School of Phish:
A Real-Word Evaluation of Anti-Phishing Training

Ponnurangam Kumaraguru, Justin Cranshaw, Alessandro Acquisti,
Lorrie Cranor, Jason Hong, Mary Ann Blair, Theodore Pham

March 9, 2009
CMU-CyLab-09-002

CyLab
Carnegie Mellon University
Pittsburgh, PA 15213
School of Phish:
A Real-Word Evaluation of Anti-Phishing Training

Ponnurangam Kumaraguru, Justin Cranshaw, Alessandro Acquisti,
Lorrie Cranor, Jason Hong, Mary Ann Blair, Theodore Pham
Carnegie Mellon University
{pkumarag, jcransh, acquisti, lorrie, jasonhon, mc4t, telamon}@andrew.cmu.edu

ABSTRACT
PhishGuru is an embedded training system that teaches users to avoid falling for phishing attacks by delivering a training message when the user clicks on the URL in a simulated phishing email. In previous lab and real-world experiments, we validated the effectiveness of this approach. Here, we extend our previous work with a 515-participant, real-world study in which we focus on long-term retention and the effect of two training messages. We also investigate demographic factors that influence training and general phishing susceptibility. Results of this study show that (1) users trained with PhishGuru retain knowledge even after 28 days; (2) adding a second training message to reinforce the original training decreases the likelihood of people giving information to phishing websites; and (3) training does not decrease users' willingness to click on links in legitimate messages. We found no significant difference between males and females in the tendency to fall for phishing emails both before and after the training. We found that participants in the 18-25 age group were consistently more vulnerable to phishing attacks on all days of the study than older participants. Finally, our exit survey results indicate that most participants enjoyed receiving training during their normal use of email.

Categories and Subject Descriptors

General Terms
Design, experimentation, security, human factors

Keywords
Embedded training, phishing, email, usable privacy and security, real-world studies

1. INTRODUCTION
PhishGuru is an embedded training system that teaches users to avoid falling for phishing attacks by sending them simulated phishing emails. These emails deliver a training message when the user falls for the attack and clicks on the simulated phishing URL, thus taking advantage of a “teachable moment.” In real life applications, these emails might be sent by a corporate system administrator, ISP, or training company. The training materials present the user with a comic strip that defines phishing, offers steps to follow to avoid falling for phishing attacks, and illustrates how easy it is for criminals to perpetrate such attacks.

Our prior studies tested users immediately and one week after the training, and demonstrated that PhishGuru improved users’ ability to identify phishing emails and websites [9, 10, 12]. Training systems should be designed not only to convey knowledge, but also to help learners retain that knowledge for the long term [17]. In this study, we extend our previous work by presenting the results of a 515-participant, real-world experiment in which we measured long-term retention. In addition, while our previous studies focused on testing a single training intervention, our embedded training approach allows for convenient, ongoing training. In this study we measure the effect of using a second training message to reinforce the original training. We also address some of the limitations of earlier laboratory [10] and real-world [12] PhishGuru studies.

Each simulated phishing email acts not only as a mechanism to deliver training, but also as a test of whether the recipient has learned how to distinguish legitimate from phishing messages. A real deployment of the system would not only train users, but also assess their performance at regular intervals. In this way, we can identify and present training interventions only to those users who continue to fall for simulated phishing attacks. In addition, this approach can be used to introduce recipients to new phishing threats over time and focus on those recipients who are most susceptible to the new threats. The issues of long term retention and repeated training interventions are essential to the validity and effectiveness of such long-term training and evaluation campaigns. If the training does not result in long term retention, such a deployment would require frequent training interventions, which could annoy users and even counter the effectiveness of the training. Similarly, if additional training interventions do not increase performance, the validity of a system that repeatedly trains users who continue to make mistakes is certainly called into question. The results from this study indicate that people trained with PhishGuru do
retain what they learned in the long term and that multiple training interventions increase performance.

We conducted a study of the Carnegie Mellon University (CMU) community, which consists of faculty, staff, and students. The simulated phishing emails we created were all spear-phishing emails targeted at the CMU community. Our results demonstrate that PhishGuru effectively trains users in the real world, and that people who were trained through PhishGuru retained this knowledge for at least 28 days. Results also show that people who were trained twice were significantly less likely to provide information to the simulated phishing web pages when tested 2 days, a week, and 2 weeks after training. We also found that training with PhishGuru does not increase the likelihood of false positive errors (participants identifying legitimate emails as phishing emails).

The large size and duration of this study allowed us to draw some conclusions about susceptibility to phishing based on certain demographic factors. As in the previous studies [4, 18], our results strongly suggest that there is no difference in susceptibility to phishing attacks with respect to gender. However, we found that age is a factor in phishing susceptibility, as participants in the 18-25 age group were more likely to fall for phishing than those in older age groups.

The remainder of the paper is organized as follows: In the next section we relate phishing to relevant studies in deception theory, and we discuss related experimental studies on phishing. In Section 3, we present the study setup, participant demographics, and hypotheses that guided our study. In Section 4, we present the results of our evaluation, demonstrating that PhishGuru effectively educates people in the real world. In Section 5, we present the challenges of conducting a field trial to study the effectiveness of phishing interventions and the ways in which we addressed them. Finally, in Section 6, we discuss the effect of training people in the real world.

2. BACKGROUND

In this section we present a brief background on phishing and highlight some lessons that can be learned from deception theory literature. We also describe some results from related empirical studies on phishing.

2.1 Deception theory

The Internet and other technological advancements have lowered the cost of perpetrating large-scale crimes. Recently, a dramatic increase has been observed in attacks known as “phishing,” in which spoofed emails and fraudulent websites mislead victims, causing them to reveal private and potentially valuable information. Victims perceive that these emails are associated with a trusted brand, while in reality they are the work of con artists attempting to commit identity theft [13]. Phishers exploit the difference between the system model and the users’ mental model to deceive and victimize users [14].

Psychologists and communication researchers have studied deception in detail. Deception is generally defined as “a message knowingly transmitted by a sender to foster a false belief or conclusion by the receiver” [2]. Communication literature suggests that many cues influence users when making trust decisions, including (1) verbal cues (e.g. language style, message content in the email); (2) non-verbal cues (e.g. time an email is received); and (3) contextual cues (e.g. feedback from toolbars) [3]. Studies have also shown that people fall for phishing attacks because many of the cues that people rely on can be easily spoofed by the phisher to deceive the victim [4].

Jonhson et al. have developed a generic model that can be used to detect deception by using the cues available in a given situation [8]. Grazioi adapted the model to detect deception over the Internet [20]. The model decomposes the action of detecting deception to (1) activation (allocating attention to cues, based on the presence of discrepancies between what is observed and what is expected, e.g. the information in the current email versus what is expected from the given sender); (2) hypothesis generation (generating hypothesis(es) to explain the next steps in the situation, e.g. “because there was some illegitimate access to my account, they want me to update my personal information”); (3) hypothesis testing (evaluating the hypotheses that were created e.g. “if I click on the link and the resulting website looks legitimate then it must be a legitimate email”); and (4) global assessment (making a decision on the given situation, e.g. a user decides that this is a legitimate website and provides personal information to the website). Researchers also propose computer awareness and training as a solution to prevent people from being deceived through computers [20]. Therefore, one of the goals of anti-phishing work is to develop tools to educate users so that they are able to generate and test hypotheses properly and not be deceived. We used these results to develop the content for PhishGuru ensuring that users are given valid information which they can use to make correct decisions.

2.2 Related work

There are only a few published real-world studies that evaluate the effectiveness of anti-phishing training. Researchers have explored the idea of sending fake phishing emails to test users’ vulnerability [6, 7, 16] and evaluate the effectiveness of training delivered through other channels. Jagatic et al. studied the vulnerability of a university community towards a phishing email that pretends to come from somebody in their own social network, but did not study the effectiveness of training [7]. Researchers at West Point [6] and at the New York State Office of Cyber Security [16] conducted this type of study in two testing phases. Following the first testing phase, participants were given training materials and lectures about phishing before being tested again. Both studies showed an improvement in the participants’ ability to identify phishing emails. Recently, the popular press reported that the United States Department of Justice sent their employees fake phishing emails to test their vulnerability to phishing [19]. Sheng et al. have shown that people can be trained about phishing URLs through an online game called Anti-Phishing Phil [18]. They found the game to be effective in both a laboratory setting and in the real world [11, 18].

None of this previous research considers the question of how a user’s behavior changes over time as a result of training. In our work, we send 7 simulated phishing emails to users over the course of 28 days. The long duration of our study allows us to focus on long term retention and the effect of providing more opportunities to learn.

Learning science literature shows that training is most effective when the training materials are presented in the context of the real world [1]. Additionally, researchers have shown that providing immediate feedback during the learn-
ing phase results in more efficient learning [17]. One of our previous laboratory studies provide strong evidence that people make better decisions when they go through PhishGuru training than when they receive security notices, which is the current practice [9]. Another of our previous laboratory studies suggests that people retain and transfer more knowledge when trained with embedded training than with non-embedded training [10]. Our previous work also suggests that PhishGuru can effectively train employees in a real-world setting [12]. However, these studies don’t address the primary foci of this paper: long term retention and reinforcement through additional training.

3. EVALUATION

In this section we present participant demographics and study methodology along with the hypotheses we tested in this study.

3.1 Recruitment and demographics

We sent a recruitment email to all active CMU student, faculty, and staff Andrew email accounts1 with the primary campus affiliation listed as “Pittsburgh.” The email subject line read “Volunteers Needed: Help Protect the Carnegie Mellon Community from Identity Theft” and the email content described both what would be required of participants and what data would be collected from them. In addition, they were told that volunteers would be entered into a raffle to receive one of five $75 gift cards. Willing participants were instructed to reply to the recruitment email or go to a web link to opt in to the study. We also added “To verify the authenticity of this message, visit the ISO 2 Security News & Events at https://www.cmu.edu/iso” in the email so that users could check the legitimacy of the message. In total we sent 21,351 emails and recruited 515 volunteers. The Human Resources department at CMU provided us with some participant demographics of the participants, which are presented in Table 1.

Every person in the university is assigned a primary department, even if they are students with double-majors or faculty with joint appointments. For the purpose of this study and our analysis, we looked only at their primary departments (mentioned as department in Table 1). We grouped the 26 different departments into 7 academic department clusters and 3 non-academic department clusters as shown in Table 1. For example, we grouped the Entertainment Technology Center and School of Computer Science together as Computer Science.

3.2 Study setup

Five hundred and fifteen participants were randomly assigned to three conditions: “control,” “one-train,” and “two-train.” There were 172 participants in control, 172 in one-train, and 171 in two-train. All participants, regardless of condition, were sent a series of 3 legitimate and 7 simulated spear-phishing emails over the course of 28 days, as shown in Table 2. In the body of each email was a simulated phishing URL. Clicking on this link resulted in different scenarios depending on the study day and the participant’s condition. Participants in the one-train condition who clicked the URL on day 0, and those in the two-train condition who clicked the URL on day 0 and/or day 14, saw one or both (one on each day) of the anti-phishing training interventions depicted in Figure 1. For all other study days in the one-train and two-train conditions, clicking on the URL led to a simulated phishing webpage where an HTML form asked users to provide private credentials. Participants in the control condition did not receive any anti-phishing training as part of the study. When they clicked on the URLs they were directed to simulated phishing webpages. We tested participants twice after each training email to test their immediate retention (2 days) and short-term retention (7 days). This data also helped us confirm the immediate and short-term retention results from earlier studies.

Table 3 presents an overview of the 7 simulated phishing emails sent to participants. Except for the “Community Service” email—which proved to be a much less effective

<table>
<thead>
<tr>
<th>Gender</th>
<th>% of control</th>
<th>% of one-train</th>
<th>% of two-train</th>
<th>% who fell for day 0 phish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>44.8</td>
<td>48.8</td>
<td>39.8</td>
<td>48.5</td>
</tr>
<tr>
<td>Male</td>
<td>55.2</td>
<td>51.2</td>
<td>60.2</td>
<td>50.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Affiliation</th>
<th>% of control</th>
<th>% of one-train</th>
<th>% of two-train</th>
<th>% who fell for day 0 phish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>7.0</td>
<td>8.7</td>
<td>7.0</td>
<td>38.5</td>
</tr>
<tr>
<td>Staff</td>
<td>36.0</td>
<td>38.4</td>
<td>30.4</td>
<td>37.8</td>
</tr>
<tr>
<td>Students</td>
<td>56.4</td>
<td>52.9</td>
<td>62.6</td>
<td>58.6</td>
</tr>
<tr>
<td>Sponsored</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student year</th>
<th>% of control</th>
<th>% of one-train</th>
<th>% of two-train</th>
<th>% who fell for day 0 phish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctoral</td>
<td>13.4</td>
<td>17.5</td>
<td>12.3</td>
<td>52.7</td>
</tr>
<tr>
<td>Masters</td>
<td>19.8</td>
<td>19.8</td>
<td>21.7</td>
<td>56.2</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>20.9</td>
<td>18.6</td>
<td>28.0</td>
<td>62.9</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>2.3</td>
<td>1.1</td>
<td>0</td>
<td>66.7</td>
</tr>
<tr>
<td>None</td>
<td>43.6</td>
<td>43.0</td>
<td>38.0</td>
<td>37.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department type</th>
<th>% of control</th>
<th>% of one-train</th>
<th>% of two-train</th>
<th>% who fell for day 0 phish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic</td>
<td>72.7</td>
<td>73.9</td>
<td>78.4</td>
<td>53.1</td>
</tr>
<tr>
<td>Administrative</td>
<td>24.4</td>
<td>24.4</td>
<td>19.3</td>
<td>39.3</td>
</tr>
<tr>
<td>Unknown</td>
<td>2.9</td>
<td>1.7</td>
<td>2.3</td>
<td>41.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic departments</th>
<th>% of control</th>
<th>% of one-train</th>
<th>% of two-train</th>
<th>% who fell for day 0 phish</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS and Public Policy</td>
<td>8.7</td>
<td>12.2</td>
<td>12.8</td>
<td>50</td>
</tr>
<tr>
<td>Humanities & Social Sciences</td>
<td>7.6</td>
<td>8.7</td>
<td>8.1</td>
<td>59.5</td>
</tr>
<tr>
<td>Engineering</td>
<td>16.3</td>
<td>14.5</td>
<td>14.6</td>
<td>57.7</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>4.6</td>
<td>6.4</td>
<td>3.5</td>
<td>48</td>
</tr>
<tr>
<td>Computer Science</td>
<td>16.3</td>
<td>14.5</td>
<td>18.7</td>
<td>48.2</td>
</tr>
<tr>
<td>Business</td>
<td>8.7</td>
<td>5.8</td>
<td>10.5</td>
<td>51.2</td>
</tr>
<tr>
<td>Sciences</td>
<td>10.5</td>
<td>11.6</td>
<td>11.1</td>
<td>52.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-academic departments</th>
<th>% of control</th>
<th>% of one-train</th>
<th>% of two-train</th>
<th>% who fell for day 0 phish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computing Services and Research</td>
<td>5.8</td>
<td>5.8</td>
<td>5.2</td>
<td>34.5</td>
</tr>
<tr>
<td>Administration</td>
<td>18.6</td>
<td>18.0</td>
<td>13.6</td>
<td>41.2</td>
</tr>
<tr>
<td>Other</td>
<td>2.9</td>
<td>2.3</td>
<td>1.8</td>
<td>50</td>
</tr>
</tbody>
</table>

1The Andrew account is the main email account given to all CMU community members.
2Information Security Office at CMU
day. For example, on day 0 we sent test and legitimate emails to all participants.

<table>
<thead>
<tr>
<th>Study day</th>
<th>Day 0</th>
<th>Day 2</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 16</th>
<th>Day 21</th>
<th>Day 28</th>
<th>Day 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Nov 10</td>
<td>Nov 12</td>
<td>Nov 17</td>
<td>Nov 24</td>
<td>Nov 26</td>
<td>Dec 1</td>
<td>Dec 8</td>
<td>Dec 15</td>
</tr>
<tr>
<td>Type of Emails Sent</td>
<td>Train and test, then legitimate</td>
<td>Test</td>
<td>Test, then legitimate</td>
<td>Train and test</td>
<td>Test</td>
<td>Test</td>
<td>Test, then legitimate</td>
<td>Post-study survey</td>
</tr>
</tbody>
</table>

phishing lure than the other messages—we found no difference in the rate at which participants fell for each of the emails on day 0. However, to ensure that the aggregate response rates per day were not confounded by the potential difference in natural response rates for individual emails, or by the interdependence of response rates among the emails, we developed a counterbalancing schedule. The counterbalancing schedule avoided these confounding issues by dividing the 515 participants randomly and equally per condition among 21 different viewing schedules for the 7 emails. The critical property of the 21 schedules was that, for any given day of the study, each of the 7 emails was sent out to an equal number of participants. This allowed us to compute the aggregate response rate for an entire day by summing the responses to each of the emails sent that day. Since the proportions were constant for all study days, different aggregate response rates across different days were comparable. To counterbalance the training materials, half of the participants in the one-train condition received intervention A and the other half received intervention B. Similarly, in the two-train condition, half of the participants received intervention A first and intervention B second and the other half received intervention B first and intervention A second. We found no significant difference in response rates among participants who received the training materials in different orders or among those who received different training material.

All emails that we constructed for the study were emails that the CMU community might normally receive, though they were not based on any information that a phisher would not be able to obtain from public webpages. Based on the headers of the email messages participants sent us to sign up for the study, we determined that a large fraction of our participants used Squirrel Mail, which by default strips HTML from email messages. Therefore, we did not replicate the common phishing tactic of using HTML to hide phishing URLs from users. All of our phishing messages displayed the phishing URLs in the body of the messages. Figure 2 (Top) shows an example of an email that was used in the study. This particular example asks the study participant to click on the link to change their Andrew password.

We registered all of the domain names we used in our simulated phishing emails using legitimate credentials (Table 3)—that is, a query to the associated “whois” database would show valid CMU affiliated contact information. In this way, if participants were skilled enough, they could easily infer that these domains were part of the study. Besides those shown in Table 3, we also registered another 10 similar-looking domains as backup.

Figure 2 (Middle) shows one of the simulated phishing websites. This example simulates the standard password change scenario at CMU. The site asks participants to provide their User ID, old password, and new password, and then to confirm their new password. All of the websites used in the study similarly collected some combination of user name and password. When participants submitted their information, they were taken to a “thank you” page, as shown in Figure 2 (Bottom). Participants saw a similar sequence of webpages (“login” followed by “thank you”) in all email scenarios.

To estimate the false positive rate, we measured the response rate to three legitimate emails sent to study participants by the CMU Information Security Office (ISO). These messages were sent to all participants on day 0, day 7, and day 28 after the test/training emails were sent. The original recruitment email for this study was presented in the context of Cyber Security Awareness Month. The three legitimate emails were announcements for an ongoing security related scavenger hunt, begun during Cyber Security Awareness Month, which gave community members an opportunity to gain points in return for specified security related tasks. The subject line of the first email was “Earn Bonus Points #1: Win a Nintendo Wii, $250 Amazon Gift Card or other great prizes.” The second and third emails had identical subjects, except that they were emails “#2” and “#3,” respectively. The email itself indicated that the recipient needed to login with their Andrew password to claim their bonus points. Clicking the link took them to the real “webiso login page” (the standard log-in page for all CMU websites—the one that we spoofed in our phishing websites) where they were asked to provide their username and password.

So that we could track user responses, each participant was given a unique 4-character alpha-numeric hash that was appended as a parameter to the URL of all emails that participants received (e.g., in one email, participant 9009 received a URL that ended with update.htm?ID=9009). The hash also served as mechanism to allow us to protect the identity of participants during data analysis. To ensure that no sensitive data would be compromised, ISO did a complete penetration test on the machine that was used to host the phishing websites. In addition, the simulated phishing webpages were constructed so that no information was ever submitted to the webserver. Using JavaScript, all of the form data that the user submitted was discarded prior to form submission. To ensure that the emails were not blocked by CMU spam filters, the machine from which the emails were sent was put on a white list.

After all real and simulated phishing emails were sent, another email was sent to all participants asking them to complete a post-study survey. The survey consisted of questions regarding (1) the interest level of participants in receiving such training in the future, (2) participants’ feedback on the training methodology, (3) participants’ feedback on the
Figure 1: Above: Intervention A. One of the two training interventions used in the study. One half of the participants in the one-train and two-train conditions received this training intervention on day 0. The other half of the two-train condition received this on day 14. Below: Intervention B. The second training intervention used in the study. The instructions are the same as in Intervention A, but the characters and the story are slightly different. One half of the participants in one-train and two-train conditions received this training intervention on day 0. The other half of the two-train condition received this on day 14.
Figure 2: A sample of simulated phishing emails and websites. Top: A sample of the simulated phishing emails used in the study. The URL that appears in the email matches the target of the HREF statement. Middle: One of the seven simulated websites. Using JavaScript, all of the form data that the user submits was discarded prior to form submission. Bottom: “Thank you” webpage that was shown to the users when they gave credentials on the webpage presented in Middle. Similar pages were presented for other simulated websites.
interventions and instructions, (4) whether participants remembered registering for the study, and (5) demographic information such as age. 279 of our participants completed the post-study survey. These participants were distributed nearly equally across our three conditions (control = 31.5%; one-train = 34.0%; two-train = 34.5%).

3.3 Hypotheses

In this section, we describe the hypotheses that were tested in this study.

In our previous work, we showed that people who were trained by PhishGuru, both in a laboratory setting [9, 10] and in real-world settings [12], effectively retained the knowledge they gained for a short period. Our goal in this study was to investigate whether PhishGuru helps people retain long term knowledge about phishing. In particular our aim was to study retention after 28 days.

Hypothesis 1: Participants in the training conditions (one-train and two-train) identify phishing emails better than those in the control condition on every day except day 0.

Our earlier studies only tested the effectiveness of the training methodology when participants were trained once, but learning science literature suggests that if people are provided with more opportunities to learn, they tend to remember instructions better [5]. In PhishGuru, the simulated email works for both training and testing purposes; people who continue to click on the simulated phishing URLs can be presented with further training materials. Our goal was to investigate whether participants who read the training materials twice had any advantage over participants who read the training materials only once.

Hypothesis 2: Participants who see the training interventions twice perform better than participants who see the intervention once.

Our earlier studies did not provide any conclusive evidence for whether training has any effect on false positive errors [12]. We believe that it is very important to consider this criterion when measuring training success. In this study we sent legitimate emails to participants on day 0, day 7, and day 28 to measure the false positive error rate.

Hypothesis 3: When asked to identify legitimate emails participants who view the training materials in the training conditions will perform the same as participants in the control condition.

4. RESULTS

In this section we present the results from the study. The results from this study support Hypotheses 1, 2, and 3.

4.1 H1: Long-term retention

Our results show that people in the one-train and two-train training conditions who fell for our first phishing message performed significantly better when they received our second phishing message than those in the control condition. In addition, we observed no significant loss in retention after 28 days. Table 4 presents the percentage of participants who clicked and gave information on day 0 through day 28. Approximately 52.3% (90 participants) in control, 51.7% (89 participants) in one-train and 45.0% (77 participants) in two-train conditions clicked on the link in the email that they received on day 0. We found no significant difference among the click rates of participants across the three conditions on day 0 (ANOVA, F(2,512) = 1.1, p-value = 0.3). This implies that prior to any influence from the study, participants in all three conditions were similar. We also found no significant difference (ANOVA, F(6,1203)= 1.7, p-value = 0.3) in the click rate of participants in the control group across study days (day 0 until day 28). This implies that...
there was no change in the behavior of participants in the control group throughout the study.

On day 0 48.4\% of the participants in the training conditions viewed the PhishGuru intervention. To determine the effectiveness of the training, we conditioned the click rates of days 2 through 28 on those participants across all conditions who clicked the links in the email(s) on day 0. This way we could compare the participants who actually received the training in the one-train and two-train conditions to those in the control condition who took the analogous action on day 0. Figure 3 (Left) shows the percentage of these participants who clicked on links in emails and gave information to the fake phishing websites from day 2 until day 28. There is a significant difference (Chi-Sq = 14, p-value < 0.001) between the percentage of users who clicked in the control condition (54.4\%) and the percentage who clicked in the one-train (27.0\%) on day 28. Similarly, there is significant difference between the control and two-train (32.5\%) conditions on day 28 (Chi-Sq = 8.9, p-value < 0.01). We also find that, in the one-train condition, participants who gave information to fake phishing websites on day 2 are not significantly different than on day 28 (Chi-Sq = 3.5, p-value < 0.1). Similarly, there is significant difference between the control and one-train and between the control and two-train conditions in the percentage of people who clicked on days 2 through 28. This shows that users trained with PhishGuru retain knowledge even after 28 days. This supports Hypothesis 1.

4.2 H2: Multiple training

Our results strongly suggest that users who saw the training intervention twice were less likely to give information to the fake phishing websites than those who only saw the training intervention once. Figure 3 (Right) shows the percentage of participants who clicked on links in emails from day 16 until day 28 conditioned on participants who clicked on the link on day 0 and those who clicked on day 14. There is a significant difference (Chi-Sq = 5.4, p-value = 0.01) between the percentages of users who clicked in the one-train condition (42.9\%) and those who clicked in the two-train (26.5\%) on day 16 and a similar difference on day 21 (Chi-Sq = 7.8, p-value < 0.01). However, we did not find a significant difference between users who clicked in the one-train and two-train conditions on day 28 (Chi-Sq = 0.3, p-value = 0.6). We also did not find any significant difference (Chi-Sq = 1.1, p-value = 0.3) in clicking between day 21 (26.5\%) and day 28 (35.3\%) in the two-train condition.

Figure 3 (Right) also shows that participants who were trained twice are doing significantly better than people who were trained once when it comes to giving their personal information to fake phishing websites. For example, on day 28, 31.4\% of the participants in the one-train condition gave information to the website, while only 14.7\% did in the two-train condition. This is significantly different (Chi-Sq = 7.3, p-value < 0.01). These results support Hypothesis 2.

We also found 30 participants (17.5\%) in the two-train condition who did not see the intervention on day 0 but saw the intervention on day 14. These are the people who probably needed training, since they fell for the email on day 14. We saw no significant difference (t-test, t = 0.1, p-value = 0.8) between people in the one-train condition who clicked on day 14 but were trained on day 0 and people in the two-train condition who clicked on day 28 but were trained only on day 14. This suggests that multiple rounds of training is useful not only for re-inforcement but also for providing an additional opportunity for people who need training.

4.3 H3: Legitimate emails

Results from this study indicate that training users to recognize phishing emails using PhishGuru does not make them more likely to identify legitimate emails as phishing emails. Table 5 presents the percentage of participants who clicked and gave information in response to legitimate emails out of those participants who clicked on day 0. We found no significant difference between the three conditions on day 0 (ANOVA, F(2,512) = 2.7, p-value = 0.1) and on day 28 (ANOVA, F(2,512) = 1.2, p-value = 0.3). We also did not find any significant difference within the conditions among the three different emails (control - ANOVA, F(2,513) = 1.9, p-value = 0.2; one-train - ANOVA, F(2,513) = 1.7, p-value = 0.2; two-train - ANOVA, F(2,510) = 2.7, p-value = 0.1). This shows that user behavior did not change with respect to the legitimate emails that were tracked as part of the study, confirming that training people does not decrease their willingness to click on links in legitimate email messages. This result supports Hypothesis 3.

4.4 Analysis based on demographics

Multivariate regression analysis did not find any significant relationship between susceptibility to phishing on day 0 and gender (p-value = 0.9 for gender coefficient), student year (p-value = 0.5 for student year coefficient), or department (p-value = 0.8 for department coefficient). We did, however, find significant difference in the affiliation. In particular, we found significant difference (Std. error = 0.2, p-value < 0.05) between students and staff in falling for phishing on day 0. We found that students are more vulnerable to phishing emails before receiving any training from the study. We also found significant difference in the department type (different from primary department). In particu-
lar we found significant difference (Std. error = 0.2, p-value < 0.05) between the academic and administrative department types, with academics being more susceptible to falling for the phishing email. Investigating this further, we found that the difference could be attributed to the fact that all students are in the academic department type, making this group as a whole more vulnerable than others.

We investigated this difference between students and staff further to see if age was a factor in susceptibility to phishing. We used the age data collected through post-study surveys. Two hundred and sixty-seven participants provided their age in the survey. The minimum age in years was 18 and the maximum age was 77 (avg. = 32.3, SD = 12.8). We found a significant difference (Chi-Sq = 8, p-value < 0.01) in the likelihood of clicking on links on day 0 between age group 18 - 25 and those in all of the older age groups (Shown in Table 6). This shows that, prior to any training, those participants in the 18-25 age group are more likely to click on the links in the phishing emails than any other age group.

Among the participants who were trained on day 0, again, multivariate regression analysis did not find any significant relationship between susceptibility to phishing on day 28 and gender (p-value = 0.4 for gender coefficient), student year (p-value = 0.9 for student year coefficient), and department (p-value = 0.7 for department coefficient). We did find difference (Std. error = 0.3, p-value < 0.001) between the academic and administrative department types, which was again attributable to students falling for phishing after training. Similar to day 0, on day 28 we found that the age group 18 - 25 was significantly (Chi-Sq = 10.5, p-value < 0.01) more likely to fall for phishing than other age groups (Table 6). We found that participants in the 18-25 age group were consistently more vulnerable to phishing attacks on all days of the study than older participants. These results are in line with risk averse literature, which says that younger people are more risk taking and impulsive, while older people are risk averse and less impulsive [15]. We were not able to draw any concrete conclusions about faculty because the sample sizes were too small.

Computer savvy technical people (Software Engineering Institute, Computing Services) were less likely than others to fall for phish. In general, however, participants in our Computer Science and Computing Services and Research department clusters did not perform significantly different than participants in any other group on day 0.

4.5 Observations

In this section we describe the data that we collected in the study and through the post-study survey, as well as other observations from the data that we collected.

Our results indicate that any participant who will eventually click on the link in an email will do so within 8 hours from the time that the email is sent. To estimate the distribution of how long people took to read emails, we used the

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Click</td>
<td>Give</td>
<td>Click</td>
</tr>
<tr>
<td>Control</td>
<td>90</td>
<td>50.0</td>
<td>42.2</td>
<td>37.8</td>
</tr>
<tr>
<td>One-train</td>
<td>89</td>
<td>39.3</td>
<td>38.2</td>
<td>42.7</td>
</tr>
<tr>
<td>Two-train</td>
<td>77</td>
<td>48.1</td>
<td>36.3</td>
<td>44.2</td>
</tr>
</tbody>
</table>
Table 6: Percentage of participants who clicked on the link in the emails by age group. N = 267 people responded to the post-study survey with their age. This shows that age group 18 - 25 behaves in a significantly different way from all of the other age groups.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Day 0</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 25</td>
<td>62.3</td>
<td>35.7</td>
</tr>
<tr>
<td>26 - 35</td>
<td>47.5</td>
<td>15.8</td>
</tr>
<tr>
<td>36 - 45</td>
<td>33.3</td>
<td>18.2</td>
</tr>
<tr>
<td>46 and more</td>
<td>42.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 4: Cumulative number of emails that were clicked since the email was sent out. This shows that study participants who click on the links in emails will do so within 8 hours of the time the email was sent out. Because of a technical error, we were not able to capture the data for day 14. The day 16 time-window spans the Thanksgiving holiday, and the second peak coincides with the Monday after Thanksgiving.

and plan to conduct a university-wide presentation about the results.

Unlike in our previous PhishGuru field study [12], we found little interaction between participants discussing the study. Only 13% of participants indicated that they had talked about the tips presented in the PhishGuru training with other members of the CMU community in the prior 30 days. Six of the participants who said they had discussed the training provided information about their discussions. A typical response was: “Just talked about the fact that I fell for one scam that offered $100 prize” or “I did talk about how I was tricked VERY easily into giving away my username/password to my andrew account.” To further understand potential contamination across study conditions, we asked “How did you get to see the picture(s)?” in the post-study. Of those who responded, 87% reported seeing the training cartoons through a link in an email from the study. Only 5% reported seeing the training through a link in an email that was forwarded by a friend or a colleague at CMU, and 5% reported that a friend or a colleague at CMU showed them the training. The remaining participants said they couldn’t remember how they got to the training. These results show that most of the participants received the training material through the emails sent through the study; therefore, there was little chance for interaction among participants regarding the study, and so little chance of the conditions being contaminated.

5. CHALLENGES IN ADMINISTERING REAL-WORLD PHISHING STUDIES

We have taken measures in this study to address many lessons that we learned from earlier work. Real-world studies can provide more ecological validity and richer data than laboratory studies, but are often difficult to conduct. The challenges we faced included making sure our study emails reached participants’ inboxes, maintaining participants’ privacy, avoiding contamination between study conditions, and
coordinating with relevant third parties.

Simulated emails may get deleted before they reach the user’s inbox if, for instance, filters determine that the message is Spam. Additionally, since many web-browsers often come equipped with anti-phishing tools, one has to be careful that the study material isn’t blocked. In particular, one should be aware of the possibility that study websites might end up on a black-list. To be prepared for problems of this nature, we registered multiple dummy domains and prepared multiple sets of emails as backup. Furthermore, since email reading behavior may be different over university holidays than it is during the regular semester, we carefully timed our study schedule so that our study emails were not sent during university holidays.

In order to maintain the privacy of the participants, study administrators should not/cannot collect any personal information. Furthermore, to understand the users’ behavior over time, users’ responses must be tracked in a way that respects their privacy. We accomplished this in the study by assigning an anonymous hash to each participant, tracking each participant only through the hash.

To avoid subject contamination, study designers should try to minimize the chance that participants in different conditions will interact with each other; such interactions may invalidate the study data. Working to prevent these interactions, study designers must ensure that the study sample is embedded within a large, geographically separate population. In our previous field study, significant contamination occurred because study participants all worked on one floor of an office building [12]. In our current study, even though all participants were from the same university campus, they represented a small fraction of the campus population and were spread across 26 departments and many buildings, which limited contamination.

It is important to coordinate with any relevant third parties that might be affected by the study. We worked very closely with ISO in both the design and implementation stages of this study. In addition, ISO aided us in getting permission from the Institutional Review Board (IRB), in coordinating with campus help desks, and in getting permission from all the campus offices spoofed in the study. As a courtesy and to minimize accidental external interference in the study, researchers should work with system administrators and help desk officials of the organization to inform them about the study. If possible, researchers should also provide system administrators with a “canned” response which they can use to respond to any inquires from participants. This helps minimize the chance that system administrators will send an email to the entire population warning them to avoid opening an email that was actually part of the study (we have seen this happen in a prior study). Finally, it is essential that any university phishing study go through the university’s IRB. Having a well defined plan to address the challenges we mentioned here could help prevent potential difficulties in the review process.

6. DISCUSSION

In this paper, we investigated the effectiveness of an embedded training methodology called PhishGuru that teaches people about phishing during their normal use of email. We showed that, even 28 days after training, users trained by PhishGuru were less likely to click on the link in a simulated phishing email than those who were not trained. Further-

more, users who saw the training intervention twice were less likely to give information to fake phishing websites than those who only saw the training intervention once. Additionally, results from this study indicate that training users to recognize phishing emails using PhishGuru does not increase their concern towards email in general or cause them to make more false positive mistakes. Another surprising result was that around 90% of the participants who eventually clicked on the link in an email did so within 8 hours of the time the email was sent. We believe this behavior generalizes to other university populations, though non-university populations may behave quite differently when receiving emails. In analyzing the demographics, our results showed that younger people (in the 18-25 age group) were more prone to falling for phishing emails consistently on all days of the study than older participants. This suggests a need for: (1) training before college; and (2) training that specifically targets high school and college students.

The study presented in this paper addresses some of the limitations of earlier laboratory [10] and real-world [12] studies of PhishGuru. To address these limitations, we employed a larger sample size, extended the study duration, counter-balanced the email and training interventions, minimized the chance of contamination from participants talking about the study amongst themselves, and provided good incentives for participants to complete the post-study survey. In the process of addressing these limitations, we successfully showed that PhishGuru can be deployed both on a large scale and in the real world as an embedded training system where users can be educated about phishing during their regular use of email. This study included only a small fraction of our campus population due to IRB requirements that participants opt in to the study before receiving any study emails. However, if this deployment had been done as a real training exercise—that is, without an academic IRB requirement—we believe it would have been easy to train the entire campus with only minimal changes to the study setup.

This study affirms prior research [10] suggesting that the PhishGuru methodology is an unobtrusive way to train users about phishing. Some comments from the post-study survey include: (1) “I really liked the idea of sending CMU students fake phishing emails and then saying to them, essentially, HEY! You could’ve just gotten scammed! You should be more careful – here’s how....” (2) “I think the idea of us-

<table>
<thead>
<tr>
<th>Questions/responses</th>
<th>Response in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Would you recommend that CMU continue doing this sort of training or study in the future?</td>
<td>Yes 80, Not sure 17.6, No 2.4</td>
</tr>
<tr>
<td>(2) How likely are you to recommend this type of training to a friend?</td>
<td>Definitely 38.8, Maybe 51.8, Will not 9.4</td>
</tr>
</tbody>
</table>

Table 7: Post study questions. Participants enjoyed receiving training materials and recommended that CMU perform such studies regularly. N = 85.
ing something fun, like a cartoon, to teach people about a serious subject is awesome!” (3) “Pictures and short examples are the best way for me not to ignore these kinds of messages.”

Furthermore, the fact that knowledge gained from the training materials is retained for at least 28 days suggests that very frequent interventions, which could annoy users, are not necessary. In practice, this should be balanced with the fact that repeated training does improve user performance; a proper trade-off between usability and accuracy can and should be optimized.

In addition to increasing user awareness about phishing emails, there was evidence that the study had the unintended consequence of assessing both the users’ awareness of proper response channels for phishing attacks and the ability of ISO to react to phishing attacks. Many users properly contacted the ISO help desk to alert them of the emails, either by phone or through the official email address. However, some were apparently unaware of ISO’s role in protecting the campus, and instead contacted some other “trusted source” like a professor or departmental system administrator to seek advice. This suggests that ISO may want to explore ways to increase awareness of the proper channels for reporting phishing attacks and other cyber security related issues. In a real deployment of PhishGuru, training interventions could be one way to distribute this information to the public.

This study is proof that it is possible to effectively educate users about security in the real world and on a large scale. Our findings suggest that security researchers and practitioners should implement user training as a complementary strategy to other technological solutions for security problems.

7. ACKNOWLEDGMENTS

This work was supported by the National Science Foundation grant number CCF-0524189, Army Research Office grant number DAAD19-02-1-0389, Fundação para Ciências Tecnologia (FCT) Portugal under a grant from the Information and Communications Technology Institute (ICTI) at CMU. The authors also thank all CMU faculty, staff, and students who took part in the study. The authors would like to thank all members of the Supporting Trust Decisions project, Dr. Vincent Aleven, Julian Cantella, and the ISO team at CMU.

8. REFERENCES