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Abstract

We present a logic for reasoning about properties of se-
cure systems. The logic is built around a concurrent pro-
gramming language with constructs for modeling ma-
chines with shared memory, a simple form of access
control on memory, machine resets, cryptographic oper-
ations, network communication, and dynamically load-
ing and executing unknown (and potentially untrusted)
code. The adversary’s capabilities are constrained by the
system interface as defined in the programming model
(leading to the name CSI-ADVERSARY). We develop a
sound proof system for reasoning about programs with-
out explicitly reasoning about adversary actions. We
use the logic to characterize trusted computing primitives
and prove code integrity and execution integrity proper-
ties of two remote attestation protocols. The proofs make
precise assumptions needed for the security of these pro-
tocols and reveal an insecure interaction between the two
protocols.

1 Introduction

Contemporary secure systems are complex and designed
to provide subtle security properties in the face of attack.
Examples of such systems include hypervisors, virtual
machine monitors, security kernels, operating systems,
web browsers, and secure co-processor-based systems
such as those utilizing the Trusted Computing Group’s
Trusted Platform Module (TPM) [38]. In this paper we
initiate a program to formally model abstractions of such
systems and specify and analyze their security properties
in the presence of a general class of adversaries. Specif-
ically, we introduce the Logic of Secure Systems (LS2)
and use it to carry out a detailed analysis of Trusted Com-
puting systems. The logic is built around a program-
ming language for modeling systems and is inspired by
a logic for network protocol analysis, Protocol Composi-
tion Logic (PCL) [10, 11, 13, 33].

Programming Model. The programming language is
designed to be expressive enough to model practical se-
cure systems while still maintaining a sufficiently high
level of abstraction to enable simple reasoning. Follow-
ing PCL, the language includes process calculi and func-
tional constructs for modeling cryptographic operations,
straightline code, and network communication. We in-
troduce constructs for modeling machines and shared
memory, a simple form of access control on memory,
machine resets, and dynamically loading and executing
unknown (and potentially untrusted) code. The prim-
itives for reading and writing to memory are inspired
by the treatment of memory cells in impure functional
languages like Standard ML [26]. We model memory
protection, a fundamental building block for secure sys-
tems [34], by allowing programs to acquire exclusive-
write locks on memory locations. The treatment of dy-
namically loading and executing unknown code is novel
to this work.

While these constructs are the common denominator
for many secure systems, including the trusted comput-
ing systems examined in this paper, they are by no means
sufficient to model all systems of interest. The language,
however, is extensible in a modular fashion, as we il-
lustrate by extending the core language (presented in
Section 2) with a trusted computing subsystem (in Sec-
tion 3). At a high level, each system component can be
viewed as exposing an interface. For example, the inter-
face for memory includes read, write, and reset opera-
tions. Adding a new component to the system involves
adding operations in the programming language corre-
sponding to the interface exposed by it. Platform Con-
figuration Registers (PCR) in the TPM are an example
since they can be modeled as a special form of memory
that may be accessed via read, reset, and a new extend
operation. Some extensions can have a more global ef-
fect on the language semantics. For instance, adding the
reset operation to the language affects both how state of
local memory and TPM PCRs may be updated.

Interfaces to system components also provide a use-
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ful conceptual view of the adversary. Since the capa-
bilities of the adversary are constrained by the system
interface, we refer to her as a CSI-ADVERSARY. For
example, the adversary can write to unprotected mem-
ory locations, but can only update PCRs through the ex-
tend operation in its interface. Formally, the adversary
may execute any program expressible in our program-
ming model, i.e. the adversary can perform symbolic
cryptographic operations, intercept messages on the net-
work, inject messages that it can create, read and write
memory locations that are not explicitly locked by an-
other thread, and reset machines. Because of these capa-
bilities, the adversary can launch a broad range of attacks
on the network and the local machines including replay
attacks, modifying and injecting malicious code on local
machines, and exploiting race conditions to compromise
systems.
Logic. Security properties of programs are expressed
in LS2 using modal formulas of the form [P]tb,te

I A, which
means that formula A holds whenever thread I executes
exactly the program P in the time interval (tb, te], irre-
spective of the actions executed concurrently by other
threads including the adversary. The thread I identi-
fies the principal executing the program, the machine
on which the program is being executed, and includes a
unique identifier. The formula A expresses security prop-
erties, such as confidentiality, integrity, authentication,
as well as code and execution integrity. The logic in-
cludes predicates that reflect the programming language
constructs for shared memory, memory protection, ma-
chine resets and a form of unconditional jump to model
branching to dynamically loaded code.

Security properties are established using a proof sys-
tem for LS2. A central design goal that LS2 achieves (fol-
lowing PCL) is that the proof system does not mention
adversary actions. Instead, the semantics and soundness
of the proof system guarantee that if [P]tb,te

I A is provable,
then A holds in all traces in which I completes execution
of program P, including those that contain adversarial
threads. This implicit treatment of adversaries simpli-
fies proofs significantly. Designing a sound proof system
that supports this local style of reasoning, in spite of the
global nature of shared memory changes and execution
of dynamically loaded unknown code, turned out to be a
significant technical challenge.

We formalize local reasoning principles about shared
memory with axioms that reason about invariance of val-
ues in memory based on local actions of threads that
hold locks (see Section 2). This approach is technically
similar to concurrent separation logic, whose regions re-
semble LS2’s locks [6], but distinct from formal systems

which support global reasoning about concurrent shared
memory programs [23]. Our initial idea to reason about
execution of dynamically loaded code was to treat the
code being branched to as a continuation of the code call-
ing it. However, this approach does not work for the case
where the code being branched to is either read from
memory or received over the network, because nothing
can be determined about the called code by looking at
the caller’s program. As a result, traditional methods for
proving program invariants such as those based on Hoare
logic and its extensions [17, 29, 32] do not apply to this
setting. Yet this is exactly what we needed to reason in
the face of adversaries who can modify or inject code
into the system. Our final technical approach for reason-
ing about execution of dynamically loaded code is based
on a program invariance rule, which we elaborate on in
Section 2 and illustrate in Section 4.1.
Trusted Computing. We model and analyze two
trusted computing protocols that rely on TPMs to pro-
vide integrity properties: load-time attestation using a
Static Root of Trust for Measurement (SRTM) [40] and
late-launch-based attestation using a Dynamic Root of
Trust for Measurement (DRTM) [2, 4, 37]. In doing so,
we make the following contributions. First, we formal-
ize, using axioms, the behavior of core trusted comput-
ing primitives including the TCG’s widely-deployed se-
cure co-processor, the Trusted Platform Module (TPM),
as well as recently introduced hardware to support the
late launch of a security kernel in a protected execution
environment. Hardware implementations of late launch
are publicly available in both AMD’s Secure Virtual Ma-
chine Architecture (SVM) [4] and Intel’s Trusted eXe-
cution Technology (TXT) [2]. These axioms provide a
succinct specification of the primitives, which serve as
building blocks in the proofs of the protocols (see Sec-
tion 3).

Second, we formally define and prove code integrity
and execution integrity properties of the attestation pro-
tocols (Section 4; Theorems 2–4). To the best of our
knowledge, these are the first logical security proofs of
these protocols.

Finally, the formal proofs yield insights about the se-
curity of these protocols. The invariants used in the
proofs make precise the properties that the Trusted Com-
puting Base (TCB) must satisfy. In Section 4, we de-
scribe these invariants and manually check that an in-
variant holds on a security kernel implementation used
in an attestation protocol. We demonstrate that newly
introduced hardware support for late launch actually ad-
versely affects the security of previous generation attes-
tation protocols. We describe an attack that utilizes hard-
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ware support for late launch to exploit load-time attes-
tation protocols that measure software starting at system
boot. The attack enables an adversary to report false sys-
tem integrity measurements that are not tied to the actual
state of the platform. This attack could be used to ex-
ploit Digital Rights Management (DRM) protocols that
rely on load-time attestation.

2 Logic of Secure Systems
We introduce the syntax of the Logic of Secure Systems
(LS2) in this section. The next section introduces features
of LS2 that are specific to trusted computing. We restrict
technical descriptions to the extent necessary to explain
the main concepts and application, and refer the reader
to Appendix A for details.

2.1 Programming Model

The programming language definition includes its syntax
and operational semantics. The syntax is summarized in
Figure 5. The current language includes process calculi
and functional constructs for modeling cryptographic op-
erations, straightline code, and network communication
among concurrent processes, but does not have condi-
tionals (if. . .then. . .else. . .), returning function calls or
loops. Instead, it has a match construct that tests equality
of expressions (match e,e′) and blocks if the test fails, as
well as unconditional jumps to arbitrary code (jump e).
These constructs are sufficient for applications we have
considered so far. In future work, we plan to investigate
the technical challenges associated with adding condi-
tionals, returning function calls, and loops to the lan-
guage. We describe below the core language constructs,
the adversary model, and the form of the operational se-
mantics. Examples of programs in the language can be
found in Section 4.
Data, agents, and keys. Data is represented in the
programming model symbolically as expressions e (also
called values). Expressions may be numbers n, identi-
ties of agents (principals) X̂ , keys K, variables x, pairs
(e,e′), signatures using private keys SIGK{|e|} (denoting
the signature on e made using the key K), asymmetric
key encryptions ENCK{|e|}, symmetric key encryptions
SY MENCK{|e|}, hashes H(e), or code reified as data P.
All expressions are assumed to be simply typed (e.g. a
pair can be distinguished from a number), but we elide
the details of the types. Agents, denoted X̂ ,Ŷ , are users
associated with a system on behalf of whom programs
execute. Keys are denoted by the letter K. The inverse of

key K is denoted by K−1. We assume that the expression
e may be recovered from the signature SIGK{|e|} if the
verification key K is known. We also assume that hashes
are confidentiality preserving.
Systems, programs, and actions. A secure system
is specified as a set of programs P in the programming
language. For example, a trusted computing attestation
system will contain two programs, one to be executed
by the untrusted platform and the other by the remote
verifier. Each program consists of a number of actions
x := a that are executed in a straight line. The name x
binds the value returned by the action a, and is used to
refer to the value in subsequent actions. Our model of
straightline code execution is thus functional. This de-
sign choice simplifies reasoning significantly. For some
actions such as sending a message, the value returned is
meaningless. In such cases we assume that the value re-
turned is the constant 0. A program ends with either an
empty action ·, or one of the special actions jump e or
latelaunch . The expression jump e is described be-
low and latelaunch is covered in the next section. A
single executing program is called a thread [P]I (threads
are referred to with variables T , S). It contains a pro-
gram P, and a descriptor I for the thread that is a tuple
〈X̂ ,η ,m〉. X̂ is the agent that owns the thread, m is the
machine on which the thread is hosted, and η is a unique
identifier (akin to a process id). The abstract runtime en-
vironment of the language is called a configuration C,
written ι ,σ ,T1| . . . |Tn. It contains all executing threads
(T1| . . . |Tn), the state of memory on all machines (repre-
sented by the map σ ), and the state of memory locks held
by threads (represented by the map ι).
Cryptography and network primitives. The pro-
gramming language includes actions for standard oper-
ations like signing and signature verification, encryp-
tion and decryption (both symmetric and asymmetric),
nonce generation, hashing, expression matching, projec-
tion from a pair, and evaluation of arbitrary side-effect
free functions (eval f ,e). Threads can communicate
with each other using actions to send and receive val-
ues over the network. Network communication is untar-
geted, i.e., any thread may intercept and read any mes-
sage (dually, a received message could have been sent
by any thread). Information being sent over the network
may be protected using cryptography, if needed. The
treatment of cryptography and network communication
follows PCL. The language constructs we present next
are new to this work.
Machines and shared memory. Threads can also
share data through memory. The programming model
contains machines m explicitly. Each machine contains
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Expressions/Values e ::= n Number
| X̂ ,Ŷ Agent
| K Key
| K−1 Inverse of key K
| x Variable
| (e,e′) Pair
| SIGK{|e|} Value e signed by private key K
| ENCK{|e|} Value e encrypted by public key K
| SY MENCK{|e|} Value e encrypted by symmetric key K
| H(e) Hash of e
| P Program reified as data

Machine m
Location l ::= m.RAM.k | m.disk.k | m.pcr.k | m.d pcr.k
Action a ::= read l Read location l

| write l,e Write e to location l
| extend l,e Extend PCR l with e
| lock l Obtain write lock on location l
| unlock l Release write lock on location l
| send e Send e as a message
| receive Receive a message
| sign e,K Sign e with private key K
| verify e,K Check that e = SIGK{|e′|}
| enc e,K Encrypt e with public key K
| dec e,K Decrypt e with private key K
| symenc e,K Encrypt e with symmetric key K
| symdec e,K Decrypt e with symmetric key K
| hash e Hash the expression e
| eval f ,e Evaluate function f with argument e
| proj1 e Project the 1st component of a pair
| proj2 e Project the 2nd component of a pair
| match e,e′ Check that e = e′

| new Generate a new nonce
Program P,Q ::= · | jump e | latelaunch | x := a;P
Thread id I,J ::= 〈X̂ ,η ,m〉
Thread identifier η

Thread T,S ::= [P]I
Store σ : Locations→ Expressions
Lock map ι : Locations→ (Thread ids) ∪ { }
Configuration C ::= ι ,σ ,T1| . . . |Tn

Figure 1: Syntax of the programming language

a number of memory locations l that are shared by all
threads running on the machine. Each location is classi-
fied as either RAM, persistent store (hard disk), or other
special purpose location (such as Platform Configuration
Registers that are described in the next section). The
machine on which a location exists and the location’s
type are made explicit in the location’s name. For in-
stance, m.RAM.k is the kth RAM location on machine
m. The behavior of a location depends on its type. For
example, RAM locations are set to a fixed value when
a machine resets, whereas persistent locations are not af-

fected by resets. Despite these differences, the prominent
characteristics of all locations are that they can be read
and written through actions provided in the programming
language, and that they are shared by all threads on the
machine. Consequently, any thread, including an adver-
sarial thread, has the potential to read or modify any lo-
cation.

Access control on memory. Shared memory, by its
very nature, cannot be used in secure programs unless
some access control mechanism enforces the integrity
and confidentiality of data written to it. Access control
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varies by type of memory and application (e.g., memory
segmentation, page table read-only bits, access control
lists in file systems, etc). Our programming model pro-
vides an abstract form of access control through locks.
Any running thread may obtain an exclusive-write lock
on any previously unlocked memory location l by exe-
cuting the action lock l. Information on locks held by
threads is included in a configuration as a map ι from lo-
cations to identities of threads that hold locks on them.
The semantics of the programming language guarantee
that while a lock is held by a thread, no other thread will
be able to write the location. A thread may relinquish a
lock it holds by executing the action unlock l. Locking
in this manner may be used to enforce integrity of con-
tents of memory. Similarly, one may add read locks that
provide confidentiality of memory contents. Although
technically straightforward, read locks are omitted from
this paper since we are focusing on integrity properties.
Machine resets. The language allows a machine to
be spontaneously reset. There is no specific action that
causes a reset. Instead, there is a reduction in the op-
erational semantics that may occur at any time to reset
a machine. When this happens, all running threads on
the machine are killed, all its RAM and PCR locations
are set to a fixed value, and a single new thread is cre-
ated to reboot the machine. This new thread executes
a fixed booting program. We model the reset operation
since it has significant security implications for secure
systems [8]. In the context of trusted computing, e.g.,
the fact that a TPM’s Platform Configuration Registers
(PCRs) are set to a fixed value is critical in reasoning
about the security properties of attestation protocols. In
addition, it has been shown that adversaries can launch
realistic attacks against trusted computing systems using
machine resets [14].
Untrusted code execution. The last salient feature of
our programming model is an action jump e that dynam-
ically branches to code represented by the expression e.
The code e is arbitrary; it may have been read from mem-
ory or disk, or even have been received over the network.
As a result, it could have come from an adversary. Ex-
ecution of untrusted code is necessary to model several
systems of interest, e.g., trusted computing systems and
web browsers.
Adversary Model. We formally model adversaries as
extra threads executing concurrently with protocol par-
ticipants. Such an adversary may contain any number of
threads, on any machines, and may execute any program
expressible in our programming model. However, the ad-
versary cannot perform operations that are not permitted
by the language semantics. For example, the adversary

can neither write to memory locked by another thread,
nor can she break cryptography.
Operational semantics. The operational semantics of
the language captures how systems execute to produce
traces. It is defined using process calculus-style reduc-
tion rules that specify how a configuration may transition
to another. A trace C0 −→ C1 . . . −→ Cn is a sequence
of configurations, such that successive configurations in
the sequence can be obtained by applying one reduction
rule. A timed trace C0

t1−→C1 . . .
tn−→Cn associates mono-

tonically increasing time points t1, . . . , tn with reductions
on a trace. These time points may be drawn from any
totally ordered set, such as integers or real numbers.

2.2 Logic
The logic LS2 is used to specify and reason about prop-
erties of secure systems.
Syntax. Figure 2 summarizes LS2’s syntax, includ-
ing predicates specific to trusted computing that we dis-
cuss in the next section. Predicates for representing net-
work communication and cryptographic operations are
taken from PCL. Other predicates that capture informa-
tion about state, unconditional jumps, and resets are new
to this work. A significant difference from PCL is that
LS2 incorporates time explicitly in formulas and seman-
tics. All predicates and formulas are interpreted relative
to not only a timed trace but also a point of time (modal
formulas, described below, are an exception since they
are interpreted relative to a timed trace only). In the proof
system, time is used to track the relative order of actions
on a trace and to specify program invariants.

Action predicates capture actions performed by
threads. For instance, Send(I,e) holds on a trace at
time t if thread I executes action send e at time t in
the trace. Write(I, l,e) holds on a trace whenever thread
I executes write l,e. Similarly, we have predicates to
capture cryptographic operations. General predicates
capture other information, including information about
the state of the environment. Particularly prominent are
the two predicates Mem(l,e) which holds whenever lo-
cation l contains value e, and Jump(I,e) which holds
whenever thread I executes jump e. Access control on
memory is reflected in the logic through three predicates:
Lock(I, l), Unlock(I, l), and IsLocked(l, I). The first two
of these capture actions: Lock(I, l) holds on a trace when
a thread I obtains an exclusive-write lock on location l,
whereas Unlock(I, l) holds when thread I releases the
lock. The third predicate IsLocked(l, I) captures state:
it holds whenever thread I has an exclusive-write lock on
location l. As an example, suppose that thread I executes
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Action Predicates R ::= Receive(I,e) | Send(I,e) | Sign(I,e,K) | Verify(I,e,K) | Encrypt(I,e,K) | Decrypt(I,e,K) |
SymEncrypt(I,e,K) | SymDecrypt(I,e,K) | Hash(I,e) | Eval(I, f ,e,e′) |Match(I,e,e′) |
New(I,n) |Write(I, l,e) | Read(I, l,e) | Lock(I, l) | Unlock(I, l) | Extend(I, l,e)

General Predicates M ::= Mem(l,e) | IsLocked(l, I) | Reset(m, I) | Jump(I,e) | LateLaunch(m, I) | Contains(e,e′) |
e = e′ | t ≥ t ′ | Honest(X̂ ,~P)

Formulas A,B ::= R |M | > | ⊥ | A ∧ B | A ∨ B | A⊃ B | ¬A | ∀x.A | ∃x.A | A @ t
Modal Formulas J ::= [P]tb,teI A | [a]tb,teI,x A

Figure 2: Syntax of LS2

an action to obtain the lock on location l at time t and ex-
ecutes another action to release the lock at a later point t ′.
Then Lock(I, l) will hold exactly at time t, Unlock(I, l)
will hold exactly at time t ′, and IsLocked(l, I) will hold
at all points of time between t and t ′. The predicate
Reset(m, I) holds at time t if machine m is reset at time
t, creating the new thread I to boot it. We define the ab-
breviations Reset(m) and Jump(I) as ∃I. Reset(m, I) and
∃e. Jump(I,e) respectively. Contains(e,e′) means that e′

is a sub-expression of e. The predicate Honest(X̂ ,~P) is
described in Section 3.1.

Predicates can be combined using the usual logical
connectives: ∧ (conjunction), ∨ (disjunction), ⊃ (impli-
cation), and ¬ (negation) as well as first-order univer-
sal and existential quantifiers that may range over ex-
pressions, keys, principals, threads, locations, and time.
There is a special formula, A @ t, which captures time
explicitly in the logic. A @ t means that formula A holds
at time t. We often write intervals in the usual mathemat-
ical sense; they may take the forms (t1, t2), [t1, t2], (t1, t2],
and [t1, t2). For an interval i, we also define the formula
A on i as ∀t. ((t ∈ i)⊃ A @ t), where t ∈ i is the obvious
membership predicate. A on i means that A holds at each
point in the interval i. This treatment of time in the logic
draws ideas from work on hybrid modal logic [5,12,31].

Security properties of programs are expressed in LS2

using one of two forms of modal formulas. The princi-
pal of these, [P]tb,te

I A, means that formula A holds when-
ever thread I executes exactly the program P sequentially
in the semi-open interval (tb, te]. A may mention any
variables occurring unbound in P. It usually expresses a
safety property about the program P. For example, if P
is the client program of a key exchange protocol, A may
say that P generated a key after tb, sent it to a server, and
received a confirmation that it was received. Examples
of security properties for trusted computing systems can
be found in Section 4.
Proof System. Security properties of a program are
established using a proof system for LS2. This proof
system contains some basic rules for reasoning about
modal formulas, and a number of axioms that capture in-

tuitive properties of program behavior. Parts of the proof
system, particularly the part dealing with cryptographic
primitives were easily designed using existing ideas from
PCL. As mentioned in the introduction, a central design
goal that LS2 achieves is that the proof system does not
mention adversary actions. We elaborate below on the
technical approach for designing a sound proof system
that supports this local style of reasoning in spite of the
global nature of shared memory changes and execution
of dynamically loaded code.

We reason about memory locally using axioms that
establish invariance of values in memory, using infor-
mation about locks and actions of threads that hold the
locks. These axioms are modular (there is one set of
axioms for each type of memory) and extensible (more
axioms can be added for new types of memory, as we do
for Platform Configuration Registers in Section 3). As
examples, the following two axioms are invariance rules
for locations of RAM and disk respectively. The first
axiom says that if location m.RAM.k (denoting a loca-
tion with address k in the RAM of machine m) contains
value e at time tb, during the interval (tb, te) thread I has a
lock on this location, thread I does not write to the loca-
tion, and machine m is not reset during the interval, then
m.RAM.k must contain the value e throughout the inter-
val (tb, te). The second axiom is similar, but it applies to
locations on disk. In this case, the precondition that ma-
chine m not be reset is unnecessary because contents of
the disk do not change due to a reset.

(MemIR) ` (Mem(m.RAM.k,e) @ tb)
∧ (IsLocked(m.RAM.k, I) on (tb, te))
∧ (∀e′. ¬Write(I,m.RAM.k,e′) on (tb, te))
∧ (¬Reset(m) on (tb, te))
⊃ (Mem(m.RAM.k,e) on (tb, te))

(MemID) ` (Mem(m.disk.k,e) @ tb)
∧ (IsLocked(m.disk.k, I) on (tb, te))
∧ (∀e′. ¬Write(I,m.disk.k,e′) on (tb, te))
⊃ (Mem(m.disk.k,e) on (tb, te))

For reasoning about execution of dynamically loaded
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code, we introduce the following rule that allows us
to combine information about the invariants of a pro-
gram P with the knowledge that the program was
branched to. We define a program invariant as a prop-
erty that holds whenever any prefix of the sequence of
actions of the program executes. The prefixes or ini-
tial sequences IS(P) of a program P are formally de-
fined as follows: IS(·) = {·}, IS(jump e) = {·,jump e},
IS(latelaunch ) = {·,latelaunch }, IS(x := a;P) =
{·}∪{x := a;Q | Q ∈ IS(P)}.

For every Q in IS(P) : ` [Q]tb,te
I A(tb, te)

(tb, te fresh constants)
` Jump(I,P) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′)

Jump

In its premise the rule requires that for every initial se-
quence Q of P, there be a proof, generic in the constants
tb and te, that establishes A(tb, te) given that Q executes in
thread I during the interval (tb, te]. The conclusion says
that if thread I branches to program P at time t (assump-
tion Jump(I,P) @ t), then for any time t ′ > t, A(t, t ′)
must hold. Informally, we may explain the soundness of
this rule as follows. If thread I branches to code P at time
t, then for any t ′ > t, the thread I must execute some pre-
fix of P in the interval (t, t ′]. Instantiating the premise
with this prefix Q, and t, t ′ for tb, te, we get exactly the
desired property A(t, t ′).

The above rule is central among LS2’s principles for
reasoning about dynamically loaded code, which we be-
lieve to be novel. Both a discussion of the novelty and
an example of the reasoning principles are postponed to
Section 4.1. Whereas their application to reasoning
about dynamically loaded code is new, invariants over
initial segments of code are not a contribution of this
work. PCL uses invariants similar to ours to reason about
principals who are executing known pieces of code. LS2

also uses invariants for many other purposes besides rea-
soning about jumps, including reasoning about resets.
The latter is simpler than reasoning about jumps, because
we assume that when a machine is reset, a fixed pro-
gram is started to reboot the machine. The code marked
SRT M(m) in Figure 3 is one example of the form this
program may have.
Semantics and Soundness. Formulas of LS2 are in-
terpreted over timed traces obtained from execution of
a program in the programming language. The proof
system of LS2 is formally connected to the program-
ming language semantics through a program independent
soundness theorem which guarantees that any property
established in the proof system actually holds over all
traces obtainable from the program and any number of

adversarial threads. Let Γ denote a set of formulas, and
ϕ denote a formula or a modal formula. Further, let Γ`ϕ

denote provability in LS2’s proof system, and Γ |= ϕ de-
note semantic entailment. Our main technical result for
LS2 is the following soundness theorem.

Theorem 1 (Soundness). If Γ ` ϕ then Γ |= ϕ .

Proof. See Appendix A.

3 Modeling Trusted Computing
Primitives

This section describes extensions to LS2 to model and
reason about hardware primitives used with protocols
specified by the Trusted Computing Group (TCG). These
hardware primitives include the TCG’s Trusted Platform
Module (TPM) and static Platform Configuration Reg-
isters (PCRs), as well as the more recent hardware sup-
port for late launch and dynamic PCRs as implemented
by AMD’s Secure Virtual Machine (SVM) extensions [1]
and Intel’s Trusted eXecution Technology (TXT) [2]. We
describe below the hardware primitives and their formal-
ization in LS2 at a high level. In subsequent sections,
we use our formalizations to prove security properties of
trusted computing protocols.

3.1 Trusted Platform Module
The Trusted Platform Module (TPM) is a secure co-
processor that performs cryptographic operations such
as encryption, decryption, and creation and verification
of digital signatures. Each TPM includes a unique em-
bedded private key (called the Attestation Identity Key or
AIK). The public key corresponding to each AIK is pub-
lished in a manufacturer-signed certificate. The private
component of the AIK is assumed to be protected from
compromise by malicious software. As a result, signa-
tures produced by a TPM are guaranteed to be authentic,
and unique to the platform on which the TPM resides.

We model relevant aspects of the TPM in LS2 as fol-
lows. The private attestation identity key of the TPM
on machine m is modeled as a value in LS2, denoted
AIK−1(m). Its corresponding public key is denoted
AIK(m). The TPM itself is represented as a principal,
denoted ˆAIK(m). Of the many programs hardcoded into
the TPM, only two are relevant for our purposes. These
are idealized by the LS2 programs marked T PMSRT M(m)
and T PMDRT M(m) in Figures 3 and 4 respectively, and
are explained in the next section. Both the fact that the
TPM executes only one of these programs, and the fact
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that the TPM’s private key cannot be leaked are modeled
in LS2 by a single predicate:

Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)})

This predicate entails (through the rules and axioms of
the proof system) that any signature created by the key
AIK−1(m) could only have been created in the TPM on
machine m. It can also be used to prove invariants about
threads which are known to execute on the TPM, using a
rule similar to (Jump) that was described in Section 2.2.1

We emphasize that the predicate mentioned above is not
an axiom in LS2, since its soundness cannot be estab-
lished directly. Instead, we always assume it explicitly
when we reason about the TPM.
Static PCRs. Static Platform Configuration Registers
(PCRs) are protected registers contained in every TPM.
From our perspective, the relevant property of PCRs is
that their contents can only be modified in two ways:
(a) by resetting the machine on which the TPM resides;
this sets all the static PCRs to a special value that we
denote symbolically using the name sinit (sinit is zero
on most platforms), and (b) through a special TPM in-
terface extend , which takes two arguments: a PCR
to modify, and a value v that is appended to the PCR.
Since each PCR is of a fixed length but may be asked
to store arbitrarily many values, extend replaces the
current value of the PCR with a hash of the concatena-
tion of its current value and a hash of v. In pseudocode,
the effect of extending PCR p with value v may be de-
scribed as the assignment p← H(p || H(v)), where ||
denotes concatenation and H denotes a hash function.
More generally, if the values extended into a PCR af-
ter a reset are v1, . . . ,vn in sequence, its contents will
be H(. . .(H(sinit||H(v1))||H(v2)) . . . ||H(vn)). We use
the notation seq(sinit,v1, . . . ,vn) to denote this value. A
common use for PCRs is to extend integrity measure-
ments of program code into them during the boot pro-
cess, then to have the TPM sign them with its AIK, and
to submit this signed aggregate to a remote party as evi-
dence that the values were generated in sequence on the
machine.

We model PCRs as a special class of memory in LS2.
The kth static PCR on machine m is denoted m.pcr.k.
PCRs can be read using the usual read action in LS2’s
programming language, and they can be locked for ac-
cess control, but the usual write action does not apply
to them. Instead, the extend program is modeled as

1The predicate Honest is adapted from a predicate of the same
name in PCL. PCL’s predicate is slightly weaker since it lacks the sec-
ond argument, but the reasoning principles associated with the two are
similar.

a primitive action in the programming language. It has
exactly the effect described in the previous paragraph.
Properties of PCRs are captured through axioms in LS2.
For example, the following axiom models the fact that
sinit is written to every PCR when a machine is reset. In
words, it states that if machine m is reset at time t, then
any PCR k on m contains value sinit at time t.

(MemPR) ` (Reset(m) @ t)⊃ (Mem(m.pcr.k,sinit) @ t)

Several other important properties of PCRs arise as a
consequence of their restricted interface. First, if a PCR
contains sinit at time t, then the machine m on which it
resides must have been reset most recently at some time
t ′ since a reset is the only way to put sinit into a PCR.
This is captured by the following axiom:

(PCR2) ` (Mem(m.pcr.k,sinit) @ t)
⊃ (∃t ′. (t ′ ≤ t) ∧ (Reset(m) @ t ′)
∧ (¬Reset(m) on (t ′, t]))

Second, if a PCR contains seq(sinit,v1, . . . ,vn) at time
t, it must also have contained seq(sinit,v1, . . . ,vn−1) at
some prior time t ′, without any reset in the interim. Thus
the contents of a PCR are witness to every extension per-
formed on it since its last reset. Formally, this property
is captured in LS2 by the following axiom:

(PCR1) ` (Mem(m.pcr.k,seq(sinit,v1, . . . ,vn)) @ t)
⊃ (∃t ′. (t ′ < t)
∧ (Mem(m.pcr.k,seq(sinit,v1, . . . ,vn−1)) @ t ′)
∧ (¬Reset(m) on (t ′, t])) (n≥ 1)

In many cases of interest, we need to prove that the value
in a PCR does not change over a period of time. To this
end, we introduce an invariance axiom for PCRs, similar
to axioms (MemIR) and (MemID) from Section 2.2. The
modular design of the logic eases the introduction of this
axiom.

(MemIP) ` (Mem(m.pcr.k,e) @ tb)
∧ (IsLocked(m.pcr.k, I) on (tb, te))
∧ (∀e′. ¬Extend(I,m.pcr.k,e′) on (tb, te))
∧ (¬Reset(m) on (tb, te))
⊃ (Mem(m.pcr.k,e) on (tb, te))

3.2 Late Launch and Dynamic PCRs
Another hardware feature available in trusted comput-
ing platforms is late launch. Late launch provides the
ability to measure and invoke a program, typically a se-
curity kernel or Virtual Machine Monitor (VMM), in a
protected environment. Upon receiving a late launch in-
struction (SKINIT on the AMD SVM and SENTER on
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the Intel TXT), the processor switches from the currently
executing operating system to a Dynamic Root of Trust
for Measurement (DRTM) from which it is possible to
later resume the suspended operating system. The pro-
gram to be executed in a late launch session is specified
by providing the physical address of the Secure Loader
Block (SLB). When a late launch is performed, interrupts
are disabled, direct memory access (DMA) is disabled to
all physical memory pages containing the SLB and de-
bugging access is disabled. The processor then jumps to
the code in the SLB. This code may load other code. In
addition to providing a protected environment, a special
set of PCRs called dynamic PCRs are reset with a spe-
cial value that we call dinit symbolically and the code in
the SLB is hashed and extended into the dynamic PCR
17 (dinit is distinct from sinit). The dynamic PCRs can
then be extended with other values, and the contents of
the PCRs, signed by the TPM’s key AIK, can be submit-
ted as evidence that a late launch was performed.

We formally model late launch by adding a new ac-
tion latelaunch to LS2’s programming language. This
action can be executed by any thread. The operational
semantics of the language are extended to ensure that
whenever latelaunch executes a new thread I is cre-
ated with a special program LL(m), which extends the
SLB into a dynamic PCR and branches to it. This pro-
gram is shown in Figure 4. Protection of I is modeled us-
ing locks – when started, I is given locks to all dynamic
PCRs on the machine m it uses. I may subsequently ac-
quire more locks to protect itself. In the logic, the im-
plicit locking of dynamic PCRs is captured by the fol-
lowing axiom, which means that if some thread executes
latelaunch on machine m at time t, creating the thread
I, then I has a lock on any dynamic PCR on m at time t.
m.d pcr.k denotes the kth dynamic PCR on machine m.

(LockLL) ` (LateLaunch(m, I) @ t)
⊃ (IsLocked(m.d pcr.k, I) @ t)

Dynamic PCRs have properties very similar to static
PCRs. For example, the following axiom, similar to
(MemPR) described above, means that dinit is written
to every dynamic PCR when a late launch happens.

(MemLL) ` (LateLaunch(m, I) @ t)
⊃ (Mem(m.d pcr.k,dinit) @ t)

Axioms corresponding to (PCR1) and (PCR2) are also
sound for dynamic PCRs. The difference is that Reset
and sinit must be replaced by LateLaunch and dinit re-
spectively. The following axiom is used to prove invari-

ance properties of dynamic PCRs.

(MemIdP) ` (Mem(m.d pcr.k,e) @ tb)
∧ (IsLocked(m.d pcr.k, I) on (tb, te))
∧ (∀e′. ¬Extend(I,m.d pcr.k,e′) on (tb, te))
∧ (¬Reset(m) on (tb, te))
∧ (¬∃I. LateLaunch(m, I) on (tb, te))
⊃ (Mem(m.d pcr.k,e) on (tb, te))

4 Trusted Computing Protocols
We analyze two trusted computing protocols that rely on
TPMs to provide integrity properties: load-time attesta-
tion using an SRTM and late-launch-based attestation us-
ing a DRTM. In an attestation protocol, a platform uti-
lizes a TPM to attest to platform state by performing two
steps: integrity measurement and integrity reporting. In-
tegrity measurement consists of collecting cryptographic
hashes of local software events such as program load-
ing. Integrity reporting consists of transmitting collected
measurements in a signed aggregate to an external veri-
fier. The external verifier may then use the measurements
to make trust decisions. We first analyze an attestation
protocol using a Static Root of Trust for Measurement
(SRTM), then we consider an attestation protocol uti-
lizing hardware support for late launch and a Dynamic
Root of Trust for Measurement (DRTM). We simplify
both protocols by assuming the AIK has been certified
as authentic by a manufacturer certificate and by verify-
ing a fixed sequence of system integrity measurements.

4.1 Attestation Using a Static Root of Trust
We start by performing an analysis of a load-time at-
testation protocol using an SRTM. The security skele-
ton of the protocol is specified in Figure 3. A security
skeleton retains only relevant actions, in this case, ac-
tions performing integrity measurement and reporting.
The SRTM protocol is composed of code that performs
measurement followed by code that performs integrity
reporting. We analyze the components separately.

4.1.1 Integrity Measurement

In the SRTM protocol, integrity measurement starts af-
ter a machine reset. The programs marked SRT M(m),
BL(m), and OS(m) in Figure 3 represent those portions
of the SRTM, boot loader, and operating system that par-
ticipate in the measurement process. The SRT M(m) pro-
gram is always the first program invoked when a ma-
chine reboots. It first reads the boot loader’s code b
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SRT M(m) ≡ b = read m.bl loc;
extend m.pcr.s,b;
jump b

BL(m) ≡ o = read m.os loc;
extend m.pcr.s,o;
jump o

OS(m) ≡ a = read m.app loc;
extend m.pcr.s,a;
jump a

APP(m) ≡ . . .

T PMSRT M(m) ≡ w = read m.pcr.s;
r = sign (PCR(s),w),AIK−1(m);
send r

Veri f ier(m) ≡ sig = receive ;
v = verify sig,AIK(m);
match v,(PCR(s),

seq(sinit,BL(m),OS(m),APP(m)))

Figure 3: Security Skeleton for SRTM Attestation Protocol

from the fixed disk address m.bl loc, then measures the
code by extending it into a static PCR m.pcr.s (which in
this case stores all measurements), and then branches to
the the boot loader by executing the instruction jump b.
The boot loader (BL(m)) in turn reads the operating sys-
tem’s code o from a fixed location m.os loc, extends it
into PCR m.pcr.s, and branches to it. The operating sys-
tem (OS(m)) performs similar actions with the applica-
tion’s code a. The application (APP(m)) may perform
any actions. In practice, the sequence of measurement
and loading may continue beyond the first application
but we have chosen to terminate it here because extend-
ing the chain further does not lead to any new insights
about the security of the system.

Security Property. We summarize the integrity mea-
surement security property as follows: if m.pcr.s is pro-
tected while a machine boots, and the contents of m.pcr.s
are seq(sinit,BL(m),OS(m),APP(m)), then the initial
software loaded on machine m since its last reboot was
BL(m) followed by OS(m). We now state this property
formally. We define the formulas ProtectedSRTM(m)

and MeasuredBootSRTM(m, t) as follows.

ProtectedSRTM(m) =
∀t, I. (Reset(m, I) @ t)⊃ (IsLocked(m.pcr.s, I) @ t)

MeasuredBootSRTM(m, t) =
∃tT . ∃tB. ∃tO. ∃J. (tT < tB < tO < t) ∧

(Reset(m,J) @ tT ) ∧ (Jump(J,BL(m)) @ tB) ∧
(Jump(J,OS(m)) @ tO) ∧ (¬Reset(m) on (tT , t])
(¬Jump(J) on (tT , tB)) ∧ (¬Jump(J) on (tB, tO))

ProtectedSRTM(m) means that any thread I created
to boot machine m after a reset obtains an exclusive-
write lock on m.pcr.s. MeasuredBootSRTM(m, t) iden-
tifies software events on m such as the boot loader and
operating system being branched to before time t. It
comprises four facts: (1) There exists a time tT before
t at which m was reset, creating a thread J to boot the
machine (Reset(m,J) @ tT ), (2) This thread J branched
to the programs BL(m) and OS(m) at later time points
tB and tO (Jump(J,BL(m)) @ tB and Jump(J,OS(m)) @
tO), (3) J did not make any other jumps in the in-
terim (¬Jump(J) on (tT , tB)) and (¬Jump(J) on (tB, tO)),
and (4) Machine m was not reset between tT and t
(¬Reset(m) on (tT , t]). Equivalently, after its last reboot
before time t, the first programs loaded on m were BL(m)
and OS(m). We believe this is a natural property to ex-
pect from a system integrity measurement protocol.

The following theorem formalizes our security prop-
erty. It states that under the assumptions that m.pcr.s
is protected during booting, and that m.pcr.s contains
seq(sinit,BL(m),OS(m),APP(m)) at time t, it is guar-
anteed that the boot loader and operating system used to
boot the machine are BL(m) and OS(m) respectively.

Theorem 2 (Security of Integrity Measurement). The
following is provable in LS2:

ProtectedSRTM(m) `
Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t
⊃MeasuredBootSRTM(m, t)

We refer the reader to Appendix B for a detailed proof
of this theorem. Major steps in the proofs are discussed
below to illustrate novel reasoning principles in LS2. All
programs mentioned below refer to Figure 3.

(1) Using axioms (PCR1) and (PCR2)
in succession on the antecedent
Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @
t, we show that all sub-sequences of
seq(sinit,BL(m),OS(m),APP(m)) must have
appeared in m.pcr.s at times earlier than t, and that
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machine m must have been reset at some time tT ,
creating a thread J to boot it. Formally, we obtain

∃tT , t1, t2, t3,J. (tT ≤ t1 < t2 < t3 < t)
∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m))) @ t3)
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ t2)
∧ (Mem(m.pcr.s,sinit) @ t1)
∧ (Reset(m,J) @ tT )
∧ (¬Reset(m) on (tT , t])

(2) Since m was reset creating thread J (second from
last conjunct above), it follows in our model that
the thread J above must have started with the pro-
gram SRT M(m). (We have omitted a description
of the rules that force this to be the case.) Thus,
we would like to proceed by proving an invariant of
SRT M(m). However, we can say nothing about the
program b loaded at the end of SRT M(m). This is
because b is read from a memory location m.bl loc,
which could potentially have been written by an ad-
versarial thread earlier. Fortunately, the extension of
b into m.pcr.s in the second line of SRT M(m) lets us
proceed. Precisely, this extension along with some
basic properties of PCRs lets us prove the following
property that is parametric (universally quantified)
in the code b. tT and J were obtained in property (1).

∀t ′,b,o.
(((Mem(m.pcr.s,seq(sinit,b,o)) @ t ′)
∧ (tT < t ′ ≤ t))
⊃ ∃tB. ((tT < tB < t ′) ∧ (Jump(J,b) @ tB)))
∧ (IsLocked(m.pcr.s,J) @ tB))

This property means that if at any time t ′ between tT
and t, m.pcr.s contained seq(sinit,b,o), then thread
J must have branched to b at some time tB between
tT and t ′, and that J must hold a lock on m.pcr.s
at tB. Informally this holds because the action im-
mediately following the extension in SRT M(m) is
jump b, so if there is a further extension with o,
jump b must have happened in the interim. The as-
sumption ProtectedSRTM(m) is used to rule out
the possibility that a thread other than J extended o
into m.pcr.s before jump b happened, and to show
that J holds the lock on m.pcr.s at tB.

(3) We instantiate the property in (2), choosing b =
BL(m), o = OS(m), and t ′ = t3 (t3 was obtained
in (1)). Eliminating the antecedents of the impli-
cation using facts from (1), we obtain:

∃tB. ((tT < tB < t3) ∧ (Jump(J,BL(m)) @ tB)
∧ (IsLocked(m.pcr.s,J) @ tB))

(4) From (3) we know Jump(J,BL(m)) @ tB. Next
we use the (Jump) rule from Section 2.2. In the
premise we show that ∀tb, te. ∀Q ∈ IS(BL(m)). `
[Q]tb,te

J A(tb, te) for a suitable invariant A(tb, te),
whose details we omit here (see Appendix B for
details). The main difficulty here is similar to that
in (2): we do not know what o in the program of
BL(m) may be. Again, the invariant we prove is
parametric in o. Using the (Jump) rule, we obtain
the following property.

∀t ′,o,a.
(((Mem(m.pcr.s,seq(sinit,BL(m),o,a)) @ t ′)
∧ (tB < t ′ ≤ t))
⊃ ∃tO. ((tB < tO < t) ∧ (Jump(J,o) @ tO)))

This property is very similar to that in (2), ex-
cept that it follows from an invariant of BL(m), not
SRT M(m). The fact IsLocked(m.pcr.s,J) @ tB from
(3) is needed to rule out the possibility that a thread
other than J extended a into m.pcr.s.

(5) We instantiate the property in (4), choosing o =
OS(m), a = APP(m) and t ′ = t. Combining with
facts from (1), we obtain:

∃tO. ((tB < tO < t) ∧ (Jump(J,OS(m)) @ tO))

The facts (Reset(m,J) @ tT ), (¬Reset(m) on (tT , t]),
(Jump(J,BL(m)) @ tB), and (Jump(J,OS(m)) @
tO) in (1), (3), and (5) establish part of
MeasuredBootSRTM(m, t). The remaining part fol-
lows from a similar analysis with slightly stronger
invariants in (2) and (4).

The hardest part in designing LS2’s proof system was
coming up with sound principles for reasoning about dy-
namically branching to unknown code that are illustrated
above, and in particular, the (Jump) rule. Although the fi-
nal design is simple to use, it was not obvious at first. We
believe that this method for reasoning about branching
to completely unknown code (like b and o) is new to this
work. Prior work on reasoning about dynamically loaded
code, usually based on higher-order extensions of Hoare
logic [7,20,27,28,39], assumes that at least the invariants
of the code being branched to are known at the point of
branch in the program. In our setting, this assumption is
unrealistic because we allow executable code to either be
obtained over the network or be read from memory, and
hence, potentially, to come from an adversary.

4.1.2 Insights From Analysis

A number of insights follow from the analysis. These in-
sights include highlighting an unexpected property, clar-
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ifying assumptions on the TCB, and identifying program
invariants required for security.

Property Excludes Last Jump. A key insight from
the analysis is that the integrity measurement protocol
does not provide sufficient evidence to deduce that the
last program in a chain of measurements is actually exe-
cuted. For example, an adversary can reboot the platform
after OS(m) extends APP(m), but before it is jumped to.
Alternatively, a race may occur between two application-
level processes whereby the OS extends the first into
m.pcr.s and then the other process reads the value in
m.pcr.s before the first process is branched to.

TCB Assumptions. The value of m.pcr.s does not
guarantee that the measured software was also executed
unless it is also guaranteed that no other process had
write access to m.pcr.s. If the latter assumption fails, an
attack exists: a malicious process may extend a piece of
code into m.pcr.s without executing it. This assumption
usually holds in practice because booting is generally
single threaded, but may fail if for example a malicious
thread executes on another processor core concurrently
with the measurement thread. Formally, this shows up as
the ProtectedSRTM(m) formula, which is a necessary
assumption for the proof.

Program Invariants. To establish Theorem 2, we
prove program invariants for the SRT M(m) and BL(m)
programs. These invariants provide a specification of
the properties that an SRTM and a boot loader pro-
gram must satisfy to be secure in an integrity measure-
ment protocol, i.e. the assumptions about the TCB. The
SRT M(m) invariant states that there exists a time point
t ′ and thread J such that J branches to the boot loader
b, J does not branch to any program at any time point
before t ′, m.pcr.s contains the hashed value of the boot
loader b, and m.pcr.s is locked by J at t ′. The invariant
of BL(m) states that there exists a time point t and thread
J such that J branches to program code o only after the
entire program code o has been measured into m.pcr.s.
Kauer [18] performed a manual source code audit of a
number of TPM-enabled boot loaders to check the infor-
mal security condition that “no code...is executed but not
hashed.” Our invariant on the boot loader BL was de-
veloped independently during the course of proving the
above theorem and is a formal specification of this condi-
tion. We envisage that these invariants can be used to de-
rive properties to automatically check against implemen-
tations of TCB components, thereby providing greater
assurance that the trusted components are trustworthy.

4.1.3 Integrity Reporting

After the integrity measurement protocol loads the PCRs
with measurements, the measurements can be used by
the TPM to attest to the identify of the software loaded on
the local platform. This protocol, called integrity report-
ing, involves two participants. One of the participants
is the remote party itself, called the verifier. Its code is
marked Veri f ier(m) in Figure 3. The other participant
in the protocol is the TPM of machine m in the role of
T PMSRT M(m). This code is also shown in the same fig-
ure.

The integrity reporting protocol contains two steps. In
the first, the TPM on machine m reads the contents w of
m.pcr.s, signs them and an identifier (denoted PCR(s))
that uniquely identifies m.pcr.s with its embedded private
key AIK−1(m) and sends the signed aggregate to the re-
mote verifier. In the second step, the remote verifier ver-
ifies this signature with the known public key AIK(m),
and checks that the contents of the signature match the
pair of PCR(s) and seq(sinit,BL(m),OS(m),APP(m)).
Security Properties. The security properties of in-
tegrity reporting are formalized by the following two LS2

formulas, which we call J1 and J2 respectively.

[Veri f ier(m)]tb,te
V ∃t. (t < te) ∧

(Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t)

[Veri f ier(m)]tb,te
V ∃t. (t < te) ∧MeasuredBootSRTM(m, t)

The first property (J1) states that if the code Veri f ier(m)
is executed successfully between the time points tb and te,
then there must be a time t before te at which m.pcr.s con-
tained seq(sinit,BL(m),OS(m),APP(m)). The second
property (J2) means that a remote verifier can identify
the boot loader and operating system that were loaded
on m at some time prior to te.

To prove these properties, we require two new assump-
tions, which we combine in the set ΓSRT M below. The
first of these assumptions states that the remote verifier
is distinct from the TPM. This assumption is needed to
distinguish protocol participants, and is true in practice.
The second assumption is the honesty assumption for the
TPM from Section 3.1 that guarantees that the TPM’s
signature cannot be forged, and that the TPM always ex-
ecutes only specified programs.

ΓSRT M =
{V̂ 6= ˆAIK(m),

Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)})}

Theorem 3 (Security of Integrity Reporting). The fol-
lowing are provable in LS2’s proof system:
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(1) ΓSRT M ` J1

(2) ΓSRT M,ProtectedSRTM(m) ` J2

The proof of (1) critically relies on the assumption
Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)}) to es-
tablish both that the TPM on m actually produced a sig-
nature in the past, and that the value signed by the TPM
was actually read from m.pcr.s. The latter follows from
knowledge of the programs that the TPM may be exe-
cuting. (2) follows from (1) and Theorem 2. See Ap-
pendix B for details of the proofs.

4.1.4 Insights From Analysis

The security analysis lead to a number of insights includ-
ing highlighting weaknesses in the property provided by
the protocol and identifying program invariants required
for security.

Staleness of Measurements. A key insight from the
analysis is that after executing the integrity reporting pro-
tocol, the verifier has no knowledge of how recent the
time of measurement t is in comparison to te, the time
the verifier’s execution finished. This staleness of mea-
surements is inherent in the protocol: it is possible to
reboot the machine with a different boot sequence after
sending the signature to the remote verifier, as is known
from prior work [14]. Formally, one can only prove that
m.pcr.s contained the reported measurements at time t,
but not after.
Program Invariants. In the process of proving
the above theorem, we prove a program invariant
for the roles of the TPM (i.e., T PMSRT M(m) and
T PMDRT M(m)). This invariant provides a specification
of the properties that a TPM’s signing role must satisfy.
In particular, the invariant requires that if the TPM re-
turns a value then the value is a signature over the value
stored in m.pcr.s and that the TPM does not write to any
memory locations. The latter constraint is necessary to
prevent previously measured code from being modified
after being measured.

4.2 Attestation Using a Dynamic Root of
Trust

We perform an analysis of DRTM attestation using our
model of hardware support for late launch. We jointly
analyze the protocol code that performs integrity mea-
surement and reporting.

4.2.1 DRTM Protocol

We describe the security skeleton of the DRTM attesta-
tion protocol in Figure 4. The DRTM protocol is a four
agent protocol. The processes are: (1) OS(m), executed
by the machine itself (called m̂), that receives a nonce
from the remote verifier, and performs a late launch. (2)
LL(m), executed by the hardware platform, that reads
the binary of the program P(m) from the secure loader
block (SLB), and measures then branches to P(m), (3)
P(m) that measures the nonce, evaluates the function f
on input 0 (the function f and its input may be changed
depending on application), and extends a distinguished
string EOL into m.d pcr.k to signify the end of the late
launch session. (4) T PMDRT M(m), executed by the TPM
of m, that signs the dynamic PCR m.d pcr.k, and sends
it to the verifier. (5) Veri f ier(m), executed by a remote
verifier, that generates and sends a nonce, receives signed
measurements, verifies the signature, and checks that the
measurements match the sequence (dinit,P(m),n,EOL).

Security Property. We summarize the DRTM security
property as follows: if the verifier is not the TPM, the
TPM does not leak its signing key, and the TPM executes
only the processes T PMDRT M(m) and T PMSRT M(m),
then the remote verifier is guaranteed that J performed
a single late launch on machine m at some time tL, J
branched to P(m) only once at tC, J evaluated f once
at tE (and this happened after the verifier generated the
nonce), J extended EOL into m.d pcr.k at some time tX ,
and m.d.pcr.k was locked for the thread J from tL to tX .
We formalize this security property called JDRT M below.

[Veri f ier(m)]tb,te
V ∃J, tX , tE , tN , tL, tC,n.

∧ (tL < tC < tE < tX < te)
∧ (tb < tN < tE)
∧ (New(V,n) @ tN)
∧ (LateLaunch(m,J) @ tL)
∧ (¬LateLaunch(m) on (tL, tX ])
∧ (¬Reset(m) on (tL, tX ])
∧ (Jump(J,P(m)) @ tC)
∧ (¬Jump(J) on (tL, tC))
∧ (Eval(J, f ) @ tE)
∧ (Extend(J,m.d pcr.k,EOL) @ tX )
∧ (¬Eval(J, f ) on (tC, tE))
∧ (¬Eval(J, f ) on (tE , tX ))
∧ (IsLocked(m.d pcr.k,J)on(tL, tX ])

In order to prove the property, we have to make the
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OS(m) ≡ n′ = receive ;
write m.nonce,n′;
late launch

LL(m) ≡ P = read m.SLB;
extend m.d pcr.k,P;
jump P

P(m) ≡ n′′ = read m.nonce;
extend m.d pcr.k,n′′;
eval f ,0;
extend m.d pcr.k,EOL

T PMDRT M(m) ≡ w = read m.d pcr.k;
r = sign (dPCR(k),w),AIK−1(m);
send r

Veri f ier(m) ≡ n = new ;
send n;
sig = receive ;
v = verify sig,AIK(m);
match v,(dPCR(k),

seq(dinit,P(m),n,EOL))

Figure 4: Security Skeleton for DRTM Attestation Protocol

following assumptions.

ΓDRT M =
{V̂ 6= ˆAIK(m),

Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)})}

We also made the same assumptions in the SRTM proto-
col (ΓSRT M = ΓDRT M). We prove the following theorem:

Theorem 4 (Security of DRTM). The following is prov-
able in LS2: ΓDRT M ` JDRT M

Proof. See Appendix C.

As in the SRTM protocol, the security of the DRTM
protocol relies on PCRs being append-only and write-
protected in memory. In addition, the DRTM protocol
relies on (1) write locks on all dynamic PCRs that are
provided by the late launch and (2) a dynamic reset of
m.d pcr.k , to reset the values in the dynamic PCRs to
dinit and signal that P(m) was executed with the protec-
tions provided by late launch.

4.2.2 Insights From Analysis

The security analysis lead to a number of insights includ-
ing revealing an insecure protocol interaction between

the DRTM and SRTM attestation protocols, highlight-
ing differences with the SRTM protocol, and identifying
program invariants required for DRTM security that we
subsequently used to manually audit a security kernel im-
plementation.
Insecure Protocol Interaction. In extending LS2 to
model DRTM, we discovered that adding late launch re-
quired us to weaken some axioms related to reasoning
about invariance of values in memory in order to re-
tain soundness in the proof system. With these weaker
axioms, we were unable to prove the safety property
of the SRTM protocol. Soon after, we realized that
SRTM’s safety property can actually be violated using
latelaunch . Specifically, during the execution of the
SRTM protocol, a late launch instruction may be issued
by another thread before OS(m) has been extended into
m.pcr.s. The invoked program may then extend the code
of the programs OS(m) and APP(m) into m.pcr.s with-
out executing them, and send signed measurements to the
remote verifier. Since the contents of m.pcr.s would be
the sequence seq(sinit,BL(m),OS(m),APP(m)), the re-
mote verifier would believe incorrectly that OS(m) was
executed and the SRTM protocol would fail to provide
its expected integrity property. This vulnerability can be
countered if the program loaded in a DRTM session were
unable to change the contents of m.pcr.s if SRTM were
executing in parallel. In the final design of our formal
model, we force this to be the case by letting the thread
booting a machine to retain an exclusive-write lock on
m.pcr.s even in the face of a concurrent late launch, thus
allowing a proof of correctness of SRTM.

Late launch also opens the possibility of a code mod-
ification attack on SRTM. Specifically, after the code of
a program such as BL(m) or OS(m) has been extended
into m.pcr.s in SRTM, a concurrent thread may invoke
a DRTM session and change the code in memory before
it is executed. Any subsequent attestation of integrity of
the loaded code to a remote party would then be incor-
rect. Our model prevents this attack by assuming that
code measured in PCRs during SRTM cannot be modi-
fied in memory.
Comparison to SRTM. The property provided by the
DRTM protocol is stronger than the SRTM protocol for
a number of reasons:

Fewer Assumptions. The proof of security
for the DRTM protocol does not rely on the
ProtectedSRTM(m) assumption that static PCRs are
locked. Instead the latelaunch action locks all dy-
namic PCRs. If the machine M is a multi-processor
or multi-core machine that is capable of running mul-
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tiple threads in parallel, the locks on the dynamic
PCRs will prevent attacks where malicious threads
running concurrently with the measurement thread
extend additional programs into m.d pcr.k in an at-
tempt to attest to their execution within a late launch
session.

Smaller TCB. The security proof of the DRTM does
not reason about the measurements of the BIOS,
boot loader, or operating system stored in the static
PCRs (e.g., m.pcr.s), indicating that the security of
the DRTM protocol does not depend on these large
software components. This considerably reduces the
trusted computing base to just P(m) and LL(m) and
opens up the possibility of verifying that the TCB sat-
isfies the required program invariants.

Execution Integrity. Unlike the SRTM protocol that
does not provide sufficient evidence to deduce that
the last program in a sequence of measurements is
branched to, the JDRT M property states that all pro-
grams measured during the protected session where
executed. The property goes further to state that the
programs completed execution. Specifically, the end
of session measurement EOL proves that P(m) exe-
cutes to completion.

Program Invariants. In the process of proving the
above theorem, we prove program invariants for the roles
of the TPM (i.e., T PMSRT M(m) and T PMDRT M(m)), and
the programs LL(m) and P(m). These invariants specify
the properties that T PMSRT M(m), T PMDRT M(m), LL(m),
and P(m) must satisfy for the DRTM protocol to be se-
cure. The invariant over the roles of the TPM is similar
to the TPM’s role invariant used for SRTM. The invari-
ant for LL(m) states that the code must maintain a lock on
m.d pcr.k and measure then branch to the program P(m).
The invariant for P(m) is shown below. The invariant
states that if there are no resets or late launches on m
from tb to te, m.d pcr.k is locked at tb and m.d pcr.k con-
tains the sequence seq(dinit,P(m)) at tb and later con-
tains seq(dinit,P(m),x,EOL)), then there exists a thread
J such that J extended a value x (e.g., a nonce) into
m.d pcr.k, then evaluated f , then extended the end of ses-
sion symbol EOL, and that each action was performed
once, in the order specified, and m.d pcr.k was locked
from tb to tX .

[Q]tb,te
J ∀t,x. ((¬Reset(m) on (tb, te])
∧ (¬LateLaunch(m) on (tb, te])
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ tb)
∧ (IsLocked(m.d pcr.k,J) @ tb)
∧ (tb < t ≤ te)
∧ (Mem(m.d pcr.k,seq(dinit,P(m),x,EOL)) @ t))
⊃ ∃tn, tE , tX . ((tb < tn < tE < tX < t)
∧ (Extend(J,m.d pcr.k,x) @ tn)
∧ (Extend(J,m.d pcr.k,EOL) @ tX )
∧ (Eval(J, f ) @ tE)
∧ (¬Eval(J, f ) on (tb, tE))
∧ (¬Eval(J, f ) on (tE , tX ))
∧ (IsLocked(m.d pcr.k,J) on (tb, tX ]))

Manual Audit of DRTM Implementation. To check
that the invariants required by our security analysis are
correct, we performed a manual source code audit of the
Flicker implementation of the DRTM protocol [24]. We
checked that Flicker’s security kernel implementation,
represented by our program P(m), respects the invari-
ant above. We were able to quickly extract the security
skeleton of the security kernel from Flicker’s approxi-
mately 250 lines of C code. To verify that the skele-
ton respects the exact invariant from our security proof,
we checked that instructions were present to evaluate the
function f , that the EOL marker was subsequently ex-
tended into m.d pcr.k, and that each of the instructions
would only be executed once on all code paths. In sev-
eral cases, we matched multiple C instructions to a single
action since the instructions are a refinement of the ac-
tion. For example, the extension of EOL consists of two
instructions, a memset to create the sequence of char-
acters corresponding to an EOL and a call to a wrapper
for the extend instruction. The entire manual process of
extracting the security skeleton and auditing the invariant
took less than one hour for an individual with no previous
experience with the Flicker security kernel. Although we
did not formally verify the property, one interesting di-
rection for future work is to use these invariants to derive
refined invariants to check on the implementation, possi-
bly using software model checking techniques.

5 Related Work
LS2 draws on certain conceptual ideas from PCL [11],
in particular, the local reasoning style by which security
properties of protocols are proved without explicitly rea-
soning about adversary actions. In PCL, global security
properties are derived by combining properties achieved
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by individual protocol steps with invariants proved by
induction over the protocol programs executed by hon-
est parties. LS2 supports this form of reasoning for a
much richer language that includes not only network
communication and cryptography as in PCL, but also
shared memory, memory protection, machine resets, and
dynamically loaded unknown pieces of code. The in-
sights on which the new proof rules are based are de-
scribed in Section 2.2. The technical definition of LS2

also differs significantly from PCL: instead of associat-
ing pre-conditions and post-conditions with all actions
in a process (as PCL does), we model time explicitly,
and associate monotonically increasing time points with
events on a trace. The presence of explicit time allows
us to express invariants about memory; for instance, we
may express in LS2 that a memory location contains the
same value throughout the interval [t1, t2]. Explicit time
is also used to reason about the relative order of events.
Whereas explicit use of time may appear to be low-level
and cumbersome for practical use, the proof system for
LS2 actually uses time in a very limited way that is quite
close to temporal logics such as LTL [30]. Indeed, it
seems plausible to rework the proof system in this paper
using operators of LTL in place of explicit time. How-
ever, we refrain from doing so because we believe that a
model of real time may be needed to analyze some sys-
tems of interest (e.g., [19, 35, 36]).

LS2 also shares some features with other logics of pro-
grams [6,16,17]. Hoare logic and dynamic logic focus on
sequential imperative programs, and do not consider con-
currency, network communication and adversaries. LS2’s
abstract locks are similar to regions that are used to rea-
son about synchronized access to memory in concurrent
separation logic [6]. However, the two primitives differ
in application. Whereas we use locks to enforce integrity
of data stored in memory, regions are intended to prevent
race conditions. Another key difference between concur-
rent separation logic and LS2 is that the former does not
consider network communication. Furthermore, concur-
rent separation logic and other approaches for verifying
concurrent systems [21] typically do not consider an ad-
versary model. An adversary could be encoded as a reg-
ular program in these approaches, but then proving in-
variants would involve an induction over the steps of the
honest parties programs and the attacker.

Prior proposals for reasoning about dynamically
loaded code use higher-order extensions of Hoare
logic [7, 20, 27, 28, 39]. However, they are restricted to
reasoning about sequential programs only and require
that invariants of code being called be known in the pro-
gram at the point of the call. LS2’s method addresses the

problem of reasoning about dynamically loaded code in
the more general context of concurrent program execu-
tion where one thread is allowed to modify code that is
loaded by another. As illustrated in Section 4.1, using
the (Jump) rule, evidence that some code executed can
be combined with separate evidence about the identity of
the code to reason precisely about the effects of the jump.
Such reasoning is essential in some applications includ-
ing trusted computing, and is impossible in all prior work
known to us.

There have been several previous analyses of trusted
computing. Abadi and Wobber used an authorization
logic to describe the basic ideas of NGSCB, the prede-
cessor to the TCG [3]. Their formalization documents
and clarifies basic NGSCB concepts rather than prov-
ing specific properties of systems utilizing a TPM. Chen
et al. developed a formal logic tailored to the analysis
of a remote attestation protocol and suggested improve-
ments [9]. Unlike LS2, these logics are not tied to the ex-
ecution semantics of the protocols. Gurgens et al. used
a model checker to analyze the security of several TCG
protocols [15]. Millen et al. employed a model checker
to understand the role and trust relationships of a system
performing a remote attestation protocol [25]. Our anal-
ysis with LS2 is a complementary approach: It proves
security properties even for an infinite number of simul-
taneous invocations of attestation protocols, but with a
more abstract model of the TPM’s primitives. LS2 is de-
signed to be a more general logic with TCG protocols
providing one set of applications. Lin [22] used a the-
orem prover and model finder to analyze the security of
the TPM against invalid sequences of API calls.

6 Conclusion

In this paper, we presented LS2 and used it to carry out
a substantial case study of trusted computing attestation
protocols. The design of LS2 was conceptually and tech-
nically challenging. Specifically, it was difficult to de-
fine a realistic adversary model and formulate sound rea-
soning principles for dynamically loaded unknown (and
untrusted) code. The proof system was designed to sup-
port reasoning at a high level of abstraction. This was
particularly useful in the case studies where the proofs
yielded many insights about the security of trusted com-
puting systems.

In future work, we will build upon this work to model
and analyze security properties of web browsers, security
hypervisors and virtual machine monitors. We also plan
to develop further principles for modeling and reasoning
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about security at the level of system interfaces, in partic-
ular, to support richer access control models and system
composition and refinement.
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Expressions e ::= n Number
| X̂ ,Ŷ Agent
| K Key
| K−1 Inverse of key K
| x Variable
| (e,e′) Pair
| SIGK{|e|} Value e signed by private key K
| ENCK{|e|} Value e encrypted by public key K
| SY MENCK{|e|} Value e encrypted by symmetric key K
| H(e) Hash of e
| P Program reified as data

Machine m
Location l
Action a ::= read l Read location l

| write l,e Write e to location l
| extend l,e Extend PCR l with e
| lock l Obtain write lock on location l
| unlock l Release write lock on location l
| send e Send e as a message
| receive Receive a message
| sign e,K−1 Sign e with private key K−1

| verify e,K Check that e = SIGK−1{|e′|}
| enc e,K Encrypt e with public key K
| dec e,K−1 Decrypt e with private key K−1

| symenc e,K Encrypt e with symmetric key K
| symdec e,K Decrypt e with symmetric key K
| hash e Hash the expression e
| eval f ,e Evaluate function f with argument e
| proj1 e Project the 1st component of a pair
| proj2 e Project the 2nd component of a pair
| match e,e′ Check that e = e′

| new Generate a new nonce
Program P,Q ::= · | jump e | late launch | x := a;P
Thread id I,J ::= 〈X̂ ,η ,m〉
Thread identifier η

Thread T,S ::= [P]I
Store σ : Locations→ Expressions
Lock map ι : Locations→ (Thread ids) ∪ { }
Configuration C ::= ι ,σ ,T1| . . . |Tn

Figure 5: Syntax of the programming language

A Description of LS2

This appendix summarizes LS2’s programming language and logic discussed in Section 2, including extensions to
trusted computing discussed in Section 3. We start by elaborating the programming language and its semantics, and
follow with the logic, its semantics, and proof system. We conclude with the soundness theorem.

A.1 Programming Language

Our language for specifying systems descends from the corresponding language in PCL and extends the latter with
constructs for reading, writing, and protecting memory. Its syntax is summarized in Figure 5.

We assume an algebra of expressions (denoted e). Expressions may be numbers n, identities of agents (principals)
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X̂ , keys K, variables x, pairs (e,e′), signatures using private keys SIGK{|e|} (denoting the signature on e made using
the key K), asymmetric key encryptions ENCK{|e|}, symmetric key encryptions SY MENCK{|e|}, hashes H(e), or code
reified as data P. Expressions are assumed to be typed (for e.g., a pair can be distinguished from a number), but we
elide the details of the types. We assume that the expression e may be recovered from the signature SIGK{|e|} if the
verification key corresponding to K is known. We also assume that hashes are confidentiality preserving. If needed
this may be implemented by combining hashes with encryption.

Agents and keys. Agents, denoted X̂ ,Ŷ , are principals associated with a system (e.g., users). Keys are denoted by
the letter K. The inverse of key K is denoted by K−1. As a convention, we use the notation K−1 for private keys and
the notation K for public keys. If K is a private key, we write K̂ to denote the agent who owns it. If K is a public key,
we write K̂ to denote the agent who owns the corresponding private key. By definition, K̂ = ˆK−1.

Machines and locations. Machines (denoted m) are the sites of program execution, and the sites that hold locations
of memory that are classified into several mutually exclusive categories: RAM, disk, PCRs (also called static PCRs),
and dynamic PCRs. Locations are either denoted by the generic letter l, or explicitly by writing the machine, category,
and the address of the location, separated by dots. For example, m.RAM.s denotes the sth RAM location on machine m.
RAM is replaced by disk, pcr, d pcr to represent locations on disk, in static PCRs, and in dynamic PCRs. We also use
the wildcard ∗ to represent an arbitrary address or category. For example, m.∗ .∗ represents any location on machine
m.~l denotes a set of locations, locs(m) denotes the set of all locations on machine m, and locs(m,disk) denotes the set
of all disk locations on machine m. The function machine(l) returns the machine on which location l exists.

Actions and programs. Actions, denoted a, perform specific functions. Allowed actions with their intuitive mean-
ings are listed in Figure 5. Salient among these are actions for reading and writing locations (read and write ),
obtaining and releasing locks on locations (lock and unlock ), and extending values into PCRs (extend ). Actions
that change locations may apply to only certain kinds of locations. For example, write only applies to RAM and
disk locations, whereas extend only applies to PCRs. (Such restriction are captured in the operational semantics of
the language.) The actions send and receive perform network communication, which is undirected; an expression
sent by any program may be received by any other program. Action eval f ,e evaluates any side-effect free function
f with argument e and returns the result.

If an action (such as signature verification) fails, we assume that the thread executing the action blocks forever. A
successfully executed action always returns an expression. For example, the action receive returns the expression
obtained by synchronizing with another thread, and the action verify returns the message contained in the signature
it verifies. The expressions returned by some actions like write , send , and extend are unimportant. We assume
that these actions always return the constant 0.

A program (denoted P, Q) either terminates (·), or ends by dynamically branching to another program whose code
is contained in the expression e (jump e), enters a late launch session (late launch ), or executes an action a and
continues with the program P (x := a;P). In the latter case, x is a name for the expression returned by the action a
that may be used to refer to the expression in P. The scope of x is P. Variables may be α-varied. In this sense, our
treatment of variables is functional, not imperative. We write P(e/x) to denote the program P with e substituted for x.
This substitution avoids capture of bound variables through tacit renaming.

Threads and Thread ids. A thread T is a sequentially executing program. Formally, it is a pair containing a program
and an identity I, written [P]I . The identity (id) I is a three tuple 〈X̂ ,η ,m〉. X̂ is the agent who owns the thread, η

is a unique identifier for the thread (akin to a process id), and m is the machine on which the thread executes. For
I = 〈X̂ ,η ,m〉, we define Î = X̂ and machine(I) = m.

Configurations. A configuration C is the collection of all threads executing concurrently on all machines. Concurrent
threads are separated by the symbol |, which is assumed to be commutative and associative. In addition to threads,
a configuration also contains a store σ , which is a map from the set of all locations to the values that they contain,
and a lock map ι that maps each location to the id of the thread that has a write lock on it. If no thread has a lock on
location l, then ι(l) = . We often write σ [l 7→ e] to denote the map σ augmented with the mapping of l to e. ι [l 7→ I]
is defined similarly. We assume implicitly that all threads in a configuration are closed, i.e., they do not contain any
free variables.
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(sign) [x := sign e,K−1; P]I −→ [P(SIGK−1{|e|}/x)]I
(verify) [x := verify SIGK−1{|e|},K; P]I −→ [P(e/x)]I
(enc) [x := enc e,K; P]I −→ [P(ENCK{|e|}/x)]I
(dec) [x := dec ENCK{|e|},K−1; P]I −→ [P(e/x)]I
(symenc) [x := symenc e,K; P]I −→ [P(SY MENCK{|e|}/x)]I
(symdec) [x := symdec SY MENCK{|e|},K; P]I −→ [P(e/x)]I
(hash) [x := hash e; P]I −→ [P(H(e)/x)]I
(eval) [x := eval f ,e; P]I −→ [P( f (e)/x)]I
(proj1) [x := proj1 (e1,e2); P]I −→ [P(e1/x)]I
(proj2) [x := proj2 (e1,e2); P]I −→ [P(e2/x)]I
(match) [x := match e,e; P]I −→ [P(0/x)]I
(new) [x := new ; P]I −→ [P(n/x)]I (n fresh)

(read∗) σ , [x := read l; P]I −→ σ , [P(e/x)]I (σ(l) = e)
(write) ι ,σ [l 7→ e′], [x := write l,e; P]I −→ ι ,σ [l 7→ e], [P(0/x)]I

(machine(I) = m, (l = m.RAM.∗ or l = m.disk.∗), ι(l) ∈ {I, })

(extend) ι ,σ [l 7→ seq(e1, . . . ,en)], [x := extend l,e; P]I −→ ι ,σ [l 7→ seq(e1, . . . ,en,e)], [P(0/x)]I
(machine(I) = m, (l = m.pcr.∗ or l = m.d pcr.∗), ι(l) ∈ {I, })

(lock∗) ι [l 7→ ], [x := lock l; P]I −→ ι [l 7→ I], [P(0/x)]I
(unlock∗) ι [l 7→ I], [x := unlock l; P]I −→ ι [l 7→ ], [P(0/x)]I

(comm) [x := send e; P]I | [y := receive ; Q]I′ −→ [P(0/x)]I | [Q(e/y)]I′

(reset) ι ,σ ,T1| . . . |Tn −→ ι [locs(m) 7→ ],σ [(locs(m)− locs(m,disk)) 7→ sinit],(T1| . . . |Tn)−{m} | [SRT M(m)]I
(I = 〈m̂,η ,m〉, η fresh)

(jump) [jump P]I −→ [P]I

(llaunch*) ι ,σ , [late launch ]I −→ ι [locs(m,d pcr) 7→ J],σ [locs(m,d pcr) 7→ dinit], [LL(m)]J
(machine(I) = m, J = 〈m̂,η ,m〉, η fresh)

∗ Side Condition: machine(l) = machine(I)

Figure 6: Reduction Rules of the Process Calculus

A.2 Operational Semantics of the Language

The operational semantics of the programming language are defined by reduction rules on configurations, summarized
in Figure 6. In each rule, we include only the relevant parts of configurations. Parts not shown in a rule remain
unchanged in the reduction.

Rules (sign)–(new) represent internal reductions of a thread. In the rule (new), the value n is a fresh symbolic
constant that has never occurred in the history of the configuration. This rule is used for generating nonces. The rules
(read) allows reading of locations. The rules (write) and (extend) allow modification of RAM and disk, and PCRs
respectively. In each case, the location being modified must either be locked by the thread executing the action, or
be unlocked (enforced by the side condition ι(l) ∈ {I, }). Locks are obtained and released using the rules (lock) and
(unlock). Rule (comm) allows communication between any two threads.

Rule (reset) spontaneously resets any machine m. This rule can “fire” at any time. As a result of the reset, all
locations on m are set to the special symbolic value sinit (except disk locations, which don’t change), all locks on m
are freed, and a new thread I is created to boot the machine using the program SRT M(m) from Figure 3. Rule (jump)
dynamically branches to program P in the thread I. Since no other parts of the configuration are affected, I retains all
its locks. Rule (llaunch) ends thread I by starting a late launch session. As a result, a new thread J executing program
LL(m) from Figure 4 is created. All locks on dynamic PCRs on machine m are given to J, and all dynamic PCRs on
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Action Predicates R ::= Read(I, l,e) read l getting value e
| Write(I, l,e) write l,e
| Send(I,e) send e
| Extend(I, l,e) extend l,e
| Lock(I, l) lock l
| Unlock(I, l) unlock l
| Receive(I,e) receive receiving e
| Sign(I,e,K) sign e,K
| Verify(I,e,K) verify SIGK−1{|e|},K
| Encrypt(I,e,K) enc e,K
| Decrypt(I,e,K) dec ENCK−1{|e|},K
| SymEncrypt(I,e,K) symenc e,K
| SymDecrypt(I,e,K) symdec SY MENCK{|e|},K
| Hash(I,e) hash e
| Eval(I, f ,e,e′) eval f ,e producing e′

| Match(I,e,e′) match e,e′

| New(I,n) new generating nonce n
General Predicates M ::= Mem(l,e) Location l contained e

| IsLocked(l, I) Thread I had a lock on l
| Reset(m, I) Machine m was reset, booting in thread I
| Jump(I,e) Thread I ended with jump e
| LateLaunch(m,J) late launch on machine m producing thread J
| Contains(e,e′)
| e = e′ | t ≥ t ′

| Honest(X̂ ,~P)
Formulas A,B ::= R |M | > | ⊥ | A ∧ B | A ∨ B |

A⊃ B | ¬A | ∀x.A | ∃x.A | A @ t
Defined Formulas A on i = ∀t. ((t ∈ i)⊃ (A @ t))

Reset(m) = ∃I. Reset(m, I)
LateLaunch(m) = ∃I. LateLaunch(m, I)
Jump(I) = ∃e. Jump(I,e)
Eval(I, f ) = ∃e,e′. Eval(I, f ,e,e′)

Modal Formulas J ::= [P]tb,teI A | [a]tb,teI,x A

Figure 7: Syntax of LS2

m are set to the symbolic value dinit, which is distinct from sinit.
Traces and Timed Traces. A trace is a sequence of configurations C0 −→ . . .−→Cn such that Ci+1 may be obtained
from Ci by one of the reduction rules. A timed trace (denoted T ) is a trace in which a time point has been associated
with each reduction. Time points are drawn from any totally ordered set with a least element −∞ and a greatest
element ∞. We write a timed trace as C0

t1−→C1 . . .
tn−→Cn. t1, . . . , tn represent points of time at which the reductions

happened. We require that t1 < .. . < tn, i.e., the time points be monotonically increasing. It is assumed that the effects
of a reduction, such as changes to the store or the lock map, come into effect immediately, i.e., at the time that the
reduction happens.

A.3 Syntax of the Logic
The logic LS2 is used to reason about properties of traces obtained from configurations. Its syntax is summarized
in Figure 7. Predicates of the logic are divided into action predicates and general predicates. Action predicates
reason about actions executed by specific threads. There is one action predicate for each action in the programming
language, and all these predicates take the id of the executing thread as an argument. Their intuitive meanings are
listed in Figure 7. General predicates capture properties not tied to specific threads. Mem(l,e) and IsLocked(l, I) hold
whenever location l contains expression e and whenever location l is locked by thread I, respectively. Reset(m, I)
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Mayderive(e,e,K )
Mayderive(e1,e,K )

Mayderive((e1,e2),e,K )
Mayderive(e2,e,K )

Mayderive((e1,e2),e,K )
Mayderive(e,e′,K )

Mayderive(SIGK{|e|},e′,K )

Mayderive(SIGK{|e|},K−1,K )

Mayderive(e,e′,K )

Mayderive(ENCK{|e|},e′,K ∪{K−1}) Mayderive(ENCK{|e|},K,K )

Mayderive(e,e′,K )
Mayderive(SY MENCK{|e|},e′,K ∪{K})

(There are no additional rules for Mayderive(e,e′,K ) when e = H(e′′))

Figure 8: Semantic definition of predicate Mayderive

holds on a trace at any time when machine m was reset, producing thread I to reboot the machine. Jump(I,e) holds
whenever thread I dynamically branches to code represented by the expression e. LateLaunch(m,J) holds whenever
any thread on machine m initiates a late launch session creating thread J to execute the code LL(m). Contains(e,e′)
holds if e′ can be derived using cryptographic and projection operations from e. This is formalized using a semantic
model of containment, described in the next section. Honest(X̂ ,~P) means two things: (a) Agent X̂ does not leak its
private key, (so its signatures are always authentic), and (b) all threads owned by X̂ run one of the programs in the set
P. We call an agent X̂ honest, if there is a set of programs ~P (possibly non-finite) such that Honest(X̂ ,~P).

Predicates can be combined using the usual logical connectives of classical logic, and the special connective A @ t,
which means that A holds at time t. There are also a number of defined formulas that we use often. These are also
listed in the figure.

In addition to the usual formulas A, LS2 includes two types of modal formulas for reasoning about programs. The
formula [P]tb,te

I A means that if the thread with id I executes all actions in P in the time interval (tb, te] (and no others),
then formula A holds. The related formula [a]tb,te

I,x A means that if thread I executes only the action a in the interval
(tb, te], returning the result x, then A holds. As a general rule, tb, te, and x are always parameters when we reason in the
proof system. The formula A cannot mention variables bound in P. It may however, mention tb, te, and any variables
free in P or in a. In the modal formula [a]tb,te

I,x A, A may mention x also. This allows us to incorporate the result of
executing an action into logical reasoning.

A.4 Semantics of the Logic
The formulas of LS2 are interpreted over timed traces. We assume a priori the principals that are honest, and
the programs they execute. Before defining the formal semantics, we define an auxiliary semantic predicate
Mayderive(e,e′,K ), which formally captures the intuition that e may be used to derive e′ in the Dolev-Yao model
if all the keys in the set K are known. This predicate is defined inductively by the rules in Figure 8. Prominent
among the rules is the fact that Mayderive(H(e),e′,K ) cannot be established unless e′ = H(e). This is based on our
assumption that the hash function H is confidentiality preserving.

The semantic judgment for formulas is written T |=t A. It means that A holds in the trace T at time t. It is defined
by induction on the structure of A.
Action Predicates. If A is an action predicate, T |=t A holds if a reduction corresponding to A occurred at time t in
T . For example,

T |=t Read(I, l,e) if thread I executed action read l at time t, reading e from location l.

T |=t Extend(I, l,e) if thread I executed action extend l,e at time t.

T |=t Lock(I, l) if thread I executed action lock l at time t.

General Predicates.
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T |=t Mem(l,e) if the location l contained e at time t, i.e., at time t, σ(l) = e.

T |=t IsLocked(l, I) if at time t, ι(l) = I.

T |=t Contains(e,e′) if Mayderive(e,e′, pubs) by the rules in Figure 8, where pubs is the set of public keys of all
agents.

T |=t Reset(m, I) if at time t, a (reset) reduction on machine m occurs, and the new thread created has id I.

T |=t Jump(I,P) if at time t, thread I reduces jump P.

T |=t LateLaunch(m,J) if at time t, some thread on machine m reduces the action late launch producing the
new thread J.

T |=t e = e′ if e and e′ are syntactically equal.

T |=t t1 ≥ t2 if t1 ≥ t2 in the total order on time points.

T |=t Honest(X̂ ,~P) if it is assumed that X̂ is honest, and that its threads execute programs in ~P only.

Formulas. Formulas are interpreted in a standard way. The only new case is that for A @ t.

T |=t >.

T 6|=t ⊥.

T |=t A ∧ B if T |=t A and T |=t B.

T |=t A ∨ B if T |=t A or T |=t B.

T |=t A⊃ B if T 6|=t A or T |=t B.

T |=t ¬A if T 6|=t A.

T |=t ∀x.A if for each ground instance v of x, T |=t A(v/x).

T |=t ∃x.A if there exists a ground instance v of x such that T |=t A(v/x).

T |=t A @ t ′ if T |=t ′ A.

It should be observed that by definition the relation T |=t A @ t ′ is independent of t. This is consistent with semantics
of other hybrid logics (e.g., [5]).
Modal Formulas. For modal formulas, the semantic judgments are written T |= [P]tb,te

I A and T |= [a]tb,te
I,x A. As op-

posed to the judgment T |=t A, these judgments are not relativized to time because modal formulas express properties
of programs and actions, and are independent of time. Intuitively, T |= [P]tb,te

I A holds if in the trace T , either the
thread with id I does not execute the sequence of actions P in the interval (tb, te] or A holds. To state this formally, we
define a notion of matching between a timed trace T and a modal prefix.
Matching. We say that a timed trace T matches the modal prefix [a]tb,te

I,x with substitution θ producing value e,
written T � [a]tb,te

I,e | θ if both the following hold:

- At time tb, trace T contains the thread [y := aθ ;Pθ ]I . Note that because actions such as jump change the program
of a thread, it is possible that at time tb itself there was an action that changed the program of I to (y := aθ ;Pθ).

- At time te, I executes the action aθ , producing value e for y.

Similarly, we say that a timed trace T matches the modal prefix [P]tb,te
I with substitution θ , written T � [P]tb,te

I | θ if
one the following holds:

24



- P = ·, and either I does not exist in the trace, or in the interval (tb, te] there is no reduction on thread I (there may,
however, be a (reset) on the machine containing thread I). θ is arbitrary in this case.

- P = jump e, at time tb the trace contains the thread [jump eθ ]I , and during the interval (tb, te], I performs at least
one reduction (namely, by the (jump) rule, loading program eθ ).

- P = late launch , at time tb the trace contains the thread [late launch ]I , and during the interval (tb, te], I
performs exactly one reduction (namely, by the (llaunch) rule, starting a new protected session).

- P = (x := a;P′) and there is a time tm ∈ (tb, te] and a ground value e such that T � [a]tb,tm
I,e | θ and T �

[P′]tm,te
I | θ ,e/x.

Informally, T � [P]tb,te
I | θ , if at time tb, T contains [P0θ ]I , P is a prefix of the action sequence of P0 and during

the interval (tb, te], exactly this prefix Pθ reduces in thread I. Given this definition of matching, we define semantic
satisfaction for modal formulas as follows.

T |= [P]tb,te
I A if for each θ , and all ground time points t, t ′b and t ′e, T � [P]

t ′b,t ′e
I | θ implies T |=t Aθ(t ′b/tb)(t ′e/te).

T |= [a]tb,te
I,x A if for each θ , all ground time points t, t ′b and t ′e, and each ground e, T � [a]

t ′b,t ′e
I,e | θ implies

T |=t Aθ(t ′b/tb)(t ′e/te)(e/x).

A.5 Proof System for LS2

The proof system of LS2 consists of several rules and axioms. If ϕ is a formula (modal or otherwise), we write ` ϕ to
mean that ϕ is provable using the proof system. For convenience, we have divided the proof system into several parts.
Rules of inference are shown in Figure 9. Axioms are shown in Figures 10, 11 and 12, classified (roughly) by their use
in reasoning. In addition to these rules and axioms, we assume a full axiomatization of first-order logic, and axioms
that make the set of time points a total order. We also assume that equality of expressions is an equivalence relation.
Further, we assume some axioms for the predicate Contains(e,e′), often relying on types of terms (for e.g., if e is a
number, then Contains(e,e′)⊃ e = e′). These straightforward axioms are elided here.

Rule (NecAt) states that if A is provable, then so is A @ t. This rule is akin to the so called “necessitation” rule from
standard modal logics. The basic rule used for reasoning about modal formulas is (Seq). If we know that the program
x := a;P was executed in the interval (tb, te], then there must be a time point tm at which action a reduced. The (Seq)
rule lets us reason about a in the interval (tb, tm], about the remaining program P in the interval (tm, te], and combine
this information. The side condition (tm fresh) means that tm should not appear free in A1 and A2 and that it should
be distinct from both tb and te. Rules (Conj1)–(Nec2) allow us to incorporate reasoning about ordinary formulas into
modal formulas.

IS(~P) in the rule (Honesty) denotes programs that are prefixes of programs in the set ~P. Formally, IS(·) = {·},
IS(jump e) = {·,jump e}, IS(late launch ) = {·,late launch }, IS(x := a;P) = {·} ∪ {x := a;Q | Q ∈ IS(P)},
and IS(P1, . . . ,Pn) = {·}∪ IS(P1) . . . IS(Pn). IS(~P) always includes the empty program ·. The rule (Honesty) may be
interpreted as follows: if we know that thread I is executing one of the programs in the set ~P (assumption Honest(Î,~P)),
and on all prefixes of programs in this set some property A holds (premise), then property A must hold (conclusion).

The (Jump) rule is used for reasoning about programs that use dynamic branching. It means that if a property A holds
whenever any initial prefix of program P executes (premise), and P is called at time t (assumption Jump(I,P) @ t),
then A must hold at all points of time t ′ greater than t. Rules (Reset) and (LateLaunch) are similar, except that in these
cases the programs being executed are fixed (SRT M(m) and LL(m) respectively).

Figure 10 lists those axioms of LS2 that are used for reasoning about straightline code and for reasoning about
network primitives and cryptography. Axioms (K) and (Disj) state basic properties of the connective @. These
axioms, together with the rule (NecAt) imply that (A ∧ B) @ t ≡ (A @ t) ∧ (B @ t) and that (A ∨ B) @ t ≡ (A @ t) ∨
(B @ t), where A ≡ B denotes logical equivalence defined as (A ⊃ B) ∧ (B ⊃ A). We use the notation R(I,x,a) as an
abbreviation for the action predicate corresponding to the action x := a, performed by thread with id I. For example, if
a = receive , then R(I,x,a) = Receive(I,x), and if a = send e, then R(I,x,a) = Send(I,e). As a syntactic convention,
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` A

` A @ t
NecAt

` [a]tb,tmI,x A1 ` [P]tm,te
I A2 (tm fresh)

` [x := a;P]tb,teI ∃tm.∃x. ((tb < tm ≤ te) ∧ A1 ∧ A2)
Seq

` [P]tb,teI A1 ` [P]tb,teI A2

` [P]tb,teI A1 ∧ A2
Conj1

` [a]tb,teI,x A1 ` [a]tb,teI,x A2

` [a]tb,teI,x A1 ∧ A2
Conj2

` [P]tb,teI A1 ⊃ A2 ` [P]tb,teI A1

` [P]tb,teI A2
Imp1

` [a]tb,teI,x A1 ⊃ A2 ` [a]tb,teI,x A1

` [a]tb,teI,x A2
Imp2

` A

` [P]tb,teI A
Nec1

` A

` [a]tb,teI,x A
Nec2

∀Q ∈ IS(~P). ` [Q]tb,teI A(tb, te)

` Honest(Î,~P)⊃ ∀te. A(−∞, te)
Honesty

∀Q ∈ IS(SRT M(m)). ` [Q]tb,teI A(tb, te)
` Reset(m, I) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′)

Reset

For every Q in IS(P) : ` [Q]tb,teI A(tb, te) (tb, te fresh constants)
` Jump(I,P) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′)

Jump

∀Q ∈ IS(LL(m)). ` [Q]tb,teI A(tb, te)
` LateLaunch(m, I) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′)

LateLaunch

Figure 9: Proof system rules

we assume that ¬ binds tighter than on. Axioms (Act1)–(LL1) are used to reason about specific actions of threads. For
example, the axiom (Act) states that if thread I executes the action a at time te, and no other action in the interval (tb, te]
returning value x, then R(I,x,a) holds at time te, and that R(I,x,a) does not hold at any other point in the remaining
interval (tb, te].

Axioms (Verify)–(Proj2) describe properties of values returned by actions specific actions. For example, if the action
sig e,K−1 returns value x, then x must equal SIGK−1{|e|} (axiom (Sign)). Axiom (VER) captures the unforgeability
of signatures. If a thread I verifies a signature with public key K, and the owner K̂ of the corresponding private key
is honest, then some thread I′ of K̂ must have either sent out the signature in a message in the past, or written the
signature to a memory location in the past. Axiom (NEW) captures the freshness of nonces: if thread I generates
nonce n, and n appears in an action, then the latter must have happened after the former.

Figure 11 shows axioms that are used to reason about values contained in locations. Axiom (READ) says that if
any thread reads a value e from location l at time t, then l must have contained value e at time t. (Mem=) means
that the same location cannot contain two different expressions at the same time. (MemW)–(MemE) capture the
effect of specific actions on locations. (MemIR)–(MemIdP) are used to reason that a location l contains the same
value throughout an interval i. In each axiom we assume enough conditions to ensure that there is no possibility of
modifying l during the interval i. For example, in axiom (MemIR), that applies to locations in RAM, we assume that
some thread I which does not write to l during i has a lock on the location, and that the machine on which l is situated
is not reset during i. For locations of disk (axiom (MemID)), the condition that the machine is not reset is unnecessary.
In case of PCRs (axioms (MemIP) and (MemIdP)), writing is replaced by extension, since PCRs expose a different
interface.

Axioms (LockLL) and (LockIdP) capture in the logic how locks may be acquired. If a thread I successfully executes
action lock l at time t, location l is locked for I at time t (axiom (LockL)). When a late launch happens, all dynamic
PCRs are automatically locked for the secure thread that is created (axiom (LockLL)). Axioms (LockI) and (LockIdP)
are used for reasoning about invariance of locks on locations. These are similar to the axioms for invariance of memory.

Figure 12 lists axioms that are peculiar to PCR locations. Most of these axioms were discussed in Section 3. The
axioms (PCRC) and (dPCRC) mean that it is impossible to recover a signature from the contents of any PCR. This
follows from the fact that PCRs either contain hashes or constants.
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(K) ` ((A⊃ B) @ t)⊃ ((A @ t)⊃ (B @ t))
(Disj) ` ((A ∨ B) @ t)⊃ ((A @ t) ∨ (B @ t))
(Eq) ` ((e = e′) ∧ A(e/x))⊃ A(e′/x)

(Act1) ` [a]tb,teI,x (R(I,x,a) @ te) ∧ (¬R(I,x,a) on (tb, te))
(Act2) ` [a]tb,teI,x ¬R(I,x′,a′) on (tb, te] if x 6= x′ or a 6= a′

(Act3) ` [a]tb,teI,x (¬Jump(I,e) on (tb, te]) ∧ (¬Reset(machine(I)) on (tb, te])
(ActN1) ` [·]tb,teI ¬R(I,e,a) on (tb, te]
(ActN2) ` [·]tb,teI ¬Jump(I,e) on (tb, te]
(Jump1) ` [jump e]tb,teI ∃t. t ∈ (tb, te] ∧ (Jump(I,e) @ t) ∧ (¬Jump(I) on (tb, t)) ∧ (¬Reset(m) on (tb, t]) ∧

(¬R(I,e1,a1) on (tb, t]) ∧ . . . ∧ (¬R(I,en,an) on (tb, t])

(LL1) ` [late launch ]tb,teI ∃t. t ∈ (tb, te] ∧ (∃J. LateLaunch(machine(I),J) @ t) ∧
(¬Jump(I) on (tb, t]) ∧ (¬Reset(m) on (tb, t]) ∧
(¬R(I,e1,a1) on (tb, t]) ∧ . . . ∧ (¬R(I,en,an) on (tb, t])

(Verify) ` [verify e,K]tb,teI,x e = SIGK−1{|x|}
(Sign) ` [sign e,K−1]tb,teI,x x = SIGK−1{|e|}
(Enc) ` [enc e,K]tb,teI,x x = ENCK{|e|}
(Dec) ` [dec e,K−1]tb,teI,x e = ENCK{|x|}
(SymEnc) ` [symenc e,K]tb,teI,x x = SY MENCK{|e|}
(SymDec) ` [symdec e,K]tb,teI,x e = SY MENCK{|x|}
(Hash) ` [hash e]tb,teI,x x = H(e)
(Eval) ` [eval f ,e]tb,teI,x x = f (e)
(Proj1) ` [proj1 e]tb,teI,x ∃e

′. e = (x,e′)
(Proj2) ` [proj2 e]tb,teI,x ∃e

′. e = (e′,x)

(Match) ` (Match(I,e,e′) @ t)⊃ e = e′

(VER) ` ((Verify(I,e,K) @ t) ∧ (Î 6= K̂) ∧ Honest(K̂,~P))
⊃ (∃I′.∃t ′.∃e′. (t ′ < t) ∧ (Î′ = K̂) ∧ Contains(e′,SIGK−1{|e|})
∧ ((Send(I′,e′) @ t ′) ∨ ∃l. (Write(I′, l,e′) @ t ′)))

(NEW) ` ((New(I,n) @ t) ∧ (R(I′,e,a) @ t ′))⊃ (t ′ > t) (n ∈ a)

Figure 10: Proof system axioms for reasoning about straightline code and network primitives

A.6 Soundness
Lemma 1 (Prefix Matching). Let T be a trace that contains the thread [Pθ ]I at time tb (where P is a program possibly
containing free variables, and θ is a substitution that grounds all its free variables). Then for any te ≥ tb, there is a
Q ∈ IS(P) such that T � [Q]tb,te

I | θ .

Proof. We prove this theorem by inducting on n, the number of reductions (in T ) of the thread I in the interval (tb, te].

Case n = 0. Then the thread I performs no reduction in the interval (tb, te]. By definition of matching, T � [·]tb,te
I | θ .

Hence we may choose Q = · in this case. Note that · ∈ IS(P) for any P.

Case n = m + 1, m ≥ 0. Since thread I performs at least one reduction in the interval (tb, te], let the time at which I
performs its first reduction after tb be tm. We now analyze cases on the rule used for the first reduction in I after tb:

Subcase (jump). If the first reduction in I after tb is due to rule (jump), it must be the case that P = jump e, and
Pθ = jump eθ . By definition of matching, it follows that T � [jump e]tb,te

I | θ . Thus we may choose Q = jump e,
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(READ) ` (Read(I, l,e) @ t)⊃ (Mem(l,e) @ t)
(Mem=) ` ((Mem(l,e) @ t) ∧ (Mem(l,e′) @ t))⊃ e = e′

(MemW) ` (Write(I, l,e) @ t)⊃ (Mem(l,e) @ t)
(MemR) ` (Reset(m, I) @ t)⊃ (Mem(l,sinit) @ t) (l = m.∗ .∗, l 6= m.disk.∗)
(MemLL) ` (LateLaunch(m, I) @ t)⊃ (Mem(m.d pcr.k,dinit) @ t)

(MemE) ` ((Extend(I, l,e) @ t) ∧ (Mem(l,seq(e1, . . . ,en)) on [t ′, t)) ∧ (t ′ < t))
⊃ (Mem(l,seq(e1, . . . ,en,e)) @ t)

(MemIR) ` ((Mem(m.RAM.k,e) @ tb) ∧ (IsLocked(m.RAM.k, I) on i)
∧ (∀e′. ¬Write(I,m.RAM.k,e′) on i) ∧ (¬Reset(m) on i))
⊃ (Mem(m.RAM.k,e) on i) (i = (tb, te) or i = (tb, te])

(MemID) ` ((Mem(m.disk.k,e) @ tb) ∧ (IsLocked(m.disk.k, I) on i)
∧ (∀e′. ¬Write(I,m.disk.k,e′) on i))
⊃ (Mem(m.disk.k,e) on i) (i = (tb, te) or i = (tb, te])

(MemIP) ` ((Mem(m.pcr.k,e) @ tb) ∧ (IsLocked(m.pcr.k, I) on i)
∧ (∀e′. ¬Extend(I,m.l,e′) on i) ∧ (¬Reset(m) on i))
⊃ (Mem(m.pcr.k,e) on i) (i = (tb, te) or i = (tb, te])

(MemIdP) ` ((Mem(m.d pcr.k,e) @ tb) ∧ (IsLocked(m.d pcr.k, I) on i)
∧ (∀e′. ¬Extend(I,m.d pcr.k,e′) on i) ∧ (¬Reset(m) on i)
∧ (¬LateLaunch(m) on i))
⊃ (Mem(m.d pcr.k,e) on i) (i = (tb, te) or i = (tb, te])

(LockL) ` (Lock(I, l) @ t)⊃ (IsLocked(l, I) @ t)
(LockLL) ` (LateLaunch(m, I) @ t)⊃ (IsLocked(m.d pcr.k, I) @ t)

(LockI) ` ((IsLocked(l, I) @ tb) ∧ (¬Unlock(I, l) on i)
∧ (¬Reset(m) on i)) (i = (tb, te) or i = (tb, te],
⊃ (IsLocked(l, I) on i) l = m.∗ .∗, l 6= m.d pcr.∗)

(LockIdP) ` ((IsLocked(m.d pcr.k, I) @ tb) ∧ (¬Unlock(I,m.d pcr.k) on i)
∧ (¬Reset(m) on i) ∧ (¬LateLaunch(m) on i))
⊃ (IsLocked(m.d pcr.k, I) on i) (i = (tb, te) or i = (tb, te])

Figure 11: Proof system axioms for reasoning about memory and its protection

which is indeed in the set IS(P) since P = jump e.

Subcase (llaunch). If the first reduction in I after tb is due to rule (llaunch), it must be the case that P = late launch ,
and Pθ = late launch θ . By definition of matching, it follows that T � [late launch ]tb,te

I | θ . Thus we may
choose Q = late launch , which is indeed in the set IS(P) since P = late launch .

Subcase (any action rule, i.e., any of the rules from (sign)–(comm)). If the first reduction in I after tb is due to an
action, it must be the case that P = (x := a;P′), and Pθ = (x := aθ ;P′θ). Further, this first reduction must produce a
value, say e, and by our assumption it occurs at time tm. By definition of matching,

T � [a]tb,tm
I,e | θ (A.1)

Further as a result of the reduction, T contains the thread [P′θ(e/x)]I at time tm. In the interval (tm, te], this thread
performs exactly m reductions, which is less than n. Hence by the induction hypothesis, there is a program Q′ ∈ IS(P′)
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(PCRC) ` (Mem(m.pcr.k,e) @ t)⊃ ¬Contains(e,SIGK{|e′|})

(PCR1) ` (Mem(m.pcr.k,seq(sinit,e1, . . . ,en)) @ t)
⊃ (∃t ′. (t ′ < t) ∧ (Mem(m.pcr.k,seq(sinit,e1, . . . ,en−1)) @ t ′) ∧ (¬Reset(m) on (t ′, t])) (n≥ 1)

(PCR2) ` (Mem(m.pcr.k,sinit) @ t)⊃ (∃t ′. (t ′ ≤ t) ∧ ∃J. (Reset(m,J) @ t ′) ∧ (¬Reset(m) on (t ′, t]))

(PCR=) ` ((Mem(m.pcr.k,seq(sinit,e1, . . . ,en)) @ t) ∧ (Mem(m.pcr.k,seq(sinit,e′1, . . . ,e
′
n, . . .)) @ t ′)

∧ (t ′ > t) ∧ (¬Reset(m) on [t, t ′]))
⊃ ((e1 = e′1) ∧ . . . ∧ (en = e′n))

(dPCRC) ` (Mem(m.d pcr.k,e) @ t)⊃ ¬Contains(e,SIGK{|e′|})

(dPCR1) ` (Mem(m.d pcr.k,seq(dinit,e1, . . . ,en)) @ t)
⊃ (∃t ′. (t ′ < t) ∧ (Mem(m.d pcr.k,seq(dinit,e1, . . . ,en−1)) @ t ′)
∧ (¬Reset(m) on (t ′, t]) ∧ (¬LateLaunch(m) on (t ′, t])) (n≥ 1)

(dPCR2) ` (Mem(m.d pcr.k,dinit) @ t)
⊃ (∃t ′. (t ′ ≤ t) ∧ ∃J. (LateLaunch(m,J) @ t ′)
∧ (¬Reset(m) on (t ′, t]) ∧ (¬LateLaunch(m) on (t ′, t]))

(dPCR=) ` ((Mem(m.d pcr.k,seq(dinit,e1, . . . ,en)) @ t) ∧ (Mem(m.d pcr.k,seq(dinit,e′1, . . . ,e
′
n, . . .)) @ t ′)

∧ (t ′ > t) ∧ (¬Reset(m) on [t, t ′]) ∧ (¬LateLaunch(m) on [t, t ′]))
⊃ ((e1 = e′1) ∧ . . . ∧ (en = e′n))

Figure 12: Proof system axioms for reasoning about PCRs

such that
T � [Q′]tm,te

I | θ ,e/x (A.2)

Now observe two facts:

1. (x := a;Q′) ∈ IS(x := a;P′) (since Q′ ∈ IS(P′))

2. T � [x := a;Q′]tb,te
I | θ (from A.1 and A.2)

From (1) and (2) it follows that Q = (x := a;Q′) satisfies the requirements of the statement of the theorem.

Statement of Soundness. Let Γ denote a set of non-modal formulas. We write Γ ` ϕ to mean that there is a proof
of ϕ in the proof system of LS2, assuming that each assumption in Γ is provable. We define (T |= A) to mean
(∀t. T |=t A), (T |= Γ) to mean (∀B ∈ Γ. T |= B), (Γ |= A) to mean (∀T . (T |= Γ) implies (T |= A)), and (Γ |= J)
to mean (∀T . (T |= Γ) implies (T |= J)).

The soundness theorem for LS2 may be stated as follows:

Theorem 5 (Soundness). For ϕ = A or J, if Γ ` ϕ then Γ |= ϕ .

Proof of soundness. In proving the soundness theorem, we make the following assumptions about traces.

1. In the starting configuration of any trace, expressions signed by honest agents do not exist in threads of other
agents, nor in memory locations. This assumption is needed to prove the soundness of axiom (VER).

2. In the starting configuration of any trace, all PCRs contain values they cannot otherwise contain, i.e., values
different from sinit, dinit, and hashes. This assumption is needed to prove soundness of axioms (PCR1), (PCR2),
(dPCR1), and (dPCR2).

29



To prove soundness, we assume Γ ` ϕ , pick an arbitrary timed trace T , assume that T |= Γ, and show that T |= ϕ .
The proof proceeds by induction on the assumed derivation of Γ ` ϕ in LS2’s proof system. We case analyze the last
rule in the derivation, showing below some of the representative cases.

Case (HYP). This is the case where Γ ` A because A ∈ Γ. Since we have assumed T |= Γ, and A ∈ Γ, we have
T |= A by definition.

Case (NecAt).
` A
` A @ t

NecAt

We need to show T |= A @ t, i.e., for any time t ′, T |=t ′ A @ t. By definition of |=, it suffices to show that T |=t A.
By the i.h., T |=t ′′ A for each t ′′. In particular, T |=t A, as required.

Case (Seq).
` [a]tb,tm

I,x A1 ` [P]tm,te
I A2 (tm fresh)

` [x := a;P]tb,te
I ∃tm.∃x. ((tb < tm ≤ te) ∧ A1 ∧ A2)

Seq

Suppose for some ground time points t ′b and t ′e, T � [x := a;P]
t ′b,t ′e
I | θ . By definition of matching, there is an expression

e and a time t ′m ∈ (t ′b, t
′
e] such that the following hold.

1. T � [a]
t ′b,t ′m
I,e | θ

2. T � [P]t
′
m,t ′e

I | θ ,e/x

From i.h. on the first premise and (1) we obtain that for any t ′, T |=t ′ A1θ(t ′b/tb)(t ′m/tm)(e/x). From i.h.
on the second premise and from (2) we obtain that for any t ′, T |=t ′ A2θ(e/x)(t ′m/tm)(t ′e/te). Further since
tb 6∈ A2 and te 6∈ A1 (due to syntactic restrictions on modal formulas), we obtain by definition of |= that
T |=t ′ (A1 ∧ A2)θ(e/x)(t ′b/tb)(t ′m/tm)(t ′e/te). This immediately implies that T |=t ′ (∃tm.∃x. ((tb < tm ≤ te) ∧
A1 ∧ A2))θ(t ′b/tb)(t ′e/te). This is what we wanted to show.

Case (Conj1).
` [P]tb,te

I A1 ` [P]tb,te
I A2

` [P]tb,te
I A1 ∧ A2

Conj1

Suppose for some ground time points t ′b and t ′e, T � [P]
t ′b,t ′e
I | θ . By i.h., for any ground t, T |=t A1θ(t ′b/tb)(t ′e/te) and

T |=t A2θ(t ′b/tb)(t ′e/te). By definition of satisfaction, T |=t (A1 ∧ A2)θ(t ′b/tb)(t ′e/te), as required.

Cases (Conj2), (Imp1), (Imp2). These are similar to the previous case.

Case (Nec1).
` A

` [P]tb,te
I A

Nec1

Suppose that for some t ′b, t
′
e, T � [P]

t ′b,t ′e
I | θ . Given any t, we need to show that T |=t (Aθ)(t ′b/tb)(t ′e/te). Since

` A, ` Aφ with an equal derivation for every substitution φ (this is a fundamental property of first-order logic). In
particular, we may choose φ = θ , t ′b/tb, t ′e/te to get ` (Aθ)(t ′b/tb)(t ′e/te). By i.h. we obtain T |=t (Aθ)(t ′b/tb)(t ′e/te),
as required.

Case (Nec2). Similar to above case.
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Case (Honesty).
∀Q ∈ IS(~P). ` [Q]tb,te

I A(tb, te)

` Honest(Î,~P)⊃ ∀te. A(−∞, te)
Honesty

We have to show that for any ground t it is the case that T |=t Honest(X̂ ,~P) ⊃ ∀te. A(−∞, te). So, suppose that
T |=t Honest(X̂ ,~P), and pick any ground time point t ′e. It suffices to show that T |=t A(−∞, t ′e).

There are two possibilities. Either there is no thread belonging to the agent Î in T , or there is at least one. In the
former case, let I be a hypothetical thread belonging to Î. By definition of matching we have T � [·]−∞,t ′e

I | ·. Using
this and i.h. on the premise with Q = ·, we get for any t that T |=t (A(tb, te))(−∞/tb)(t ′e/te), i.e., T |=t A(−∞, t ′e), as
required.

If there is at least one thread belonging to agent Î in T , choose any one such thread I. Due to the assumption
T |=t Honest(X̂ ,~P), T must contain [P]I at time −∞, where P ∈ ~P is a program. By Lemma 1, there is a Q ∈ IS(P)
such that T � [Q]−∞,t ′e

I | ·. Using this fact, and the premise corresponding to exactly this Q, we obtain that
T |=t (A(tb, te))(−∞/tb)(t ′e/te), i.e., T |=t A(−∞, t ′e), as required.

Case (Reset).
∀Q ∈ IS(SRT M(m)). ` [Q]tb,te

I A(tb, te)
` Reset(m, I) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′)

Reset

We have to show that for any ground t0 it is the case that T |=t0 Reset(m, I) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′). So assume
that T |=t0 Reset(m, I) @ t, and pick an arbitrary t ′ such that t ′ > t. It suffices to show that T |=t0 A(t, t ′).

From the assumption T |=t0 Reset(m, I) @ t, it follows that T |=t Reset(m, I), and hence by definition of |= that
the reduction (reset) happened on machine m at time t. Hence at time t, T contains [SRT M(m)]I . By Lemma 1, there
is a program Q ∈ IS(SRT M(m)) such that T � [Q]t,t

′

I | ·. Using this, and i.h. on the premise corresponding exactly to
this Q, we get, T |=t0 (A(tb, te))(t/tb)(t ′/te), i.e., T |=t0 A(t, t ′), as required.

Case (Jump).
For every Q in IS(P) : ` [Q]tb,te

I A(tb, te) (tb, te fresh constants)
` Jump(I,P) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′)

Jump

We have to show that for any ground t0 it is the case that T |=t0 Jump(I,P) @ t ⊃ ∀t ′. (t ′ > t) ⊃ A(t, t ′). So assume
that T |=t0 Jump(I,P) @ t, and pick an arbitrary t ′ such that t ′ > t. It suffices to show that T |=t0 A(t, t ′).

From the assumption T |=t0 Jump(I,P) @ t, it follows that T |=t Jump(I,P), and hence by definition of |= that
the action jump P reduced in thread I at time t. Hence at time t, T contains [P]I . By Lemma 1, there is a program
Q ∈ IS(P) such that T � [Q]t,t

′

I | ·. Using this, and i.h. on the premise corresponding exactly to this Q, we get,
T |=t0 (A(tb, te))(t/tb)(t ′/te), i.e., T |=t0 A(t, t ′), as required.

Case (LateLaunch).
∀Q ∈ IS(LL(m)). ` [Q]tb,te

I A(tb, te)
` LateLaunch(m, I) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′)

LateLaunch

We have to show that for any ground t0 it is the case that T |=t0 LateLaunch(m, I) @ t ⊃ ∀t ′. (t ′ > t) ⊃ A(t, t ′). So
assume that T |=t0 LateLaunch(m, I) @ t, and pick an arbitrary t ′ such that t ′> t. It suffices to show that T |=t0 A(t, t ′).

From the assumption T |=t0 LateLaunch(m, I) @ t, it follows that T |=t LateLaunch(m, I), and hence by
definition of |= that the reduction (llaunch) happened on machine m at time t. Hence at time t, T contains [LL(m)]I .
By Lemma 1, there is a program Q ∈ IS(LL(m)) such that T � [Q]t,t

′

I | ·. Using this, and i.h. on the premise
corresponding exactly to this Q, we get, T |=t0 (A(tb, te))(t/tb)(t ′/te), i.e., T |=t0 A(t, t ′), as required.

Case (K).
` ((A⊃ B) @ t)⊃ ((A @ t)⊃ (B @ t))
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We have to show that for each time t ′, T |=t ′ ((A⊃ B) @ t)⊃ ((A @ t)⊃ (B @ t)). Assume that T |=t ′ (A⊃ B) @ t
and T |=t ′ A @ t. We must show that T |=t ′ B @ t. From our assumptions and definition of |= it follows that
T |=t A⊃ B and that T |=t A. Hence, T |=t B, from which we obtain T |=t ′ B @ t as required.

Case (Disj).
` ((A ∨ B) @ t)⊃ ((A @ t) ∨ (B @ t))

We have to show that for each time t ′, T |=t ′ ((A ∨ B) @ t)⊃ ((A @ t) ∨ (B @ t)). Assume that T |=t ′ (A ∨ B) @ t.
It suffices to show that T |=t ′ (A @ t) ∨ (B @ t). By assumption and definition of |=, we obtain T |=t A ∨ B. Thus
either T |=t A or T |=t B. In the former case, we obtain T |=t ′ A @ t. In the latter case, T |=t ′ B @ t. In each case,
T |=t ′ (A @ t) ∨ (B @ t), as required.

Case (Eq).
` ((e = e′) ∧ A(e/x))⊃ A(e′/x)

We have to show that for each time t ′, T |=t ′ ((e = e′) ∧ A(e/x)) ⊃ A(e′/x). Assume that T |=t ′ e = e′ and that
T |=t ′ A(e/x). Then, by definition, e and e′ are syntactically equal. Thus A(e/x) = A(e′/x). Hence T |=t ′ A(e′/x).

Case (Act1).
` [a]tb,te

I,x ∃t. t ∈ (tb, te] ∧ (R(I,x,a) @ t) ∧
(¬R(I,x,a) on (tb, t)) ∧ (¬R(I,x,a) on (t, te])

Suppose that for some ground t ′b, t ′e and e, T � [a]
t ′b,t ′e
I,e | θ . We have to show that T |=t0 ((R(I,x,a) @

t ′e) ∧ (¬R(I,x,a) on (t ′b, t
′
e)))θ(e/x). By definition of matching, aθ happened in thread I at time t ′e (hence

(R(I,x,a) @ t ′e)θ(e/x) holds), and that no other action happened in thread I at any other time in the interval (t ′b, t
′
e].

From the latter it follows that (¬R(I,x,a) on (t ′b, t
′
e))θ(e/x) holds. This is what we had to show.

Cases (Act2) – (ActN2). These are similar to the previous case.

Case (Jump1).

` [jump e]tb,te
I ∃t. t ∈ (tb, t] ∧ (Jump(I,e) @ t) ∧ (¬Jump(I) on (tb, t)) ∧ (¬Reset(machine(I)) on (tb, t]) ∧

(¬R(I,x1,a1) on (tb, t]) ∧ . . . ∧ (¬R(I,xn,an) on (tb, t])

Suppose that for some ground t ′b, t ′e, and θ , it is the case that T � [jump e]
t ′b,t ′e
I | θ . Then it suffices to show that

T |=t0 (∃t. t ∈ (tb, te]∧ (Jump(I,e) @ t)∧ (¬Jump(I) on (tb, t))∧ (¬Reset(machine(I)) on (tb, t])∧ (¬R(I,x1,a1) on
(tb, t]) ∧ . . . ∧ (¬R(I,xn,an) on (tb, t]))θ(t ′b/tb)(t ′e/te), i.e., T |=t0 ∃t. t ∈ (t ′b, t

′
e] ∧ (Jump(I,eθ) @ t) ∧ (¬Jump(I) on

(t ′b, t)) ∧ (¬Reset(machine(I)) on (t ′b, t]) ∧ (¬R(I,x1θ ,a1θ) on (t ′b, t]) ∧ . . . ∧ (¬R(I,xnθ ,anθ) on (t ′b, t]). By
definition of matching, [jump eθ ]I exists in T at time t ′b. Further, this reduces at some time t ∈ (tb, te]
(hence (Jump(I,eθ) @ t) holds). Clearly, there cannot be any reduction in I in the interval (t ′b, t), so
(¬Jump(I) on (t ′b, t)) ∧ (¬R(I,x1θ ,a1θ) on (t ′b, t]) ∧ . . . ∧ (¬R(I,xnθ ,anθ) on (t ′b, t]) also holds. Further there
cannot be a reset on machine(I) in the interval (t ′b, t] because that would have killed thread I, implying that the jump
could not have happened. Hence (¬Reset(machine(I)) on (t ′b, t]) must also hold.

Case (LL1). This is similar to the previous case, except that in place of jump, we have a late launch.

Case (Verify).
` [verify e,K]tb,te

I,x e = SIGK−1{|x|}

Suppose that for some ground points t ′b, t ′e, and some ground expression e′, T � [verify e,K]
t ′b,t ′e
I,e′ | θ . By definition

of the match, at time t ′e, the action verify eθ ,Kθ reduces, returning e′. This forces eθ = SIGK−1θ{|e′|}. We now need
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to show that T |=t (e = SIGK−1{|x|})θ(e′/x), i.e., that eθ(e′/x) = SIGK−1θ(e′/x){|e′|}. But due to syntactic restrictions
on the modal formula ([verify e,K]tb,te

I,x e), e and K cannot mention x. Hence it suffices to show eθ = SIGK−1θ{|e′|}.
We have already established this.

Cases (Sign)–(Proj2). These are similar to the previous case.

Case (Match).
` (Match(I,e,e′) @ t)⊃ e = e′

Assume that T |=t0 Match(I,e,e′) @ t. It suffices to show that e = e′. By assumption, we obtain that
T |=t Match(I,e,e′), or equivalently, that thread I executed action match e,e′ at time t. From the operational
semantics, this can happen only if e = e′.

Case (VER).
` ((Verify(I,e,K) @ t) ∧ (Î 6= K̂) ∧ Honest(K̂))

⊃ (∃I′.∃t ′.∃e′. (t ′ < t) ∧ (Î′ = K̂) ∧ Contains(e′,SIGK−1{|e|})
∧ ((Send(I′,e′) @ t ′) ∨ ∃l. (Write(I′, l,e′) @ t ′)))

Suppose T |=t0 ((Verify(I,e,K) @ t) ∧ (Î 6= K̂) ∧ Honest(K̂)). It follows that at time t, I executed the action
x := verify SIGK−1{|e|},K in T . Since in the initial configuration, I cannot contain SIGK̂{|e|} (because K̂ is honest,
and Î 6= K̂), at some earlier time point SIGK̂{|e|} must have appeared in I’s thread for the first time. This could only
have happened in two ways: either some other thread sent it to I, or I read it from a location in RAM or on disk (it is
impossible to extract a signature from anything written to a PCR). In the latter case, some other thread Y wrote it to
the location. In either case, some other thread either sent the signature to I, or wrote it to memory at an earlier time. If
this thread belongs to K̂, we are done, else we can repeat the argument on thread Y (the argument terminates because
we are moving backwards on the trace, which is finite).

Case (NEW).
` ((New(I,n) @ t) ∧ (R(I′,e,a) @ t ′))⊃ (t ′ > t) (n ∈ a)

Suppose T |=t0 (New(I,n) @ t) ∧ (Receive(I′,e) @ t ′). By definition, T |=t New(I,n) and T |=t ′ R(I′,e,a). Thus at
time t ′, thread I′ executed an action a that contained n in it. Suppose for the sake of contradiction that t ′ ≤ t. Then,
since we assume that actions happen at distinct time points, t ′ < t. It follows that at time t, I executed new resulting in
expression n, which existed earlier in the configuration (at time t ′). This contradicts the freshness of n in the reduction
rule (new). Hence we must have t ′ > t.

Case (READ).
` (Read(I, l,e) @ t)⊃ (Mem(l,e) @ t)

Suppose T |=t0 Read(I, l,e) @ t. By definition, T |=t Read(I, l,e). Again by definition, thread I executed action
read l at time t, obtaining value e. Hence σ(l) = e at time t by the side condition on the rule (read). By definition
T |=t Mem(l,e). Thus T |=t0 Mem(l,e) @ t, as required.

Case (Mem=).
` ((Mem(l,e) @ t) ∧ (Mem(l,e′) @ t))⊃ e = e′

Suppose that T |=t0 (Mem(l,e) @ t) ∧ (Mem(l,e′) @ t). By definition, T |=t Mem(l,e) and T |=t Mem(l,e′).
Thus in T , at time t, σ(l) = e and σ(l) = e′. But σ is a function, so e and e′ must be syntactically equal. Hence
T |=t0 e = e′ as required.

Case (MemW).
` (Write(I, l,e) @ t)⊃ (Mem(l,e) @ t)

33



Let us assume that T |=t0 Write(I, l,e) @ t, i.e., T |=t Write(I, l,e). It suffices to show that T |=t0 Mem(l,e) @ t.
By assumption, thread I executed write l,e at time t. Since the results of an action take effect at the time at which
the action occurs, l must contain e at time t. Hence, T |=t Mem(l,e), or equivalently, T |=t0 Mem(l,e) @ t, which is
what we had to show.

Cases (MemR), (MemLL). These are similar to the previous case, except that in these cases, the location of memory
is changed due to a (reset) reduction and due to a (llaunch) reduction respectively (instead of (write)).

Case (MemE).
` (Extend(I, l,e) @ t) ∧ (Mem(l,seq(e1, . . . ,en)) on [t ′, t)) ∧ (t ′ < t)
⊃ (Mem(l,seq(e1, . . . ,en,e)) @ t)

Let us assume that T |=t0 Extend(I, l,e) @ t, and that T |=t0 Mem(l,seq(e1, . . . ,en)) on [t ′, t) for t ′ < t. It suffices to
show that T |=t Mem(l,seq(e1, . . . ,en,e)).

From our assumptions we know that at time t, l (which must be a PCR) was extended with value e. Further,
just before t, l contained seq(e1, . . . ,en). (The condition t ′ < t ensures that [t ′, t) is not empty.) From these and
the reduction (extend), it follows that the extension wrote value seq(e1, . . . ,en,e) to l. Thus at time t, l contains
seq(e1, . . . ,en,e). Hence by definition of |= we get T |=t Mem(l,seq(e1, . . . ,en,e)), as required.

Case (MemIR).

` ((Mem(m.RAM.k,e) @ tb) ∧ (IsLocked(m.RAM.k, I) on i)
∧ (∀e′. ¬Write(I,m.RAM.k,e′) on i) ∧ (¬Reset(m) on i))
⊃ (Mem(m.RAM.k,e) on i) (i = (tb, te) or i = (tb, te])

We consider here the case i = (tb, te]. The other case i = (tb, te) is very similar (we just replace the inter-
val (tb, te] by (tb, te)). Assume that T |=t0 Mem(m.RAM.k,e) @ tb, that T |=t0 IsLocked(m.RAM.k, I) on (tb, te],
that T |=t0 ∀e′. ¬Write(I,m.RAM.k,e′) on (tb, te], and that T |=t0 ¬Reset(m) on (tb, te]. It suffices to show that
T |=t0 Mem(m.RAM.k,e) on (tb, te].

By assumption, we know that at time tb, m.RAM.k contains e. We observe that only two rules in the reduction
semantics can change the value in m.RAM.k. These are (write) and (reset). It follows that the value in m.RAM.k could
have changed in the interval (tb, te] only if one of the following happened:

1. In the interval (tb, te], some thread other than I executed write m.RAM.k,e′ for some e′.

2. In the interval (tb, te], thread I executed write m.RAM.k,e′ for some e′.

3. In the interval (tb, te], (reset) was applied to machine m.

However each of these possibilities is ruled out by the given assumptions. In particular, (1) is ruled out by the assump-
tion T |=t0 IsLocked(m.RAM.k, I) on (tb, te], (2) is ruled out by the assumption T |=t0 ∀e′. ¬Write(I,m.RAM.k,e′) on
(tb, te], and (3) is ruled out by the assumption T |=t0 ¬Reset(m) on (tb, te]. It follows that the value in m.RAM.k
cannot change in the interval (tb, te]. Thus we must have T |=t0 Mem(m.RAM.k,e) on (tb, te] as required.

Cases (MemID), (MemIP), (MemIdP). These are similar to the previous case.

Case (LockL).
` (Lock(I, l) @ t)⊃ (IsLocked(l, I) @ t)

Let us assume that T |=t0 Lock(I, l) @ t, i.e., T |=t Lock(I, l). It suffices to show that T |=t0 IsLocked(l, I) @ t. By
assumption, thread I executed lock l at time t. Since the results of an action take effect at the time at which the action
occurs, ι(l) = I at time t. Hence, T |=t IsLocked(l, I), or equivalently, T |=t0 IsLocked(l, I) @ t, which is what we
had to show.
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Case (LockLL). This case is similar to the previous case.

Case (LockI).
` ((IsLocked(l, I) @ tb) ∧ (¬Unlock(I, l) on i)
∧ (¬Reset(m) on i)) (i = (tb, te) or i = (tb, te],
⊃ (IsLocked(l, I) on i) l = m.∗ .∗, l 6= m.d pcr.∗)

We consider here the case i = (tb, te]. The other case of i = (tb, te) is similar. Let us assume that T |=t0

IsLocked(l, I) @ tb, that T |=t0 ¬Unlock(I, l) on (tb, te], and that T |=t0 ¬Reset(m) on (tb, te]. It suffices to show
that T |=t0 IsLocked(l, I) on (tb, te]. By assumption we know that I has a lock on l at time tb. There are only three
reductions in the operational semantics of the language that can change this: (lock), (unlock) and (reset). (The only
other rule (llaunch) that changes the lock map ι is ruled out here because l is not of the form m.d pcr.∗). This implies
that for the lock on l to have changed, one of the following must have happened:

1. In the interval (tb, te], I executed unlock l.

2. In the interval (tb, te], some thread other than I executed lock l.

3. In the interval (tb, te], rule (reset) happened on machine m.

Suppose, for the sake of contradiction, that one of (1)–(3) does happen. So let t be minimum time in the interval
(tb, te] at which one of (1)–(3) happens. Then clearly, since t is the minimum such time, ι(l) = I at t. If (1) happens
at t, it violates the assumption T |=t0 ¬Unlock(I, l) on (tb, te]. If (2) happens at t, then ι(l) = at t; this violates our
earlier observation that ι(l) = I at t. If (3) happens at t, this violates the assumption T |=t0 ¬Reset(m) on (tb, te]. In
all cases we get a contradiction. Thus neither of (1)–(3) can hold, and therefore, I must have the lock on location l
throughout the interval (tb, te]. Accordingly we obtain T |=t0 IsLocked(l, I) on (tb, te] as required.

Case (LockIdP). The analysis here is similar to the previous case, except that we must also consider a fourth possible
reduction rule (llaunch). This possibility is ruled out by the assumption (¬LateLaunch(m) on i) in the rule.

Case (PCRC).
` (Mem(m.pcr.k,e) @ t)⊃ ¬Contains(e,SIGK{|e′|})

Suppose T |=t0 Mem(m.pcr.k,e) @ t, i.e., T |=t Mem(m.pcr.k,e). Thus at time t, σ(m.pcr.k) = e. Since the
value in a static PCR may change only by reset (which writes a constant sinit to it), or by an extend (which writes
a hash to it), e must have the form sinit or H(e′′). Assume for the sake of contradiction that it is not the case
that T |=t0 ¬Contains(e,SIGK{|e′|}). It follows from definition of |= that T |=t0 Contains(e,SIGK{|e′|}). Hence
Mayderive(e,SIGK{|e′|}, pubs). But since e is either a hash or a constant, from definition of Mayderive it follows that
e = SIGK{|e′|}. The latter is impossible in our symbolic model. Thus T |=t0 ¬Contains(e,SIGK{|e′|}) must hold.

Case (PCR1).

` (Mem(m.pcr.k,seq(sinit,e1, . . . ,en)) @ t)
⊃ (∃t ′. (t ′ < t) ∧ (Mem(m.pcr.k,seq(sinit,e1, . . . ,en−1)) @ t ′) ∧ (¬Reset(m) on (t ′, t])) (n≥ 1)

Assume that T |=t0 Mem(m.pcr.k,seq(sinit,e1, . . . ,en)) @ t, i.e., T |=t Mem(m.pcr.k,seq(sinit,e1, . . . ,en)).
It suffices to show that there is a t ′ < t such that T |=t ′ Mem(m.pcr.k,seq(sinit,e1, . . . ,en−1)) and
T |=t0 (¬Reset(m) on (t ′, t]). By assumption, m.pcr.k contains seq(sinit,e1, . . . ,en) at time t. Since we assume that
in the starting configuration all PCRs contain a special value that does not exist otherwise, the only way to obtain this
value in m.pcr.k is either by a reset or by an extend. Since reset puts sinit in a PCR, and sinit 6= seq(sinit,e1, . . . ,en)
(in our symbolic model under the assumption n≥ 1), the value seq(sinit,e1, . . . ,en) must have appeared in m.pcr.k by
an extend reduction at some time t ′′ ≤ t. Thus at time t ′′, σ(m.pcr.k) = seq(sinit,e1, . . . ,en−1). Choose t ′ to be last
time point before t ′′ at which either m.pcr.k was extended, or machine m was reset, whichever is later. Clearly, such a
t ′ must exist since the value seq(sinit,e1, . . . ,en−1) exists in m.pcr.k at time t ′′. Also, the value in m.pcr.k at t ′ must be
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exactly seq(sinit,e1, . . . ,en−1). Further, there cannot be a reset on machine m in the interval (t ′, t ′′) (by assumption),
nor can there be a reset on machine m at time t ′′ (since we assumed that there was an extend operation at that time),
nor can there be a reset on machine m in the interval (t ′′, t] (since that would put the value sinit in m.pcr.k, but we
know that m.pcr.k contains seq(sinit,e1, . . . ,en) at time t). Thus there is no reset on m in the interval (t ′, t].

Case (PCR2).
` (Mem(m.pcr.k,sinit) @ t)
⊃ (∃t ′. (t ′ ≤ t) ∧ ∃J. (Reset(m,J) @ t ′) ∧ (¬Reset(m) on (t ′, t]))

Let us assume that T |=t0 Mem(m.pcr.k,sinit) @ t, i.e., T |=t Mem(m.pcr.k,sinit). It suffices to show that there is
a time t ′ ≤ t and a thread J such that T |=t ′ Reset(m,J), and T |=t0 ¬Reset(m) on (t ′, t]. By assumption, m.pcr.k
contains sinit at time t. Since we assume that in the initial configuration PCRs contain a special value that does
not appear otherwise, and because extends cannot write sinit to a PCR, the value sinit must have appeared in
m.pcr.k due to a reset. Let t ′ ≤ t be the last time at which the machine m was reset. Clearly then, there must be a J
such that T |=t ′ Reset(m,J), and further, there is no reset in the interval (t ′, t] so T |=t0 ¬Reset(m) on (t ′, t] also holds.

Case (PCR=).

` ((Mem(m.pcr.k,seq(sinit,e1, . . . ,en)) @ t) ∧ (Mem(m.pcr.k,seq(sinit,e′1, . . . ,e
′
n, . . .)) @ t ′)

∧ (t ′ > t) ∧ (¬Reset(m) on [t, t ′]))
⊃ ((e1 = e′1) ∧ . . . ∧ (en = e′n))

Assume that t ′ > t, that T |=t0 Mem(m.pcr.k,seq(sinit,e1, . . . ,en)) @ t, that T |=t0

Mem(m.pcr.k,seq(sinit,e′1, . . . ,e
′
n,e
′
n+1, . . . ,e

′
m)) @ t ′, and that T |=t0 ¬Reset(m) on [t, t ′]. It suffices to show

that T |=t0 (e1 = e′1) ∧ . . . ∧ (en = e′n). By our assumptions it follows that m.pcr.k contains seq(sinit,e1, . . . ,en) at
time t, that it contains seq(sinit,e′1, . . . ,e

′
n,e
′
n+1, . . . ,e

′
m) at a later time t ′, and that there is no reset on m in the interim.

Thus the only way that m.pcr.k changed between t and t ′ is by extends. By definition of extension, it follows that
ei = e′i for 1≤ i≤ n, which is what we wanted to show.

Cases (dPCRC), (dPCR1), (dPCR2), (dPCR=). These are similar to cases (PCRC), (PCR1), (PCR2), and (PCR=)
respectively.
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B Attestation using a Static Root of Trust Measurement (SRTM)
The SRTM protocol is shown in Figure 3. We first prove its measurement property. We remind the reader that we
defined ProtectedSRTM(m) and MeasuredBootSRTM(m, t) as follows.

ProtectedSRTM(m) =
∀t, I. (Reset(m, I) @ t)⊃ (IsLocked(m.pcr.s, I) @ t)

MeasuredBootSRTM(m, t) =
∃tT . ∃tB. ∃tO. ∃J. (tT < tB < tO < t) ∧

(Reset(m,J) @ tT ) ∧ (Jump(J,BL(m)) @ tB) ∧
(Jump(J,OS(m)) @ tO) ∧ (¬Reset(m) on (tT , t])
(¬Jump(J) on (tT , tB)) ∧ (¬Jump(J) on (tB, tO))

Theorem 6 (Security of integrity measurement). The following is provable in LS2:

ProtectedSRTM(m) `
Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t
⊃MeasuredBootSRTM(m, t)

Proof. Let us assume ProtectedSRTM(m) and Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t. We start by
using axioms (PCR1) and (PCR2) repeatedly to obtain the following:

∃tT , t1, t2, t3,J. (tT ≤ t1 < t2 < t3 < t)
∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t)
∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m))) @ t3)
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ t2)
∧ (Mem(m.pcr.s,sinit) @ t1)
∧ (Reset(m,J) @ tT )
∧ (¬Reset(m) on (tT , t])

(B.1)

We know from the above that there is a thread J such that Reset(m,J) @ tT . Next we would like to apply the (Reset)
rule. In order to do that, we must prove an invariant of the program SRT M(m). The specific invariant we prove is that
for each Q ∈ IS(SRT M(m)), it is the case that,

[Q]tb,te
J ∀t,b,o.

((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te])
∧ (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,b,o)) @ t))
⊃ ∃t ′. ((tb < t ′ < t) ∧ (Jump(J,b) @ t ′)

∧ (¬Jump(J) on (tb, t ′))
∧ (Mem(m.pcr.s,seq(sinit,b)) @ t ′)
∧ (IsLocked(m.pcr.s,J) @ t ′))

(B.2)

This invariant is not difficult to prove, but the proof is tedious. As an illustration, we verify this invariant for some
cases. We start with Q = ·. In that case, we prove the following stronger property. (The reader may readily verify that
this property implies the above for Q = ·.)

[·]tb,te
J ∀t,b,o.

((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te])
∧ (tb < t ≤ te))

⊃ (¬Mem(m.pcr.s,seq(sinit,b,o)) @ t)

(B.3)

To prove this, we first apply rule (ActN1) to deduce that

[·]tb,te
J (¬Unlock(J,m.pcr.s) on (tb, te])

∧ (∀e. ¬Extend(J,m.pcr.s,e) on (tb, te])
(B.4)
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Further, using the assumption ProtectedSRTM(m), we get

[·]tb,te
J (Reset(m,J) @ tb)⊃ (IsLocked(m.pcr.s,J) @ tb) (B.5)

Similarly, using axiom (MemR), we get

[·]tb,te
J (Reset(m,J) @ tb)⊃ (Mem(m.pcr.s,sinit) @ tb) (B.6)

Combining B.4, B.5, and B.6, and weakening slightly with an extra assumption gives,

[·]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ ((¬Unlock(J,m.pcr.s) on (tb, te])
∧ (∀e. ¬Extend(J,m.pcr.s,e) on (tb, te])
∧ (Mem(m.pcr.s,sinit) @ tb)
∧ (IsLocked(m.pcr.s,J) @ tb))

(B.7)

Using axiom (LockI), we obtain

[·]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ ((¬Unlock(J,m.pcr.s) on (tb, te])
∧ (∀e. ¬Extend(J,m.pcr.s,e) on (tb, te])
∧ (Mem(m.pcr.s,sinit) @ tb)
∧ (IsLocked(m.pcr.s,J) @ tb)
∧ (IsLocked(m.pcr.s,J) @ (tb, te]))

(B.8)

Next, we use axiom (MemIP) and the above formula to deduce that

[·]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (Mem(m.pcr.s,sinit) on (tb, te])
(B.9)

Or equivalently, by expanding the definition of A on I,

[·]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∀t. (tb < t ≤ te)⊃ (Mem(m.pcr.s,sinit) @ t))
(B.10)

Using axiom (Mem=) we get,

[·]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∀t. (tb < t ≤ te)⊃ (∀b,o. ¬Mem(m.pcr.s,seq(sinit,b,o)) @ t))
(B.11)

Reorganizing slightly gives us the required property from B.3:

[·]tb,te
J ∀t,b,o.

((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te])
∧ (tb < t ≤ te))

⊃ (¬Mem(m.pcr.s,seq(sinit,b,o)) @ t)

(B.12)

As another illustrative case, let us take Q = SRT M(m) (i.e. the whole program). In this case, we will establish the
invariant in B.2 directly. First using the rule (Seq), and axioms (Act1) – (Jump1), we deduce that,

[SRT M(m)]tb,te
J (∃tE , tC,b. (tb < tE < tC ≤ te)

∧ (Extend(J,m.pcr.s,b) @ tE)
∧ (∀e. (¬Extend(J,m.pcr.s,e) on (tb, tE))

∧ (¬Extend(J,m.pcr.s,e) on (tE , tC]))
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (¬Unlock(J,m.pcr.s) on (tb, tC])

(B.13)
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We can now weaken this by adding more assumptions,

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tE , tC,b. (tb < tE < tC ≤ te)
∧ (Extend(J,m.pcr.s,b) @ tE)
∧ (∀e. (¬Extend(J,m.pcr.s,e) on (tb, tE))
∧ (¬Extend(J,m.pcr.s,e) on (tE , tC]))

∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (¬Unlock(J,m.pcr.s) on (tb, tC])

(B.14)

As in the case of Q = ·, we use axiom (MemR) and assumption ProtectedSRTM(m) to deduce,

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tE , tC,b. (tb < tE < tC ≤ te)
∧ (Extend(J,m.pcr.s,b) @ tE)
∧ (∀e. (¬Extend(J,m.pcr.s,e) on (tb, tE))

∧ (¬Extend(J,m.pcr.s,e) on (tE , tC]))
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (¬Unlock(J,m.pcr.s) on (tb, tC])
∧ (Mem(m.pcr.s,sinit) @ tb)
∧ (IsLocked(m.pcr.s,J) @ tb))

(B.15)

Using (LockI), we get,

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tE , tC,b. (tb < tE < tC ≤ te)
∧ (Extend(J,m.pcr.s,b) @ tE)
∧ (∀e. (¬Extend(J,m.pcr.s,e) on (tb, tE))

∧ (¬Extend(J,m.pcr.s,e) on (tE , tC]))
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (¬Unlock(J,m.pcr.s) on (tb, tC])
∧ (Mem(m.pcr.s,sinit) @ tb)
∧ (IsLocked(m.pcr.s,J) on (tb, tC]))

(B.16)

Using axiom (MemIP), we obtain,

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tE , tC,b. (tb < tE < tC ≤ te)
∧ (Extend(J,m.pcr.s,b) @ tE)
∧ (∀e. (¬Extend(J,m.pcr.s,e) on (tE , tC]))
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (¬Unlock(J,m.pcr.s) on (tb, tC])
∧ (IsLocked(m.pcr.s,J) on (tb, tC])
∧ (Mem(m.pcr.s,sinit) on [tb, tE)))

(B.17)
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Next, using axiom (MemE) we obtain,

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tE , tC,b. (tb < tE < tC ≤ te)
∧ (∀e. (¬Extend(J,m.pcr.s,e) on (tE , tC]))
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (¬Unlock(J,m.pcr.s) on (tb, tC])
∧ (IsLocked(m.pcr.s,J) on (tb, tC])
∧ (Mem(m.pcr.s,sinit) on [tb, tE))
∧ (Mem(m.pcr.s,seq(sinit,b)) @ tE))

(B.18)

Using axiom (MemIP) we obtain

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tE , tC,b. (tb < tE < tC ≤ te)
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (IsLocked(m.pcr.s,J) on (tb, tC])
∧ (Mem(m.pcr.s,sinit) on [tb, tE))
∧ (Mem(m.pcr.s,seq(sinit,b)) @ tE)
∧ (Mem(m.pcr.s,seq(sinit,b)) on (tE , tC]))

(B.19)

Simplifying slightly, we obtain:

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tC,b. (tb < tC ≤ te)
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (IsLocked(m.pcr.s,J) @ tC)
∧ (Mem(m.pcr.s,seq(sinit,b)) @ tC)
∧ ((Mem(m.pcr.s,sinit) ∨Mem(m.pcr.s,seq(sinit,b))) on (tb, tC]))

(B.20)

Next, we use the axiom (Mem=) to deduce that

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tC,b. (tb < tC ≤ te)
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (IsLocked(m.pcr.s,J) @ tC)
∧ (Mem(m.pcr.s,seq(sinit,b)) @ tC)
∧ (∀b′,o, t. (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,b′,o)) @ t)

⊃ (tC < t ≤ te)))

(B.21)

Using axiom (PCR=), we get

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ (∃tC,b. (tb < tC ≤ te)
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (IsLocked(m.pcr.s,J) @ tC)
∧ (Mem(m.pcr.s,seq(sinit,b)) @ tC)
∧ (∀b′,o, t. (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,b′,o)) @ t)

⊃ (tC < t ≤ te) ∧ (b′ = b)))

(B.22)
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Now we rotate the existential and universal quantifiers in this formula to obtain,

[SRT M(m)]tb,te
J ((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te]))

⊃ ∀b′,o, t. (∃tC,b. (tb < tC ≤ te)
∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (IsLocked(m.pcr.s,J) @ tC)
∧ (Mem(m.pcr.s,seq(sinit,b)) @ tC)
∧ ((tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,b′,o)) @ t)

⊃ (tC < t ≤ te) ∧ (b′ = b)))

(B.23)

Reorganizing,
[SRT M(m)]tb,te

J ∀t,b′,o.
((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te])
∧ (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,b′,o)) @ t))
⊃ (∃tC,b. (tb < tC ≤ te)

∧ (Jump(J,b) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (IsLocked(m.pcr.s,J) @ tC)
∧ (Mem(m.pcr.s,seq(sinit,b)) @ tC)
∧ (tC < t ≤ te) ∧ (b′ = b))

(B.24)

Simplifying using axiom (Eq), we get

[SRT M(m)]tb,te
J ∀t,b′,o.

((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te])
∧ (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,b′,o)) @ t))
⊃ (∃tC,b. (tb < tC < t ≤ te)

∧ (Jump(J,b′) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (IsLocked(m.pcr.s,J) @ tC)
∧ (Mem(m.pcr.s,seq(sinit,b′)) @ tC))

(B.25)

Dropping some of the unnecessary parts, we get,

[SRT M(m)]tb,te
J ∀t,b′,o.

((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te])
∧ (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,b′,o)) @ t))
⊃ (∃tC. (tb < tC < t)

∧ (Jump(J,b′) @ tC)
∧ (¬Jump(J) on (tb, tC))
∧ (IsLocked(m.pcr.s,J) @ tC)
∧ (Mem(m.pcr.s,seq(sinit,b′)) @ tC))

(B.26)

This is exactly what we set out to prove in B.2, except that b and t ′ have been α renamed to b′ and tC respectively. In
this manner, we can establish the invariant of B.2. Thus using the (Reset) rule we deduce,

Reset(m,J) @ tb ⊃ ∀te. (te > tb)⊃ ∀t,b,o.
((Reset(m,J) @ tb) ∧ (¬Reset(m) on (tb, te])
∧ (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,b,o)) @ t))

⊃ ∃t ′. ((tb < t ′ < t) ∧ (Jump(J,b) @ t ′)
∧ (¬Jump(J) on (tb, t ′))
∧ (Mem(m.pcr.s,seq(sinit,b)) @ t ′)
∧ (IsLocked(m.pcr.s,J) @ t ′))

(B.27)
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Now we instantiate the above formula with values from B.1. We choose tb = tT , te = t, t = t3, b = BL(m), o = OS(m),
and α-rename t ′ to tB to obtain,

Reset(m,J) @ tT ⊃ (t > tT )⊃
∧ ((Reset(m,J) @ tT ) ∧ (¬Reset(m) on (tT , t])
∧ (tT < t3 ≤ t) ∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m))) @ t3))
⊃ ∃tB. ((tT < tB < t3) ∧ (Jump(J,BL(m)) @ tB)

∧ (¬Jump(J) on (tT , tB))
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ tB)
∧ (IsLocked(m.pcr.s,J) @ tB))

(B.28)

Combining with B.1 and simplifying, we obtain,

∃tT , tB,J. (tT < tB < t)
∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t)
∧ (¬Reset(m) on (tT , t])
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ tB)
∧ (Reset(m,J) @ tT )
∧ (Jump(J,BL(m)) @ tB)
∧ (¬Jump(J) on (tT , tB))
∧ (IsLocked(m.pcr.s,J) @ tB)

(B.29)

Next we want to use the (Jump) rule to reason from the assumption Jump(J,BL(m)) @ tB. In this case, we want to
prove an invariant about the program BL(m). Specifically, we want to show that for each Q ∈ IS(BL(m)), it is the case
that,

[Q]tb,te
J ∀t,o,a.

((¬Reset(m) on (tb, te])
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ tb)
∧ (IsLocked(m.pcr.s,J) @ tb)
∧ (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,BL(m),o,a)) @ t))
⊃ ∃t ′. ((tb < t ′ < t) ∧ (Jump(J,o) @ t ′) ∧ (¬Jump(J) on (tb, t ′)))

(B.30)

This invariant can be proved almost as we proved B.2 for SRT M(m). This is because the two programs SRT M(m) and
BL(m) are very similar. The main difference is that we do not need to use the assumption ProtectedSRTM(m) here.
In fact the proof is simpler. Having established this invariant, we use the rule (Jump) to deduce that,

Jump(J,BL(m)) @ tb ⊃ ∀te. (te > tb)⊃ ∀t,o,a.
((¬Reset(m) on (tb, te])
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ tb)
∧ (IsLocked(m.pcr.s,J) @ tb)
∧ (tb < t ≤ te) ∧ (Mem(m.pcr.s,seq(sinit,BL(m),o,a)) @ t))
⊃ ∃t ′. ((tb < t ′ < t) ∧ (Jump(J,o) @ t ′) ∧ (¬Jump(J) on (tb, t ′)))

(B.31)

We now instantiate this formula with values from B.29. We choose tb = tB, te = t, t = t, o = OS(m), a = APP(m), and
α-rename t ′ to tO to get,

Jump(J,BL(m)) @ tB ⊃ (t > tB)⊃
((¬Reset(m) on (tB, t])
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ tB)
∧ (IsLocked(m.pcr.s,J) @ tB)
∧ (tB < t ≤ t)
∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t))
⊃ ∃tO. ((tB < tO < t) ∧ (Jump(J,OS(m)) @ tO) ∧ (¬Jump(J) on (tB, tO)))

(B.32)
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Combining with B.29 and simplifying we get,

∃tT , tB, tO,J. (tT < tB < tO < t)
∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t)
∧ (¬Reset(m) on (tT , t])
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ tB)
∧ (Reset(m,J) @ tT )
∧ (Jump(J,BL(m)) @ tB)
∧ (¬Jump(J) on (tT , tB))
∧ (IsLocked(m.pcr.s,J) @ tB)
∧ (Jump(J,OS(m)) @ tO)
∧ (¬Jump(J) on (tB, tO))

(B.33)

Simplifying,
∃tT , tB, tO,J. (tT < tB < tO < t)
∧ (¬Reset(m) on (tT , t])
∧ (Reset(m,J) @ tT )
∧ (Jump(J,BL(m)) @ tB)
∧ (¬Jump(J) on (tT , tB))
∧ (Jump(J,OS(m)) @ tO)
∧ (¬Jump(J) on (tB, tO))

(B.34)

This is what we set out to prove.

Next, we turn to the integrity reporting protocol. We define the assumptions:

ΓSRT M =
{V̂ 6= ˆAIK(m),
Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)})}

Theorem 7 (Correctness of integrity reporting). The following are provable in LS2:

ΓSRT M `
[Veri f ier(m)]tb,te

V ∃t. (t < te) ∧
(Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t)

ΓSRT M,ProtectedSRTM(m) `
[Veri f ier(m)]tb,te

V ∃t. (t < te) ∧MeasuredBootSRTM(m, t)

Proof. We prove the first property. The second follows immediately from the first property and correctness of mea-
surement. We begin by analyzing the code of Veri f ier(m) using the rule (Seq) and the axiom (Act1). In two steps we
deduce,

[Veri f ier(m)]tb,te
V ∃tm. (tb < tm ≤ te)

∧ Verify(V,(PCR(s),seq(sinit,BL(m),OS(m),APP(m))),AIK(m)) @ tm
(B.35)

Using axiom (VER), and the assumptions Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)}) and V̂ 6= ˆAIK(m) together
with the above formula, we deduce:

[Veri f ier(m)]tb,te
V ∃tm. (tb < tm ≤ te)

∧ Verify(V,(PCR(s),seq(sinit,BL(m),OS(m),APP(m))),AIK(m)) @ tm
∧ ∃I′, t ′,e′. (t ′ < tm) ∧ (Î′ = ˆAIK(m))
∧ Contains(e′,SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|})
∧ ((Send(I′,e′) @ t ′) ∨ ∃l. (Write(I′, l,e′) @ t ′))

(B.36)
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Simplifying slightly, and α-renaming t ′ to tS (S for ‘send’), I′ to I, and e′ to e, we obtain,

[Veri f ier(m)]tb,te
V ∃tS,e, I. (tS < te) ∧ Î = ˆAIK(m)

∧ Contains(e,SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|})
∧ ((Send(I,e) @ tS) ∨ ∃l. (Write(I, l,e) @ tS))

(B.37)

Next we wish to prove an invariant about the programs that are executed by the TPM, namely T PMSRT M(m) and
T PMDRT M(m). We want to show that for each Q ∈ IS(T PMSRT M(m),T PMDRT M(m)), it is the case that

[Q]tb,te
I (∀l,e, t. (t ∈ (tb, te])⊃ ¬Write(I, l,e) @ t)

∧ (∀t ′,e′. ((t ′ ∈ (tb, te]) ∧ Send(I,e′) @ t ′)
⊃ (∃e′′, tR. (tR < t ′) ∧ (Read(I,m.pcr.s,e′′) @ tR) ∧ e′ = SIGAIK(m)−1{|(PCR(s),e′′)|})
∨ (¬Contains(e′,PCR(s))))

(B.38)
Proving the above is rather straightforward. For Q ∈ IS(T PMSRT M(m)), we prove a stronger invariant:

[Q]tb,te
I (∀l,e, t. (t ∈ (tb, te])⊃ ¬Write(I, l,e) @ t)

∧ (∀t ′,e′. ((t ′ ∈ (tb, te]) ∧ Send(I,e′) @ t ′)
⊃ (∃e′′, tR. (tR < t ′) ∧ (Read(I,m.pcr.s,e′′) @ tR) ∧ e′ = SIGAIK(m)−1{|(PCR(s),e′′)|}))

(B.39)
For Q 6= T PMSRT M(m), this follows just from rule (Seq) and axioms (Act2) and (ActN1). For Q = T PMSRT M(m), we
use axioms (Sign) and (Act1) in addition. For Q ∈ IS(T PMDRT M(m)), we prove that,

[Q]tb,te
I (∀l,e, t. (t ∈ (tb, te])⊃ ¬Write(I, l,e) @ t)

∧ (∀t ′,e′. ((t ′ ∈ (tb, te]) ∧ Send(I,e′) @ t ′)
⊃ (¬Contains(e′,PCR(s))))

(B.40)

This follows immediately using basic properties of the predicate Contains. Having established the invariant in (B.38),
we use the rule (Honesty) to deduce that

Honest(Î,{T PMSRT M(m),T PMDRT M(m)})⊃ ∀te. (∀l,e, t. (t ∈ (−∞, te])⊃ ¬Write(I, l,e) @ t)
∧ (∀t ′,e′. ((t ′ ∈ (−∞, te]) ∧ Send(I,e′) @ t ′)

⊃ (∃e′′, tR. (tR < t ′)
∧ (Read(I,m.pcr.s,e′′) @ tR)
∧ e′ = SIGAIK(m)−1{|(PCR(s),e′′)|})

∨ (¬Contains(e′,PCR(s))))
(B.41)

Setting I = AIK(m), and using the fact that Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)}) (from ΓSRT M), we get

∀te. (∀l,e, t. (t ∈ (−∞, te])⊃ ¬Write(AIK(m), l,e) @ t)
∧ (∀t ′,e′. ((t ′ ∈ (−∞, te]) ∧ Send(AIK(m),e′) @ t ′)

⊃ (∃e′′, tR. (tR < t ′) ∧ (Read(AIK(m),m.pcr.s,e′′) @ tR) ∧ e′ = SIGAIK(m)−1{|(PCR(s),e′′)|})
∨ (¬Contains(e′,PCR(s))))

(B.42)
Next, we instantiate l = m.pcr.s, e = e, t = tS, t ′ = tS, e′ = e to get the parametric formula

(tS ≤ te)⊃ ¬Write(AIK(m),m.pcr.s,e) @ tS
∧ ((tS ≤ te) ∧ Send(AIK(m),e) @ tS)

⊃ (∃e′′, tR. (tR < tS) ∧ (Read(AIK(m),m.pcr.s,e′′) @ tR) ∧ e = SIGAIK(m)−1{|(PCR(s),e′′)|})
∨ (¬Contains(e,PCR(s)))

(B.43)
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This implies the weaker formula:

(tS < te)⊃ ¬Write(AIK(m),m.pcr.s,e) @ tS
∧ ((tS < te) ∧ Send(AIK(m),e) @ tS)

⊃ (∃e′′, tR. (tR < tS) ∧ (Read(AIK(m),m.pcr.s,e′′) @ tR) ∧ e = SIGAIK(m)−1{|(PCR(s),e′′)|})
∨ (¬Contains(e,PCR(s)))

(B.44)
Since tS and e are parameters, we can choose them to be the same as those in the existential quantifier in B.37. Thus
combining the two formulas and simplifying, we get,

[Veri f ier(m)]tb,te
V ∃tS,e, I. (tS < te) ∧ Î = ˆAIK(m)

∧ Contains(e,SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|})
∧ ((∃e′′, tR. (tR < tS) ∧ (Read(I,m.pcr.s,e′′) @ tR) ∧ e = SIGAIK(m)−1{|(PCR(s),e′′)|})
∨ (¬Contains(e,PCR(s))))

(B.45)

From the predicate Contains(e,SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|}), we deduce
Contains(e,PCR(s)). Hence we may simplify the above equation to get,

[Veri f ier(m)]tb,te
V ∃tS,e, I. (tS < te) ∧ Î = ˆAIK(m)

∧ Contains(e,SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|})
∧ (∃e′′, tR. (tR < tS) ∧ (Read(I,m.pcr.s,e′′) @ tR) ∧ e = SIGAIK(m)−1{|(PCR(s),e′′)|})

(B.46)

Reorganizing and simplifying, we get,

[Veri f ier(m)]tb,te
V ∃tR,e,e′′, I. (tR < te) ∧ Î = ˆAIK(m)

∧ Contains(e,SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|})
∧ (Read(I,m.pcr.s,e′′) @ tR) ∧ e = SIGAIK(m)−1{|(PCR(s),e′′)|}

(B.47)

Simplifying further using axiom (Eq), we get,

[Veri f ier(m)]tb,te
V ∃tR,e′′, I. (tR < te) ∧ Î = ˆAIK(m)

∧ Contains(SIGAIK(m)−1{|(PCR(s),e′′)|},SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|})
∧ (Read(I,m.pcr.s,e′′) @ tR)

(B.48)
Using axiom (READ), we obtain,

[Veri f ier(m)]tb,te
V ∃tR,e′′. (tR < te)

∧ Contains(SIGAIK(m)−1{|(PCR(s),e′′)|},SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|})
∧ (Mem(m.pcr.s,e′′) @ tR)

(B.49)
Now using basic properties of containment we get (in the context of the above existential quantifiers),

(e′′ = seq(sinit,BL(m),OS(m),APP(m)))
∨ Contains(e′′,SIGAIK(m)−1{|(PCR(s),seq(sinit,BL(m),OS(m),APP(m)))|}) (B.50)

The latter disjunct together with axiom (PCRC) and the fact Mem(m.pcr.s,e′′) @ tR (equation B.49) gives a contra-
diction. Hence the former disjunct must hold, i.e., e′′ = seq(sinit,BL(m),OS(m),APP(m)). Combining this with B.49
using axiom (Eq), we get,

[Veri f ier(m)]tb,te
V ∃tR. (tR < te)

∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ tR)
(B.51)

This is what we set out to prove, except that t has been α-renamed to tR.
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C Attestation using a Dynamic Root of Trust for Measurement (DRTM)
The protocol is shown in Figure 4. We are trying to prove the following property for the protocol:

JDRT M = [Veri f ier(m)]tb,te
V ∃J, tX , tE , tN , tL, tC,n.

∧ (tL < tC < tE < tX < te) ∧ (tb < tN < tE)
∧ (New(V,n) @ tN)
∧ (LateLaunch(m,J) @ tL)
∧ (¬LateLaunch(m) on (tL, tX ])
∧ (¬Reset(m) on (tL, tX ])
∧ (Jump(J,P(m)) @ tC)
∧ (¬Jump(J) on (tL, tC))
∧ (Extend(J,m.d pcr.k,EOL) @ tX )
∧ (Eval(J, f ) @ tE)
∧ (¬Eval(J, f ) on (tC, tE))
∧ (¬Eval(J, f ) on (tE , tX ))
∧ (IsLocked(m.d pcr.k,J)on(tL, tX ])

In this proof we make the following assumptions:

ΓDRT M = Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)}), V̂ 6= ˆAIK(m)

Theorem 8. ΓDRT M ` JDRT M

Proof. We begin by analyzing the code of Veri f ier(m) using the rule (Seq) and the axiom (Act1). In two steps we
deduce,

[Veri f ier(m)]tb,te
V ∃tN , tm,n. (tb < tN < tm ≤ te) ∧ (New(V,n) @ tN)

∧ (Verify(V,(dPCR(k),seq(dinit,P(m),n,EOL)),AIK(m)) @ tm)
(C.1)

Using axiom (VER), and the assumptions Honest( ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)}) and V̂ 6= ˆAIK(m) (from
ΓDRT M) together with the above formula, we deduce:

[Veri f ier(m)]tb,te
V ∃tN , tm,n. (tb < tN < tm ≤ te) ∧ (New(V,n) @ tN)

∧ Verify(V,seq(dinit,P(m),n,EOL),AIK(m)) @ tm
∧ ∃I′, t ′,e′. (t ′ < tm) ∧ (Î′ = ˆAIK(m))
∧ Contains(e′,SIGAIK(m)−1{|(dPCR(k),seq(dinit,P(m),n,EOL))|})
∧ ((Send(I′,e′) @ t ′) ∨ ∃l. (Write(I′, l,e′) @ t ′))

(C.2)

Simplifying slightly, and α-renaming t ′ to tS (S for ‘send’), I′ to I, and e′ to e, we obtain,

[Veri f ier(m)]tb,te
V ∃tN , tS,e, I,n. (tb < tN < te) ∧ (New(V,n) @ tN)

∧ (tS < te) ∧ Î = ˆAIK(m)
∧ Contains(e,SIGAIK(m)−1{|(dPCR(k),seq(dinit,P(m),n,EOL))|})
∧ ((Send(I,e) @ tS) ∨ ∃l. (Write(I, l,e) @ tS))

(C.3)

Next we prove an invariant about the programs executed by the TPM, namely T PMSRT M(m) and T PMDRT M(m) (as
we did for SRTM). Specifically, we show that for each Q ∈ IS(T PMSRT M(m),T PMDRT M(m)), it is the case that

[Q]tb,te
I (∀l,e, t. (t ∈ (tb, te])⊃ ¬Write(I, l,e) @ t)

∧ (∀t ′,e′. ((t ′ ∈ (tb, te]) ∧ Send(I,e′) @ t ′)
⊃ (∃e′′, tR. (tR < t ′) ∧ (Read(I,m.d pcr.k,e′′) @ tR) ∧ e′ = SIGAIK(m)−1{|(dPCR(k),e′′)|})
∨ (¬Contains(e′,dPCR(k))))

(C.4)

46



We omit this proof since it is similar to invariance proofs described earlier. Next we use equations C.3 and C.4,
and follow the proof of Theorem 7 (steps B.38 to the end), replacing m.pcr.s by m.d pcr.k, PCR(s) by dPCR(k), and
seq(sinit,BL(m),OS(m),APP(m)) by seq(dinit,P(m),n,EOL) to deduce that

[Veri f ier(m)]tb,te
V ∃tN , tR,n. (tb < tN < te) ∧ (New(V,n) @ tN) ∧ (tR < te)

∧ (Mem(m.d pcr.k,seq(dinit,P(m),n,EOL)) @ tR)
(C.5)

Next, we use axioms (dPCR1) and (dPCR2) repeatedly to obtain the following:

[Veri f ier(m)]tb,te
V ∃J, tN , tR, t3, t2, t1, tL,n. (tb < tN < te) ∧ (New(V,n) @ tN)

∧ (tL ≤ t1 < t2 < t3 < tR < te)
∧ (Mem(m.d pcr.k,seq(dinit,P(m),n,EOL)) @ tR)
∧ (Mem(m.d pcr.k,seq(dinit,P(m),n)) @ t3)
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ t2)
∧ (Mem(m.d pcr.k,dinit)) @ t1)
∧ (LateLaunch(m,J) @ tL)
∧ (¬LateLaunch(m) on (tL, tR])
∧ (¬Reset(m) on (tL, tR])

(C.6)

We know from the above that there is a thread J such that LateLaunch(m,J) @ tL. We would like to apply the
(LateLaunch) rule to reason further. In order to do that, we must prove an invariant of the program LL(m). The
specific invariant we prove is that for each Q ∈ IS(LL(m)), it is the case that,

[Q]tb,te
J ∀t,P,x. ((LateLaunch(m,J) @ tb) ∧ (¬LateLaunch(m) on (tb, te])

∧ (¬Reset(m) on (tb, te]) ∧ (tb < t ≤ te) ∧ (Mem(m.d pcr.k,seq(dinit,P,x)) @ t))
⊃ ∃t ′. ((tb < t ′ < t) ∧ (Jump(J,P) @ t ′)

∧ (¬Jump(J) on (tb, t ′))
∧ (Mem(m.d pcr.k,seq(dinit,P)) @ t ′)
∧ (IsLocked(m.d pcr.k,J) on (tb, t ′]))

(C.7)

The proof of the invariant in C.7 is similar to previous proofs, hence we omit the details. Briefly, the proof uses the
axioms (Mem=) and (Jump1) to establish that a jump happened, and (MemLL), (LockLL), (LockIdP), and (MemIdP)
to infer the properties about memory and locks. Next, using the (LateLaunch) rule we deduce,

LateLaunch(m,J) @ tb ⊃ ∀te. (te > tb)⊃ ∀t,P,x.
((LateLaunch(m,J) @ tb) ∧ (¬LateLaunch(m) on (tb, te])
∧ (¬Reset(m) on (tb, te]) ∧ (tb < t ≤ te) ∧ (Mem(m.d pcr.k,seq(dinit,P,x)) @ t))

⊃ ∃t ′. ((tb < t ′ < t) ∧ (Jump(J,P) @ t ′)
∧ (¬Jump(J) on (tb, t ′))
∧ (Mem(m.d pcr.k,seq(dinit,P)) @ t ′)
∧ (IsLocked(m.d pcr.k,J) on (tb, t ′]))

(C.8)
Now we instantiate the above formula with values from C.10. We choose tb = tL, te = tR, t = t3, P = P(m), x = n, and
α-rename t ′ to tC to obtain,

LateLaunch(m,J) @ tL ⊃ (tR > tL)⊃ ((LateLaunch(m,J) @ tL) ∧ (¬LateLaunch(m) on (tL, tR])
∧ (¬Reset(m) on (tL, tR]) ∧ (tL < t3 ≤ tR) ∧ (Mem(m.d pcr.k,seq(dinit,P,n)) @ t3))
⊃ ∃tC. ((tL < tC < t3) ∧ (Jump(J,P(m)) @ tC)

∧ (¬Jump(J) on (tL, tC))
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ tC)
∧ (IsLocked(m.d pcr.k,J) on (tL, tC]))

(C.9)
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Combining with C.10 and simplifying, we obtain,

[Veri f ier(m)]tb,te
V ∃J, tN , tR, t3, t2, t1, tL, tC,n. (tb < tN < te) ∧ (New(V,n) @ tN)

∧ (tL ≤ t1 < t2 < t3 < tR < te) ∧ (tL < tC < t3)
∧ (Mem(m.d pcr.k,seq(dinit,P(m),n,EOL)) @ tR)
∧ (Mem(m.d pcr.k,seq(dinit,P(m),n)) @ t3)
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ t2)
∧ (Mem(m.d pcr.k,dinit)) @ t1)
∧ (LateLaunch(m,J) @ tL)
∧ (¬LateLaunch(m) on (tL, tR])
∧ (¬Reset(m) on (tL, tR])
∧ (Jump(J,P(m)) @ tC)
∧ (¬Jump(J) on (tL, tC))
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ tC)
∧ (IsLocked(m.d pcr.k,J) on (tL, tC])

(C.10)

Next we want to use the (Jump) rule to reason from the assumption Jump(J,P(m)) @ tC. In this case, we want to
prove an invariant about the program P(m). Specifically, we want to show that for each Q ∈ IS(P(m)), it is the case
that,

[Q]tb,te
J ∀t,x.

((¬Reset(m) on (tb, te])
∧ (¬LateLaunch(m) on (tb, te])
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ tb)
∧ (IsLocked(m.d pcr.k,J) @ tb)
∧ (tb < t ≤ te) ∧ (Mem(m.d pcr.k,seq(dinit,P(m),x,EOL)) @ t))

⊃ ∃tn, tE , tX . ((tb < tn < tE < tX < t) ∧ (Eval(J, f ) @ tE)
∧ (Extend(J,m.d pcr.k,x) @ tn)
∧ (Extend(J,m.d pcr.k,EOL) @ tX )
∧ (¬Eval(J, f ) on (tb, tE))
∧ (¬Eval(J, f ) on (tE , tX ))
∧ (IsLocked(m.d pcr.k,J) on (tb, tX ]))

(C.11)

Again, we omit the details of this invariant’s proof. Having established this invariant, we use the rule (Jump) to deduce
that,

Jump(J,P(m)) @ tb ⊃ ∀te. (te > tb)⊃ ∀t,x.
((¬Reset(m) on (tb, te])
∧ (¬LateLaunch(m) on (tb, te])
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ tb)
∧ (IsLocked(m.d pcr.k,J) @ tb)
∧ (tb < t ≤ te) ∧ (Mem(m.d pcr.k,seq(dinit,P(m),x,EOL)) @ t))

⊃ ∃tn, tE , tX . ((tb < tn < tE < tX < t) ∧ (Eval(J, f ) @ tE)
∧ (Extend(J,m.d pcr.k,x) @ tn)
∧ (Extend(J,m.d pcr.k,EOL) @ tX )
∧ (¬Eval(J, f ) on (tb, tE))
∧ (¬Eval(J, f ) on (tE , tX ))
∧ (IsLocked(m.d pcr.k,J) on (tb, tX ]))

(C.12)
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We now instantiate this formula with values from C.10. We choose tb = tC, te = tR, t = tR, and x = n.

Jump(J,P(m)) @ tC ⊃ (tR > tC)⊃
((¬Reset(m) on (tC, tR])
∧ (¬LateLaunch(m) on (tC, tR])
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ tC)
∧ (IsLocked(m.d pcr.k,J) @ tC)
∧ (tC < tR ≤ tR) ∧ (Mem(m.d pcr.k,seq(dinit,P(m),n,EOL)) @ tR))
⊃ ∃tn, tE , tX . ((tC < tn < tE < tX < tR) ∧ (Eval(J, f ) @ tE)
∧ (Extend(J,m.d pcr.k,n) @ tn)
∧ (Extend(J,m.d pcr.k,EOL) @ tX )
∧ (¬Eval(J, f ) on (tC, tE))
∧ (¬Eval(J, f ) on (tE , tX ))
∧ (IsLocked(m.d pcr.k,J) on (tC, tX ]))

(C.13)

Combining with C.10 and simplifying we get,

[Veri f ier(m)]tb,te
V ∃J, tn, tX , tE , tN , tR, tL, tC,n. (tb < tN < te) ∧ (New(V,n) @ tN)

∧ (tL ≤ tR < te) ∧ (tL < tC < tn < tE < tX < tR)
∧ (LateLaunch(m,J) @ tL)
∧ (¬LateLaunch(m) on (tL, tR])
∧ (¬Reset(m) on (tL, tR])
∧ (Jump(J,P(m)) @ tC)
∧ (¬Jump(J) on (tL, tC))
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ tC)
∧ (IsLocked(m.d pcr.k,J) @ on(tL, tC])
∧ (Extend(J,m.d pcr.k,n) @ tn)
∧ (Extend(J,m.d pcr.k,EOL) @ tX )
∧ (Eval(J, f ) @ tE)
∧ (¬Eval(J, f ) on (tC, tE))
∧ (¬Eval(J, f ) on (tE , tX ))
∧ (IsLocked(m.d pcr.k,J) on (tC, tX ])

(C.14)

Next, we use the facts New(V,n) @ tN and Extend(J,m.d pcr.k) @ tn together with the axiom (NEW) to deduce that
tN < tn. Simplifying using this fact we obtain,

[Veri f ier(m)]tb,te
V ∃J, tX , tE , tN , tL, tC,n.

∧ (tL < tC < tE < tX < te) ∧ (tb < tN < tE)
∧ (New(V,n) @ tN)
∧ (LateLaunch(m,J) @ tL)
∧ (¬LateLaunch(m) on (tL, tX ])
∧ (¬Reset(m) on (tL, tX ])
∧ (Jump(J,P(m)) @ tC)
∧ (¬Jump(J) on (tL, tC))
∧ (Extend(J,m.d pcr.k,EOL) @ tX )
∧ (Eval(J, f ) @ tE)
∧ (¬Eval(J, f ) on (tC, tE))
∧ (¬Eval(J, f ) on (tE , tX ))
∧ (IsLocked(m.d pcr.k,J) on (tL, tX ])

(C.15)

This is what we set out to prove.
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