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Abstract

By deWnition, dynamic decision making dictates that multiple and interrelated decisions be made in a continuously changing envi-
ronment. Such decision making is diYcult and often taxes individuals’ cognitive resources. Here I investigated ways in which to sup-
port decision making in these environments. I evaluated three forms of decision support: outcome feedback, cognitive feedback, and
feedforward that incorporated (to varying degrees) common features of learning theories associated with dynamic tasks. Participants
in a laboratory experiment performed a real-time, dynamic decision-making task while receiving one of the diVerent types of decision
support. During the Wrst 2 days, individuals received one type of decision support, but on the third day they performed the task with-
out this support. Participants who received feedforward improved their performance considerably and continued to exhibit
improved performance even after discontinuation of the decision support on the third day. Neither outcome feedback nor cognitive
feedback resulted in improved performance. More research is necessary to conclusively identify the best forms of dynamic decision-
making support and their durability when transferred to new tasks.
  2004 Elsevier Inc. All rights reserved.
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Introduction

Dynamic decision making (DDM) is characterized by
the need to make multiple and interdependent decisions
in an environment that changes as a function of the deci-
sion maker’s actions, in response to environmental
events, or in both ways (Edwards, 1962). Furthermore,
because in dynamic environments decisions must be
made in real-time, time constraints become an important
determinant of performance (Brehmer, 1992). In addi-
tion, DDM is dynamically complex because it involves
time delays and decisions that positively or negatively
inXuence one another in complicated ways overtime
(Diehl & Sterman, 1995).

Examples of DDM are: triage decisions in a medical
emergency room; 911 operators determining relative

urgency and deploying resources; drivers trying to Wnd
the best route in heavy traYc, military crew deciding
how to respond to a threat or deploy forces, and air
traYc controlling (ATC) attempting to allocate air
space. ATC, for example, requires controllers to make
multiple decisions regarding how to allocate space to
best accommodate multiple airplanes. The fact that the
assignment of a landing lane to an incoming airplane
precludes the use of that lane by other airplanes arriving
in the near future reXects the interdependency of deci-
sions that characterizes DDM tasks. Furthermore, envi-
ronmental parameters such as arrivals, departures, and
weather are exogenous during ATC—i.e., they are
beyond the inXuence of the controller. Finally, incoming
airplanes need to be assigned to a landing lane at the
correct moment in real-time. Thus ATC provides a real-
istic example of real-time DDM.

Because the successful performance of many impor-
tant tasks requires skillful DDM, the identiWcation of
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forms of decision support for DDM has become a
research priority; however, this identiWcation process has
proven to be very challenging (Lerch & Harter, 2001).
DDM researchers have investigated several types of
decision support for DDM, including: (a) diVerent types
of outcome feedback that provide individuals with their
performance results (Brehmer, 1995; Diehl & Sterman,
1995; Hsiao, 2000), (b) cognitive feedback that provides
individuals with an explanation of how to perform the
task (Sengupta & Abdel-Hamid, 1993), and (c) feedfor-
ward that helps decision makers examine the eVects of
possible future decisions (Lerch & Harter, 2001; Seng-
upta & Abdel-Hamid, 1993).

Prior research suggests that outcome feedback is an
ineYcient decision aid in situations involving complex
and dynamic tasks (Hsiao, 2000; Lerch & Harter, 2001;
Sterman, 1989) but it seems that the successful applica-
tion of other forms of decision support (e.g., cognitive
feedback or feedforward) may require frequent and
timely outcome feedback (Balzer, Doherty, & O’Connor,
1989; Lerch & Harter, 2001).

Sengupta and Abdel-Hamid (1993) conducted a study
in which they provided individuals performing a com-
plex software management task with outcome feedback
alone or in combination with either cognitive feedback
or feedforward. Individuals assigned to the cognitive
feedback group received graphs and tables containing
detailed information about the key task variables and
their interactions over time. Participants assigned to the
feedforward group received a set of guidelines from indi-
viduals with experience in performing the task. In com-
bination with outcome feedback, both cognitive
feedback and feedforward resulted in better perfor-
mance than did outcome feedback alone (Sengupta &
Abdel-Hamid, 1993). Although this informative study
yielded promising results, the task did not involve real-
time decision making, which is a key characteristic of
DDM tasks (Brehmer, 1992). Rather, individuals made
decisions and processed feedback only at discrete time
intervals. Furthermore, participants who received more
detailed task information took longer and expended
more cognitive eVort while making their decisions than
did participants who received only outcome feedback.
The time constraints that are characteristic of real-time
DDM tasks might make it impossible for individuals to
eYciently process the type of feedback and feedforward
provided in that study.

Lerch and Harter (2001) used a real-time DDM task
to investigate the eVects of outcome feedback and feed-
forward on performance. In their study, outcome feed-
back included explicit real-time (i.e., instantaneous)
details about task performance. Feedforward involved a
what-if computational analysis tool that allowed partici-
pants to ‘look into the future’ by observing the eVects of
possible actions. The results of that study indicate that
the eVectiveness of the support strategies depended on

the presence of outcome feedback. Feedforward alone
impeded performance and inhibited learning, but feed-
forward provided in combination with outcome feed-
back led to slightly improved performance.

Because of the paucity of research focused on improv-
ing DDM, it is not entirely clear which forms of decision
support might best aid individuals’ performance of such
tasks. Research indicates that feedback interventions
may beneWt individuals’ performance of simple tasks but
not of complex tasks, of tasks that demand low rather
than high cognitive ability, and of well-practiced tasks
but not novel ones (Kluger & DeNisi, 1996). These are
discouraging results for researchers studying DDM sup-
port, because most DDM tasks are complex, demand
high cognitive ability even after extensive task practice,
and present decision makers with constantly changing
and novel stimuli (Ackerman, 1992; Brehmer & Dörner,
1993; Gonzalez, Vanyukov, & Martin, 2005; Lerch &
Harter, 2001)

The study reported here examined forms of decision
support that appear to address the real-time constraints
of DDM and the learning-process demands of DDM. It
has been argued that achieving an improved understand-
ing of individuals’ learning processes will enable
researchers to better understand performance in DDM
tasks (and, subsequently, to design eVective forms of
decision support) (Gibson, Fichman, & Plaut, 1997;
Gonzalez, Lerch, & Lebiere, 2003). The main DDM
learning theories are discussed brieXy below. Research-
ers also have established that individuals require exten-
sive task practice to attain control over a dynamic
system (Kerstholt & Raaijmakers, 1997) and have
argued that the eVectiveness of feedback interventions
depends on task practice (Kluger & DeNisi, 1996). In the
study presented here, participants working to complete a
real-time DDM task were given frequent and detailed
outcome feedback, cognitive feedback, or feedforward in
an eVort to better support learning in DDM. I examined
the eVects of these forms of decision support with exten-
sive task practice and tested the permanence of perfor-
mance improvements after practice by removing the
decision support.

Learning in DDM

Although the psychology literature oVers a large
number of theories of learning, only a few of them are
relevant to DDM. First, Dienes and Fahey (1995) pro-
posed a model of learning based on two cognitive mech-
anisms that compete each time someone encounters a
decision-making situation: an algorithm and a set of
context–action exemplars (Dienes & Fahey, 1995;
Logan, 1988). The algorithm is a general heuristic or rule
that one uses in a novel situation; the context–action
exemplars are discrete representations of knowledge that
are called ‘instances,’ a name derived from Logan’s
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instance theory of automatization (1988). Implicit in this
model is the assumption that a decision maker stores
actions and their outcomes together in memory and
retrieve them on the basis of their similarity to subse-
quently encountered situations. This model provides a
feasible explanation of learning and performance in a
dynamic task.

Second, Gibson et al. (1997) presented a model of
learning in DDM based on the control theory proposed
by Brehmer (1990) and implemented computationally
via neural networks. In essence, this theory describes
decision making in terms of two submodels: The judg-
ment submodel learns by minimizing the diVerences
between the outcomes it predicts and the actual out-
comes, whereas the choice submodel learns by minimiz-
ing the diVerences between the choices predicted by the
judgment model and the actual choices. This model pro-
vides a good account of individuals’ learning in dynamic
situations and their transfer of knowledge to novel situa-
tions (Gibson, 2000).

Third, Gonzalez et al. (2003) presented an instance-
based model of learning in DDM (Instance-Based
Learning Theory, IBLT). Borrowing from multiple theo-
ries of learning in psychology, IBLT proposes a learning
process and a set of cognitive mechanisms. Not unlike
Dienes and Fahey’s theory, IBLT proposes that a deci-
sion maker acquires and stores instances in memory and
retrieves them on the basis of their similarity to a subse-
quently encountered situation. In IBLT, however, these
instances contain information about the utility of a deci-
sion in addition to information in the form of a situa-
tion–action pair. According to IBLT, learning occurs via
the accumulation of instances initially stored with
expected utility that are later revised on the basis of
actual outcome feedback. As they accumulate these
‘reWned’ instances, decision makers begin to recognize a
particular situation as typical, and, in response to subse-
quent occurrences of similar situations, can retrieve from
memory a decision with high utility. This model incorpo-
rates a foundational tenet of Logan’s theory (1988):
Judgment gradually moves from heuristic-based to rec-
ognition-based. The IBLT model was developed within
ACT-R, a well-known theory of cognition (Anderson &
Lebiere, 1998).

Although these three learning models diVer in some
respects, they all incorporate at least two common char-
acteristics that may aid eVorts to develop better decision
support for DDM. First, all three models take into
account the need for two forms of learning: explicit (i.e.,
decision making based on rules of action) and implicit
(i.e., decision making based on context-based knowledge
and recognition). There is some evidence that individuals
who have completed a dynamic task are not always
aware of the task structure (i.e., their knowledge is
implicit), which suggests that the knowledge they
acquired was not in the form of rules about how the sys-

tem works (Dienes & Fahey, 1995). Often, individuals
performing DDM tasks are unable to describe the key
elements of the task or verbalize the ways in which they
make decisions (Berry & Broadbent, 1987, 1988). Such a
lack of awareness both of the key variables involved in
performing a task and of their relationships may denote
an individual’s dependence on implicit learning (Berry &
Broadbent, 1987).

Second, these models, particularly the two instance-
based models, rely on a similarity process that deter-
mines the applicability of accumulated experiences to
familiar situations. Research in analogical reasoning has
demonstrated the high relevance of analogy to learning
and decision-making processes (Kurtz, Miao, & Gent-
ner, 2001; Medin, Goldstone, & Markman, 1995). It
appears that the comparison of tasks plays an important
role in individuals’ ability to identify common character-
istics of tasks. For example, Loewenstein, Thompson,
and Gentner (1999) have demonstrated that individuals
who compared two analogous negotiation cases were
likely to perform well in a subsequent negotiation task
(Loewenstein et al., 1999). These results and others sug-
gest that analogical encoding may facilitate abstraction
and promote the transfer of knowledge (Thompson,
Gentner, & Loewenstein, 2000).

The study presented here compared three forms of
decision support that arise from these common features
of the learning theories and from the characteristics of
real-time DDM. To further investigate the eVect of out-
come feedback provided in conjunction with other forms
of decision support, I provided some participants with
frequent outcome feedback and global outcome feed-
back related to the decision-making task. As stated
above, past research indicates that the provision of
detailed and timely outcome feedback is a major factor
in improving performance (Balzer et al., 1989). I hypoth-
esized that frequent outcome feedback would help indi-
viduals to better determine the eVects of their decisions,
to improve the cause and eVect association between their
decisions and results, and, ultimately, to improve their
decision-making performance.

Because the real-time nature of DDM imposes time
constraints that limit decision makers’ opportunities
to search for and process information, decision mak-
ers must become aware of the task structure and the
way they make decisions. Current learning theories
suggest that people rely on a similarity process to
make decisions while completing dynamic tasks. Ana-
logical reasoning research suggests that comparing
two tasks with diVerent surface features but the same
underlying structure helps individuals abstract and
transfer knowledge. Therefore, I also tested the eVect
of an exemplar decision support in the form of cogni-
tive feedback: I aVorded individuals the opportunity
to analyze their own past decisions without having to
make decisions at the same time. This form of support
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aVords individuals the time they need to process infor-
mation and takes advantage of some common learning
features. I hypothesized that individuals permitted to
review their own past decisions in the absence of time
constraints would analyze their actions, improve their
decisions, and exhibit improvements in overall task
performance.

I also tested another exemplar decision support in the
form of feedforward: I aVorded individuals the opportu-
nity to compare their decisions with those made by an
expert performer. Research suggests that individuals
may be able to improve their performance by comparing
their decisions and eVects of their decisions with the
decisions made by an expert and the eVects of those deci-
sions (Sengupta & Abdel-Hamid, 1993). Because it
allows individuals to analyze expert’s decisions without
having to execute decisions at the same time, this feed-
forward support removes time constraints. I hypothe-
sized that individuals permitted to review an expert’s
decisions without time constraints would exhibit
improvements in overall task performance.

Methods

Water puriWcation plant: A DDM task

The research reported here involved a computer sim-
ulation called ‘Water PuriWcation Plant’ (WPP). WPP is
a computer-based, interactive, simulation isomorph of a
real-world scheduling task: mail sorting in the United
States Postal Service (USPS). An in-depth description of
the original USPS task is available elsewhere (Lerch,
Ballou, & Harter, 1997). As reported in previous
research (Gonzalez, 2004; Gonzalez et al., 2003), WPP
incorporates the parameters involved in the original
USPS task, but WPP features a simpliWed interface that
helps in both explaining the task and learning it more
quickly. The main elements of WPP are summarized
below.

WPP simulates a water distribution system with 23
tanks (tanks 0–22) arranged in a treelike structure and
connected with pipes. The goal in this task is to distrib-
ute all the water in the system before the various dead-
lines expire. The tanks, pipe connections, and deadlines
are shown in the screenshot of the simulation in Fig. 1.1

Each tank has two pumps, and a total of only Wve pumps
can be active within the entire system at any given time.
(Participants are told that electricity constraints pre-
clude the concurrent use of more than Wve pumps.) By
activating diVerent pumps, users attempt to distribute
water through the pipes before deadlines expire. Each

trial covers a time span of 8 simulation hours (2:00–
10:00). Each tank’s Wxed position within the tree struc-
ture dictates the number of tanks the water must travel
through before expiration of the deadline. Each pump
delivers water at a rate of 1 gal every 2 min; thus when
two pumps in one tank are active, the delivery rate is
1 gal/min. The pattern according to which water enters
the system is deWned by a preset scenario that dictates
the arrival time, the amount of water, and the destina-
tion tank. For example, an entry in the WPP scenario
may indicate that at 2:02 10 gal water will enter tank 2.
The water entry scenario is unknown to users.

The simulation provides an indicator that tracks the
number of pumps in use (shown at the top left corner in
Fig. 1). Each pump may be in one of four states, which
are identiWable by the color of the indicator bar above
each pump: oV (red), on (green), cleaning (yellow), or in
queue (purple). After being deactivated (either by the
operator or by the system when there is no more water
remaining in the tank), a pump switches into cleaning
mode and remains in that state for 10 min of simulation
time. While pumps are cleaning, the user can select other
pumps (within the 5 pump limit) that will become active
as soon as the cleaning pump turns red. Pumps so identi-
Wed by the user are in queue (purple).

WPP embodies the integral characteristics of all DDM
tasks (Brehmer & Dörner, 1993; Gonzalez et al., 2005).
First, WPP is a dynamic resource allocation task. In
WPP, exogenous events (i.e., the arrival of water at diVer-
ent times throughout the simulation) harm the status of
the system (e.g., remain in the chains after deadline expi-
ration) if no action is taken. The users’ actions, which are
restricted by the limited resources, also aVect the status of
the system. Second, WPP is a complex task because it
involves multiple variables (e.g., pumps, water, and dead-
lines) and because some of the relationships among these
variables are non-linear. For example, pumping water
out of a tank before the deadline reduces the number of
gallons missed, but pumping water out of a tank after the
deadline has expired has no eVect on performance. Third,
WPP is opaque in the sense that many characteristics of
the system are not visually discernable and are identiW-

able only by user inference. For example, later deadlines
have longer chains, and more water may accumulate in
the tanks. This situation may redeWne the task prioritiza-
tion suggested by the deadlines. In addition, WPP is
dynamically complex. Decisions’ eVects on other vari-
ables over time result in feedback loops (Sterman, 1989).
For example, the more often pumps are activated the
more time they spend in cleaning mode and the less time
is available for pumping water through the chain.

Performance variable

Performance in WPP is measured by the total num-
ber of gallons of water that remain in chains after the

1 To make the Wgure more clear, I added explanations regarding the
diVerent parts of the Wgure and I numbered the tanks. This information
does not appear during the simulation.
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expiration of all deadlines. The simulation also presents
participants with a cumulative number of gallons of
water remaining in the system (the score appears in the
top left corner of the screen, as shown in Fig. 1). The sys-
tem’s total capacity per trial is 1080 gal water. The score
from the WPP simulation is used to calculate a perfor-

mance percentage measure. Larger percentages (fewer
remaining gallons) indicate better performance, and the
highest possible performance is 100% (1080 gal pumped/
0 gal remaining).

In this task, as in many other complex tasks, optimal
performance is achievable via many possible decision

Fig. 1. Screenshot of the WPP simulation. Note. The simulation time is 6:48, the operator has missed 30 gal water, and 5 pumps (the maximum num-
ber possible) are active. Water enters from outside the system and moves continuously through the open pumps from left to right toward the deadline
column. The operator decides when to open and close pumps while simulation time is running. (For interpretation of the references to color in this
Wgure legend, the reader is referred to the web version of this paper.)

Fig. 2. Screenshot of the WPP simulation with detailed feedback. Note. By the end of the simulation (10.00), this operator had missed 414 gal water.
The number of gallons missed per deadline was presented next to each of the deadlines as they expired during the simulation. (The numbers were
highlighted for presentation purposes only.)
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sequences. To establish a reasonable lower limit for task
performance, my colleagues and I created a program to
run the simulation by activating pumps randomly while
allowing no idle time (i.e., always having Wve active
pumps). Thirty replications produced a mean performance
percentage of 81.9% with a standard deviation of 2.4%.
Therefore, for the purposes of this study, a performance
percentage around 80% was considered a reasonable Wrst-
time performance, and, with practice and learning, partici-
pants were expected to attain performance percentages
above 80%. Over the past few years, approximately 500
participants have run WPP with practice times ranging
from 3 to 20h. The best past performance percentages
have ranged from 90 to 95%; no one has achieved the best
possible performance percentage (i.e., 100%).

Experimental design

Table 1 outlines the key elements of the experimental
design. Participants were assigned to one of Wve condi-
tions. Under the control condition, participants ran WPP
18 times over the course of 3 days (6 trials/day, 8 min/
trial). The only feedback provided to individuals in this
group was the total number of gallons remaining in the
system after expiration of all deadlines (i.e., the users in
this group received no feedback until the end of each
trial).

Individuals in the feedback group received detailed
performance-outcome feedback in addition to the out-
come feedback described above. The more detailed feed-
back included the number of gallons of water remaining
in the system upon expiration of each of the deadlines on
the screen, rather than just the accumulated number of
gallons at the end of the trial (as provided under the con-
trol condition; see Fig. 2). These participants ran WPP
12 times during the Wrst 2 days (6 trials/day, 8 min/trial),
and then ran 6 trials under the control condition (see
above) on the third day.

Participants in the self-exemplar group ran one trial
under the control condition, and then replayed that trial.

The WPP replay function replays each action taken in
the original trial and exactly reproduces every aspect of
the original screen as the task replays. Individuals were
instructed to observe and analyze their decisions as they
replayed the original trial. The participants in this group
followed this procedure for the Wrst 2 days by running
trials 1, 3, 5, 7, 9, and 11. Trials 2, 4, 6, 8, 10, and 12 were
replays of the original set of trials (i.e., the odd-num-
bered trials). Each replay lasted as long as the original
task simulation (i.e., 8 min/trial). Viewing the replays was
expected to aVord participants time to better encode and
re-evaluate previously made decisions because the par-
ticipants did not need to interact with the simulation
while they analyzed their past actions. On the third day,
participants in this group ran six trials under the control
condition.

Participants in the feedback-exemplar group received
both detailed feedback and the opportunity to replay
their own trials as described above. During the Wrst 2
days, these participants were given detailed feedback
while interacting with WPP and were permitted to replay
their trials as described above. On the third day, these
individuals ran six trials of WPP under the control
condition.

The expert-exemplar condition was similar to the self-
exemplar condition, except that individuals replayed the
trial of a highly skilled participant (achieving the best
possible performance) rather than their own previous
trials. Viewing replays of an expert’s trial was expected
to give participants the time needed to encode and evalu-
ate the decisions of an expert player, and presumably to
help them improve their own performance. On the third
day, the expert-exemplar participants ran six trials under
the control condition.

Participants

Eighty-eight graduate and undergraduate college stu-
dents recruited from local universities were randomly
assigned to one of the Wve conditions (14 to control, 19

Table 1
Experimental design

Condition Practice Test

Days 1 and 2 Day 3

Odd trials (1, 3, ƒ , 11) Even trials (2, 4, ƒ , 12) Trials 13–18

Control Execution of 6 trials at 8 min per trial Execution of 6 trials at 8 min per trial Execution of 6 trials at 8 min per trial

Feedback Execution of 6 trials with frequent
feedback at 8 min/trial

Execution of 6 trials with frequent
feedback at 8 min/trial

Execution of 6 trials at 8 min/trial

Self-exemplar Execution of 6 trials at 8 min/trial 8 min replay of the previous
odd-numbered trial

Execution of 6 trials at 8 min/trial

Feedback-
exemplar

Execution of 6 trials with frequent
feedback at 8 min/trial

8 min replay of the previous
odd-numbered trial

Execution of 6 trials at 8 min/trial

Expert-
exemplar

Execution of 6 trials at
8 min per trial

8 min replay of an expert’s trial Execution of 6 trials at 8 min per trial
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to feedback, 16 to self-exemplar, 20 to feedback-exem-
plar, and 19 to expert-exemplar). The average age of the
participants was 21 years; 48% of the participants were
female and 52% were male. Each individual received $50
at the end of the three-consecutive-day study.

Procedure

On the Wrst day, participants received instructions
outlining the goals of WPP and how to use the simula-
tion. Instructions were given according to a standard
script while the participants ran the simulation in a
training mode (at the very slow pace and only until
expiration of the Wrst deadline). During the instruc-
tional period, participants were informed of deadlines,
simulation time, and the routes of water travel but were
not instructed or given any information on how to
improve their performance. They were told that water
(from outside the system) could arrive in any of the
tanks at any time, but they were not given information
about the amount of water to process or the time of
water arrival.

Statistics

I used repeated measures ANOVAs and one-way
ANOVAs to analyze the data. Because the even-num-
bered trials (2, 4, 6, 8, 10, and 12) were replays in the 
self-exemplar, feedback-exemplar, and expert-exemplar
conditions, no performance data from those groups were
available for those trials. Therefore, those trials were
dropped from the analyses of all groups. For this reason,
trials referred to as trials 1–6 in the Results and Discus-
sion below correspond to actual performance in the odd-
numbered trials (1, 3, 5, 7, 9, and 11), whereas trials
referred to as trials 7–12 in the remainder of the paper

correspond to the test phase (day 3) trials 13–18. For the
repeated measures ANOVAs, the condition (control,
feedback, self-exemplar, feedback-exemplar, or expert-
exemplar) was the between-subjects factor and the trials
(a total of 12 trials, six during the Wrst 2 days, and six
during the third day) were the repeated measures of per-
formance. SigniWcance was assigned at the level of
p < .05.

Results

Table 2 presents the mean performance percentages
and standard deviations for each of the conditions dur-
ing the 12 trials; Fig. 3 depicts the mean performance
percentages graphically. The overall analysis revealed a
signiWcant main eVect of trials (F (11, 913) D 78.91,
p < .001), a trials-by-condition signiWcant interaction
(F (44, 913) D 2.43, p < .001), and a signiWcant main eVect
of condition (F (4, 83) D 2.81, p < .05). Thus, individuals
tended to improve their performance over time and to
perform diVerently according to the availability and type
of cognitive support. Performance improvements
diVered on the basis of condition.

Comparisons between each of the experimental groups
and the control group (across trials) produced the results
summarized in Table 3. Individuals in the expert-exemplar
group were the only ones to perform at signiWcantly
higher levels than individuals in the control group (F (1,
31)D5.96, pD .021). Results in the feedback, self-exem-
plar, and feedback-exemplar groups did not diVer signiW-

cantly from those in the control group. The analyses also
revealed a signiWcant interaction of trials-by-condition for
the feedback group (F (11, 341) D3.07, p <.005) and the
expert-exemplar group (F (11, 341)D3.72, p <.001) as
compared (respectively) with the control group.

Table 2
Mean performance percentages, standard errors of means, and standard deviations for each condition during the 12 trials

Condition Days 1 and 2 Day 3

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12

Control (N D 14) M 80.67 84.89 86.00 86.04 87.59 88.60 88.44 89.96 88.88 88.42 89.70 89.62
�M 2.09 1.60 1.10 1.32 1.50 1.01 1.06 1.14 1.30 1.60 1.53 1.30
SD 7.82 5.98 4.11 4.96 5.63 3.77 3.95 4.28 4.86 5.97 5.73 4.88

Feedback (N D 19) M 74.73 76.54 82.71 84.57 87.41 87.89 89.03 89.27 89.29 88.84 89.85 90.07
�M 1.72 3.78 3.05 2.37 1.27 1.35 1.42 1.30 1.57 1.60 1.61 1.52
SD 7.49 16.47 13.31 10.32 5.54 5.88 6.18 5.65 6.84 6.98 7.03 6.61

Self-exemplar (N D 16) M 81.02 84.53 87.15 89.41 89.09 90.07 89.22 90.72 90.20 90.69 89.84 90.54
�M 1.68 1.06 1.06 1.13 1.14 1.08 1.30 1.12 1.09 1.34 1.40 1.24
SD 6.73 4.23 4.22 4.51 4.58 4.31 5.19 4.47 4.36 5.34 5.60 4.95

Feedback-exemplar (N D 20) M 77.25 83.50 85.62 86.43 87.05 88.16 88.94 88.81 90.23 90.60 91.11 91.00
�M 1.55 1.25 1.31 1.12 1.20 1.19 1.30 1.83 1.29 1.04 1.01 0.95
SD 6.95 5.61 5.88 5.02 5.38 5.32 5.82 8.18 5.78 4.67 4.52 4.26

Expert-exemplar (N D 19) M 77.13 88.71 88.76 89.98 92.79 93.15 94.10 94.15 93.05 93.19 93.50 93.78
�M 2.39 1.51 1.54 1.09 0.94 1.01 0.98 0.70 0.98 0.10 1.00 1.00
SD 10.41 6.58 6.70 4.73 4.11 4.39 4.26 3.06 4.25 4.31 4.35 4.30
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To further analyze these two trials-by-condition
interactions, I ran two separate analyses on the data:
one analysis (using the six trials as a repeated measures

variable) for the Wrst 2 days, during which individuals
received diVerent degrees or types of feedback or
replays, and the other for the third day when all partici-
pants were under the control condition. These analyses
indicated that the performance of individuals in the
feedback group diVered from the performance of those
in the control group during the Wrst 2 days (F (5,
155) D 2.61, p < .05) but not during the third day (F (5,
155) D .25, p > .05). Per-trial analyses showed that the
diVerence during the Wrst 2 days occurred only during
the Wrst trial (F (1, 32) D 4.89, p < .05). Initially, individu-
als given detailed feedback performed signiWcantly more
poorly than individuals in the control group, but with
practice the individuals who received detailed feedback
performed at levels comparable to those exhibited by
individuals in the control group. When individuals in
the detailed-feedback group completed the simulation
under the control condition on the third day of the
study, they performed exactly like the individuals in the
control group, who had never received any detailed
feedback.

Per-trial analyses performed to investigate the learn-
ing diVerences between individuals in the expert-exem-
plar group and those in the control group revealed that
the former group of participants required only three task
executions (and two replays of an expert’s trial) to out-
perform participants in the control group; from the
fourth trial forward, individuals in the expert-exemplar
group performed better than individuals in the control
group. Table 4 summarizes the analyses per trial. Perfor-
mance in the expert-exemplar group diVered signiW-

cantly from that in the control group on the third day
(F (1, 31) D 9.64, p < .005), and the performance of the
expert-exemplar participants continued to improve even
in the absence of the replay of an expert’s trial (i.e., on
the third day).

In summary, only participants under the expert-exem-
plar condition performed better than participants under
the control condition. The feedback condition actually
led to poorer performance at the beginning of the learn-
ing process, and the exemplar and feedback-exemplar
conditions had no signiWcant eVect on performance.

Process variables

To determine why performance under the experimen-
tal conditions did or did not diVer from that under the
control condition, I analyzed two process variables: the
percentage of pump utilization and the average number
of decisions per trial. The percentage of pump utilization
was calculated by dividing the total number of minutes
that pumps were open (480) by the total number of min-
utes of pump availability (480 min [the total duration of
the simulation] multiplied by 5 [the maximum number of
pumps open at any one time]). The second process
variable was the number of decisions made by each

Fig. 3. Average performance percentage per trial by condition. The
white area of the graph represents the practice period of each condi-
tion, and the gray area represents the testing period of each condition.

Table 3
Planned comparisons of each condition versus the control condition

Condition F p

Feedback vs. Control
Trial eVect (11, 341) D 22.8 0.00
Trial*Condition (11, 341) D 3.07 0.005
Condition (1, 31) D 0.52 n.s.

Self-exemplar vs. Control
Trial eVect (11, 308) D 18.7 0.00
Trial*Condition (11, 308) D 0.59 n.s.
Condition (1, 28) D 0.66 n.s.

Feedback-exemplar vs. Control
Trial EVect (11, 352) D 27.7 0.00
Trial*Condition (11, 352) D 1.55 n.s.
Condition (1, 32) D 0.00 n.s.

Expert-exemplar vs. Control
Trial eVect (11, 341) D 36.2 0.00
Trial*Condition (11, 341) D 3.72 0.001
Condition (1, 31) D 5.96 0.021
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individual. In WPP, the time-related cost of switching
pumps (i.e., 10 simulation minutes of inactivity due to
pump cleaning) should discourage the activation of
pumps without careful consideration. Thus the number
of decisions per trial also serves as a measure of eYcient
use of resources. The higher the number of decisions per
trial, the more the decision maker changed her decisions
regarding pump activation, potentially resulting in nega-
tive eVects on performance. As a raw measure of
eYciency, the expert’s trial used for this study involved
29 decisions.

Using these two variables, I ran regression analyses
on the average performance during the Wrst 2 days and
during the third day. Both regressions yielded signiWcant
results (days 1 and 2, Adjusted R2 D .85, F (2,
87) D 174.05, p < .001; day 3, Adjusted R2 D .78, F (2,
87) D 154.37, p < .001). Regression coeYcients generated
by both analyses also were signiWcant for the percentage
of pump utilization and the number of decisions per trial
during the Wrst 2 days and during the third day. These
results suggest that the diVerences in performance
between individuals in the control group and those in the
other groups are explainable in terms of the percentage
of pump utilization and the average number of decisions
per trial.

I also used repeated measures analyses to compare
the percentage of pump utilization by individuals in each
of the experimental groups to the percentage of pump
utilization by participants in the control group. Like the
performance analyses, these analyses revealed that only
the individuals in the expert-exemplar group utilized the
pumps better than individuals in the control group.
Although the diVerence between the control and expert-
exemplar groups was not signiWcant during the Wrst 2
days (F (1, 31) D . 079, p D .78), it was signiWcant during
the third day (F (1, 31) D 5.57, p < .05). Pump utilization
by individuals in the control group did not diVer from
pump utilization by individuals in the feedback, exem-
plar, or feedback-exemplar groups. Fig. 4 shows the

average percentage of pump utilization over the course
of the study by individuals in the expert-exemplar and
control groups. The expert’s trial replayed for this study
involved 98% pump utilization.

As with the percentage of pump utilization analyses,
repeated measures analyses using number of decisions

Table 4
Planned comparisons: one-way ANOVAs per trial

* p � .10.
** p � .05.

*** p � .01.

Condition Days 1 and 2 Day 3

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12

Feedback vs. Control
F (1, 31) 4.89** 3.25* 0.79 0.24 0.01 0.16 0.10 0.15 0.04 0.03 0.01 0.05

Self-exemplar vs. Control
F (1, 28) 0.02 0.04 0.57 3.81* 0.64 0.97 0.21 0.23 0.61 1.21 0.01 0.26

Feedback-exemplar vs. Control
F (1, 32) 1.79 0.48 0.04 0.05 0.08 0.07 0.07 0.23 0.51 1.42 0.64 0.78

Expert-exemplar vs. Control
F (1, 31) 1.14 2.94* 1.85 5.36** 9.42*** 9.72*** 15.08*** 10.78*** 6. 87** 7.12** 4.73** 6.75**

Fig. 4. Average percentage of pump utilization per trial for control and
expert-exemplar conditions. The white area of the graph represents the
practice period of each condition, and the gray area represents the test-
ing period of each condition.
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per trial were run to compare each experimental group
to the control group. Once again, the only condition sig-
niWcantly diVerent from the control condition was the
expert-exemplar condition (F (1, 31) D 15.66, p < .001).
The number of decisions made by individuals in the con-
trol group did not diVer from the number made by indi-
viduals in the feedback, exemplar, or feedback-exemplar
groups. Fig. 5 shows the average number of decisions
made over the course of the study by individuals in the
expert-exemplar and control groups.

Results from the analyses described above indicate
that individuals who replayed the expert’s trial
improved their resource utilization and made a reduced
number of decisions after practicing the task. With
practice, these individuals performed at levels that
increasingly approached the expert’s performance. Pre-
sumably, these participants compared their decisions
with those made by the expert and, in subsequent trials,
attempted to duplicate the expert’s decision-making
approaches.

Similarity

To test whether the decisions made by individuals in
the expert-exemplar group were, in fact, increasingly
similar to those made by the expert performer, I ran an
analysis of decision similarity by comparing each of the
individuals’ trials to the expert’s trial. The measure of

similarity used here, which was proposed and tested in
previous research (Gonzalez et al., 2003; Gonzalez &
Quesada, 2003), is the linear distance between two
decisions, and it ranges from 0 (diametrically dissimilar)
to 1 (equivalent). In contrast with the previous analysis,
however, this analysis compared the decisions of each
individual to those of the expert rather than to each indi-
vidual’s past decisions.

The analysis of similarity showed a very signiWcant,
main eVect of the condition (F (4, 83) D 7.96, p < .001).
The systematic comparisons of each experimental group
to the control group showed a signiWcant diVerence
between the control and the expert-exemplar groups
(F (1, 31) D 16.87, p < .001). Again, the similarity between
the expert’s decisions and the decisions made by individ-
uals in the feedback, self-exemplar, and feedback-exem-
plar groups did not diVer from the similarity between the
expert’s decisions and the decisions made by individuals
in the control group. Fig. 6 shows the average similarity
between the decisions made by individuals in the control
and expert-exemplar groups and those made by the
expert.

Fig. 5. Average number of decisions, over the course of the study, for
the expert-exemplar and control conditions. The white area of the
graph represents the practice period of each condition, and the gray
area represents the testing period of each condition.

Fig. 6. Average similarity of the decisions made in the control and the
expert-exemplar conditions to the decisions made in the expert’s
(replayed) trial. The white area of the graph represents the practice
period of each condition, and the gray area represents the testing
period of each condition.
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Discussion

The results of this study are consistent with prior
research results that have shown that outcome feedback
alone is an ineVective form of decision support. This
study also demonstrates that more detailed and frequent
outcome feedback did not help individuals improve their
performance. Furthermore, process feedback in the form
of a replay of individuals’ own past performance was
also ineVective. Only one feedforward decision aid was
successful: the expert-exemplar condition that involved
replaying the decisions made by an expert. It is interest-
ing that individuals continued to improve their perfor-
mance even after cessation of this feedforward decision
support.

The results of this study resonate with prior research
results that have shown that feedforward in the form of
information from experienced individuals can help
improve performance (Sengupta & Abdel-Hamid, 1993).
Furthermore, this study demonstrates a decision aid that
is useful as support for real-time DDM. Rather than ask-
ing individuals to processing feedforward in the form of
guidelines while they perform the task, I asked partici-
pants to replay an expert’s trial after they had performed
the task. This enabled participants to compare their own
decisions with those of an expert, and thereby to
improve their own performance. This type of decision
support is unobtrusive because it corresponds to the nat-
ural form of learning in DDM tasks.

Individuals did not need to be consciously aware of
the heuristics or processes that the expert followed;
rather, individuals may simply have used examples as a
natural form of learning. As suggested by the instance-
based learning theories, individuals may have learned by
accumulating instances from both their own trial and
the expert’s trial (Dienes & Fahey, 1995; Gonzalez et al.,
2003). Participants may have stored high utility
instances while playing the expert’s trial, and then
retrieved those instances when playing their own trials.
The similarity analysis indicates that, unlike the deci-
sions made by individuals in any of the other groups, the
decisions made by individuals in the expert-exemplar
group became increasingly similar to those made by the
expert.

Although it is possible that decision makers simply
copied the expert’s behavior analyses of the process vari-
ables suggest that reviewing the expert’s decisions helped
individuals manage their own resources more wisely.
Individuals learned to utilize the pumps more eVectively
while making fewer decisions. More importantly, indi-
viduals’ utilization of resources continued to improve
even after discontinuation of the expert-exemplar deci-
sion support. There are several possible explanations for
the performance improvements in the absence of deci-
sion support. First, it is feasible that participants, rather
than simply copying the expert’s behavior, were able to

understand the task beyond a particular example and to
construct a more general strategy that aided them in
solving the task. Second, viewing the expert’s decisions
may have helped participants retrieve actions in the
neighborhood of the expert’s decisions, giving partici-
pants a general sense of strategy that they could then
Wne-tune with practice. That is, if instances of the
expert’s performance become part of the participants’
memory repertoire, participants may have used that
knowledge to make decisions that led to higher perfor-
mance even in the absence of the decision support. Addi-
tional empirical research should be performed to assess
the validity of these two possible explanations.

DDM researchers understand very little about what
people learn while completing DDM tasks and what
components of learning are transferable. Past studies
have shown that, although individuals may improve
their performance in a speciWc task, they are unable to
transfer this knowledge even to very similar tasks (Ster-
man, 1989). To improve our understanding regarding
the eVectiveness and durability of decision support,
researchers must conduct additional transfer-of-learning
studies that test individuals’ ability to transfer learning
when confronted with diVerent but analogous condi-
tions.

It is also important to consider why the other forms
of decision support investigated in this study failed. As
predicted by Kluger and DeNisi’s theory, this study
showed that outcome feedback impeded performance at
the beginning of the practice period (when the task was
novel) but had fewer detrimental eVects on the perfor-
mance of individuals after additional task practice. This
Wnding provides strong evidence of the ineVectiveness of
outcome feedback, regardless of speciWcity. Contrary to
expectations, the timing and frequency of outcome feed-
back did not help improve performance.

There are several possible explanations for this Wnd-
ing, and some of them have already been addressed by
other researchers (Sengupta & Abdel-Hamid, 1993). One
possible explanation has to do with individuals’ limited
cognitive resources. Because real-time dynamic environ-
ments do not pause to allow for feedback presentation,
they force decision makers to continue making judg-
ments while a situation progresses. Processing feedback
while determining how to alter one’s judgments accord-
ing to that feedback is a diYcult and time-consuming
task (Einhorn & Hogarth, 1978). The ineYcient utiliza-
tion of resources during the early trials under this condi-
tion—which at least partially explains the lower initial
performance of individuals given feedback—may be
attributable to the participants’ inability to perform
both tasks concurrently. Perhaps individuals attempted
to use the feedback during the Wrst few trials but later
simply ignored it because they could not eVectively pro-
cess the feedback while continuing to perform well on
the WPP task.
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The failure of the self-exemplar decision support
could be attributed to the quality of information upon
which individuals relied during the trials. IBLT suggests
that participants in this group may have used their own
prior decisions to formulate instances; however, the util-
ity of these instances was likely low. Participants did not
seem to have learned anything new from their past deci-
sions. Research suggests that most people do not
account very well for the impact of their own decisions
(Sterman, 1989). According to Einhorn and Hogarth
(1978), the diYculty of learning from experience is
attributable to three factors: (1) the failure to search for
and use disconWrming evidence, (2) a lack of awareness
of environmental eVects on outcomes, and (3) the use of
unaided memory for encoding, storing, and retrieving
outcome information. Although it is possible that indi-
viduals in the self-exemplar group had trouble encoding,
storing, and retrieving past decisions, this seems rather
unlikely, particularly upon comparison of the data from
this group with those from the expert-exemplar group.
Individuals in the expert-exemplar group had no trouble
encoding, storing, and retrieving information similar to
that of the expert. It seems more likely that, in this case,
the Wrst two factors may have played a role in the ineVec-
tiveness of the self-exemplar decision aid. Replaying
their own decisions may not have helped individuals to
understand the eVects of their decisions, and individuals
may have had little motivation to seek alternate courses
of action.

Results from this study conWrm the ineVectiveness of
using outcome feedback alone to support decision mak-
ing. Findings also indicate that the provision of more
frequent and speciWc outcome feedback (rather than
only global outcome feedback) hinders rather than sup-
ports performance. Furthermore, access to cognitive
feedback based on the individuals’ replays of their own
trials did not improve performance. This Wnding indi-
cates that aVording individuals the time and opportunity
to analyze their actions is not enough to help them
improve performance.

However, this study also demonstrates a form of deci-
sion support that helped individuals improve their per-
formance considerably: the replay of an expert’s trial.
This result is applicable to many real-world dynamic
tasks because, in the real world, there are well-recog-
nized experts in many diVerent Welds. Often, knowledge
is sought from experts to examine decision making.
However, the results of this study suggest that it might
be easier and more eVective to solicit examples of
experts’ decisions and use them as decision support for
trainees. The use of realistic simulations that reproduce
real-world tasks—called “management Xight simula-
tors” by Sterman (Sterman, n.d.)—may encourage ana-
logical reasoning and provide a means of extensive
practice by individuals who must transfer the knowledge
gained through such simulations to real-world tasks.

Sterman argues that such simulations have helped to
improve productivity and quality in many organizations.
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