

amount of culture change that may be required to employ Agile.

Context

The acquisition community‘s imperfect understanding of Agile might undermine the success of an Agile

contractor. Agile is relatively new and has its genesis in the software development community itself,

which is mostly isolated from acquisition concerns. As a result, relatively few acquisition professionals

have direct experience with Agile, and such Agile-unaware PMO members might insist on the more fa-

miliar project plans and metrics, but they will not fit into Agile.

Finding/Observation

All government and contractor personnel need to spend the time necessary before contract award to un-

derstand what it means to use Agile from all perspectives. The following are examples of such considera-

tions.

 Which contractual phases can employ Agile?

 What are the milestone and deliverable details for each phase when using Agile?

 What contract changes would be needed?

 What changes to the approach of monitoring development progress will be needed?

 What type of staff members are needed on both sides (government and contractor)?

 Which of the 5000.02 process formalities will be tailored?

15 | CMU/SEI-2010-TN-002

Context

Both government and contractor personnel need to acquire an appropriate skill set to support Agile use

within DoD systems. The nature of Agile lends itself to a slightly different staffing model than the one the

government is used to seeing with Waterfall.

Finding/Observation

From our interviews, we learned that there are subtle but critical differences:

 The contractor‘s program manager needs to be experienced in Agile. The government program man-

ager should also be experienced in Agile, though at present this might be more than can reasonably

be expected.

 Contractor personnel need to be trained and experienced in the Agile method to be used on the

project.

 PMO personnel need specific training in the Agile method that the contractor is going to use, as well

as a more general understanding of Agile. They need to develop an understanding that Agile is adap-

tive to each project or program.

 There needs to be an expert advisor/advocate for Agile in a position of authority in the PMO. Without

authority, such an advisor/advocate becomes ―just another opinion.‖

3.4 Culture

Context

The government is heavily invested in the use of Waterfall for acquisition in general, and this has been

applied to software acquisition as well. While other methods have been used, Waterfall and its accompa-

nying precepts are most familiar to most PMOs.

Finding/Observation

Moving to Agile is difficult—many of the ―old ways‖ and paradigms need to be modified using a funda-

mental culture change. As alluded to previously, the existing training in the interpretation of software ac-

quisition requirements is skewed toward the Waterfall approach. Thus, a PMO employing Agile will need

to be trained in Agile concepts.

Context

One challenge regarding benefits for the DoD is that the acquisition community might not perceive that

there is any benefit in using Agile. Many believe Agile is ad hoc and that it does not produce necessary

documentation or apply any rigor to development.

Finding/Observation

The PMO specifically needs to realize that while Agile provides many benefits, many of the traditional

Waterfall activities, documents, etc. will not be present. In some cases, the data will be present but not in

the anticipated form.

16 | CMU/SEI-2010-TN-002

Context

Since the type of management oversight is different for Agile than Waterfall, members of the PMO are

likely to feel that they are losing control over the program.

Finding/Observation

Historically, the PMO‘s role is to ensure orderly development progress, but with Agile the PMO has to

relinquish control over how change is managed. Agile attacks high-value and/or high-risk user items first

instead of making steady progress on all requirements. This difference in handling requirements can

create unnecessary friction between the PMO and the contractor, leading to outright hostility.

Context

Both the PMO and the contractor need to be aware that different skills sets or skill mixes will possibly be

needed in programs using Agile (as opposed to programs using Waterfall).

Finding/Observation

Agile takes a lot of strong, focused team and management oversight at the mid- and low-levels versus the

high-level, particularly if a new development project/program is using a merger of Waterfall and Agile.

Furthermore, the reference estimates that PMO members have developed over time about the number of

developers needed based on the size/volume of the code may not be valid in an Agile environment. The

management oversight required in the developers facility is more at a technical level than at the

project/program management level when using Agile—what is needed are ―iteration leads,‖ ―scrum lead-

ers,‖ etc. This different skill mix does not necessarily lead to a more costly management structure, but it

does require a different ―scorecard‖ to evaluate progress and troubleshoot development issues [3] [4].

The important point here is that the PMO must be prepared to deal with organizational change manage-

ment issues.

3.5 Oversight

Context

Traditional Waterfall provides significant oversight and insight into the implementation details of the

program; this method is very structured so that it provides predictability, stability, and high assurance [4].

The execution of Agile is distinctly different from what the PMO has seen in the past on programs using

Waterfall. The control and discipline comes from the Agile team itself rather than from control external to

the team, that is project and higher management. As a result, the PMO will see a different way that the

development is controlled, executed, and viewed.

Finding/Observation

We learned from our interviews that the PMO has to be prepared to relinquish some level of control and

oversight of the program to allow Agile to operate effectively. What is needed is a system of program

metrics that allows the PMO to have insight into the developer‘s priorities and the development progress

being made on a day-to-day basis, and this will allow the PMO to achieve an optimal balance between

insight and oversight.

17 | CMU/SEI-2010-TN-002

Context

Forecasting the project schedule when using Agile requires an entirely different approach than when fore-

casting the project schedule during Waterfall. Agile depends on being able to determine the content of

iterations on a just-in-time basis, to use very short iterations, and to respond quickly to customers‘ chang-

ing needs. The creation of a traditional detailed Integrated Master Schedule (IMS) with the content of

each iteration for the entire project is not done with Agile.
20

 Agile does not support the kind of granularity

of estimates and detail that are typically shown in a traditional IMS for the entire project. Traditional IMS

estimates and the corresponding constituent tasks are very detailed and require a great deal of effort to

change or to update. This is counter to the ―just-in-time‖ philosophy used in Agile.

Finding/Observation

Our interviews indicated that the IMS can be maintained at a level that is compatible and appropriate for

Agile. This may be more difficult than it appears because it requires a different perspective about when

and to what level of detail the IMS should be developed.

Context

An additional impact is that the estimates at the iteration level in Agile are done by the iteration team, not

just by management (team leads and higher level management)
21

 as is the case in most Waterfall devel-

opments. Depending on the skill level and the amount of learning achieved within the development team

from previous iterations, the estimates they produce might be much more coarse-grained than expected by

the PMO.

Finding/Observation

If the project is not adopting Agile outright, then some compromise between the PMO expectation of a

detailed IMS and the contractor‘s Agile management techniques will be needed to define a model that

uses the best practices from both Agile and Waterfall. Some things that have been done on existing pro-

grams and some options the PMO could consider include:

 Traditional progress measures such as earned value and percent complete might be possible to use.

Because a detailed IMS is not realistic for Agile, these measures would need to be computed diffe-

rently than for Waterfall.

 Progress could be measured by the number of stories completed, though for this to be useful, the

PMO would need to understand the full inventory of stories that the contractor projects for the devel-

opment and be convinced that the sum of all the stories fully comprehends the project requirements.

 Progress could be measured by the accumulation of ―user value‖ during development. Since the de-

velopment team itself typically assigns the value of the stories that are completed, this might not sa-

tisfy the PMO unless they had fully concurred with the contractor-assigned story (capability) values.

20

 Agile creates detailed schedules for the current iteration. Agile does not create detailed schedules for all iterations apri-
ori.

21
 Note that there is a difference in how estimations can be done at the iteration, release, and enterprise levels. At the

iteration level, the team should always be involved. However, as the project gets bigger, the need for release- and even-
tually enterprise-level estimates may look more like those seen in Waterfall.

18 | CMU/SEI-2010-TN-002

 In many Agile developments, the contractors use Agile tracking tools to keep track of progress. On

one of the projects interviewed, the PMO did use those same tools in lieu of expecting paper progress

reports and acquiring a progress-tracking tool of their own. This has two advantages:

 the PMO learns and uses the contractor tools to follow progress and review designs, which re-

duces the work and cost for the PMO

 the contractor realizes cost savings because he does not have to do any translation of what he

sees in his own tools to what the PMO expects

 The contractor and the PMO need to negotiate common ground in order to define the needed hybrid

model for the measurement system.

 The project progress measurement system to be used must be negotiated and agreed upon early in the

project/program.

Context

Another form of oversight used on traditional programs is the production and review of documentation on

a regular basis. At first look, Agile documentation might not meet DoD expectations and the perceived

need for acquisition office oversight. Most PMO personnel expect a full complement of CDRLs, provided

at regular, defined intervals or milestones using traditional methods.

Finding/Observation

A developer using Agile only creates the minimum documentation necessary to accomplish the tasks at

hand, and the documentation evolves over time into a final product. Thus if Agile is to be employed, the

government PMO needs to agree to less-than-full-blown documentation, as this saves time and avoids

abandoning expensive documentation later. Further, the government PMO needs to relax traditional

CDRL-level documentation at milestone events. Still, the parties need to negotiate documentation to en-

sure that important data represented in a minimal required set of documents (programmatic and technical)

is gathered. This requires more software expertise of the PMO staff, who need to recognize that documen-

tation versus functionality is a ―zero-sum game‖: if more documents are required, then less functionality

will be delivered in the final system.
22

Eliminating these documents and the related oversight is easy to say but requires trust that the contractor

is doing it right; this requires some other mechanism that ensures the proper oversight such as the gov-

ernment being on-site, frequent code reviews, and frequent process checks. The Agilist might argue that

the iteration builds provide the visibility needed for government oversight. But until there is more gov-

ernment experience with Agile methods, it will be difficult for the PMOs to relinquish the current tech-

nical documents needed for oversight.

3.6 End-User Involvement

Context

One of the fundamental principles cited in the Agile Manifesto is customer collaboration. In other words,

Agile believes close interaction between the developers and end users is important. A basic Agile prin-

22

 This should not be construed to think that doing no documentation is an option.

	Carnegie Mellon University
	Research Showcase @ CMU
	4-2010

	Considerations for Using Agile in DoD Acquisition
	Mary Ann Lapham
	Ray Williams
	Charles (Bud) Hammons
	Daniel Burton
	Alfred R. Schenker

	Considerations for Using Agile in DoD Acquisition
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Organization of This Report
	Executive Summary
	1 Overview
	2 What is Agile?
	3 Interview Observations and Findings
	4 DoD 5000 Series and Agile—Potential Issues and Conflicts
	5 Considerations for Applying Agile in the DoD
	6 Conclusion
	Appendix A: Examples of Agile Methods
	Appendix B: Common Objections to Agile
	Appendix C: Areas for Consideration
	Appendix D: Acronyms
	Appendix E: FIST Manifesto
	References/Bibliography

