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Towards a Notion of Quantitative Security Analysis

Iliano Cervesato?

Department of Mathematics, Tulane University
New Orleans, LA 70118, USA

iliano@math.tulane.edu

Abstract. The traditional Dolev-Yao model of security limits attacks to “com-
putationally feasible” operations. We depart from this model by assigning a cost
to protocol actions, both of the Dolev-Yao kind as well as non traditional forms
such as computationally-hard operations, guessing, principal subversion, and fail-
ure. This quantitative approach enables evaluating protocol resilience to various
forms of denial of service, guessing attacks, and resource limitation. While the
methodology is general, we demonstrate it through a low-level variant of the MSR
specification language.

1 Introduction

Security protocols have classically been analyzed with respect to the Dolev-Yao in-
truder [8, 14], a model which gives the attacker complete access to the network, but
limits its decryption capabilities to messages for which he possesses the appropriate
keys. There is consensus among practitioners that the basic problems of protocol ver-
ification, namely secrecy and authentication, are by now solved for this model, as the
most recent tools sweep through the standard Clark-Jacob benchmark [6] in mere mil-
liseconds. Recent research has moved in two directions: apply the current tools to the
much larger protocols used in the real world, and investigate intruder models that rely
on capabilities beyond Dolev-Yao gentlemen correctness. We follow the latter path.

The three tenets of the Dolev-Yao model are (1) the symbolic representation of data,
so that a keyk is seen as an atomic object rather than a bit-string, (2) the unguessability
of secret values such as nonces and keys, and (3) black-box cryptography, by which
a messagem encrypted withk can be recovered only by a principal in possession of
k(−1). All three have been weakened in the last few years. Approaches have taken the
bit length of messages and keys into account. Within the symbolic abstraction, effort has
been undertaken to include guessing in the intruder’s toolkit [11], and to let recurrent
algebraic operations, in particular XOR and Diffie-Hellman exponentiation, out of the
black box, allowing the intruder to use them to mount an attack (within the accepted
computational bounds,e.g.,taking a discrete logarithm is not permitted) [4, 7].

The present work takes a symbolic view of data, but allows the intruder to guess
values and perform computationally hard operations. That is, if he is willing and able
to pay the price. Indeed, we are not so much interested in alucky intruder breaking
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the protocol, but in atenaciousone, who will spend Herculean effort in order to gain
Alice’s confidence or learn Bob’s secret. The proposed methodology assigns a cost to
both Dolev-Yao and non-standard intruder operations. Depending on the intended use,
this cost can be a physical measurement, such as time, space or energy, a complexity
class, or simply one of the two values0 and∞ in a purely Dolev-Yao model. This
work directly extends Meadow’s quantitative assessment of denial-of-service [13] and
Lowe’s analysis of verifiable guesses [11]. It is also related to [16].

Potential applications of this approach include:

– Provide a way for standard analysis methodologies to take intruder effort levels
into account. For example, weak secrets are usually modeled as either unguessable
or public values. Assigning them an appropriate cost and estimating the resources
(or the persistence) of the intruder may help decide whether this secret is too weak
for practical purposes. Intruder cost thresholds can be easily integrated into many
model checking tools for example.

– Monitoring of network activity, by either an intruder or a law enforcement agency.
This entity may then compute the cost of mounting an action against particular
communicating agents, using the result to estimate the needed resources.

– Gauge the resilience of a system against denial-of-service scenarios. Cost functions
have been used for this purpose [13, 15], but mostly limited to legal Dolev-Yao
intruder operations.

– Assess the vulnerabilities of agents meant to operate in a potentially hostile envi-
ronment with very limited resources in terms of computational power, bandwidth,
battery life, etc [5],e.g.,, smart cards, PDAs and cellular phones.

– When building a system, compare protocols providing desired functionalities, with
respect to their resilience to particular forms of attacks. During the development
phase of a protocol, compare alternative designs or parameter choices for optimal
resistance to certain attacks. In particular, proposals for denial-of-service protec-
tion, e.g.,, Juels and Brainard’s client puzzles [10] or even the network level pro-
posal of Gunter et al. [9], are good application candidates for this methodology.

As it allows asking “How secure is this protocol?”, rather than “Is it secure or not?”, the
proposed methodology can also be seen as complementing performance and quality of
service with an additional quantitative dimension on which to evaluate protocols.

We rely on a Fine-Grained variant of the MSR rule-based specification formal-
ism [1, 2] as a vehicle to introduce this work. Fine-Grained MSR isolates individual
verification operations and accounts for the possibility of failure. This is achieved by
dividing rule application in a pre-screening phase that commits to a rule, and a more
thorough check that fully assesses its applicability. Further details can be found in [3].

2 Background

In MSR, a protocol is specified as a number ofroles. A role corresponds to the abstract
sequence of actions executed by each participating principal. Roles are also used to de-
scribe the intruder capabilities. A role itself is given as a sequence ofmultiset rewrite
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rules, which describe each individual action. Each rule represents a local transforma-
tion of the execution state. It has aleft-hand sidethat describes what should be taken
out of the state, and aright-hand sidedenoting what it should be replaced with. State
objects are modeled using first-order atomic predicates. They include messages in tran-
sit (N(m)), public information (M∗(m)), private data of a principal (MA(m)), and a
record of the status of every executing role (Lv(m) — v acts as a program counter, and
m is synchronization data). The right-hand side of a rule can additionally mention ex-
istentially bound variables to model the creation of nonces and other fresh data. See [3]
for details. Example of rules will be shown later in this document.

Simplifying somewhat from [3], the execution semantics of MSR operates by trans-
forming configurationsof the form 〈S〉RΣ , where thestateS is a multiset of ground
predicates, thesignatureΣ keeps track of the symbols in use, and theactive role set
R = (ρa1

1 , . . . , ρan
n ) records the remaining actions of the currently executing roles (ρi),

and who is executing them (ai). In order to add costs to this framework, it is useful to
take an even higher-level view of execution. This will also act as an abstract interface
where other formalisms can experiment with the techniques in this paper.

An abstract execution stepis a quadrupleC r,ι−→C ′, whereC andC ′ are consecutive
configurations,r identifies the rule fromP, andι stands for the instantiating substitu-
tion. An abstract execution step is just a compact yet precise way to denote rule appli-
cation. It is reasonable to think about it as a partial function fromC, r andι to C ′. We
say thatr is applicablein C is there is are a substitutionι and a configurationC ′ such
thatC r,ι−→C ′ is defined. AtraceT is then a sequence of applications

C0
r1,ι1−→ C1

r2,ι2−→ · · · rn,ιn−→ Cn+1

While we rely on the notion of sequence here, this definition could be generalized to
a lattice with minimumC0 and maximumCn to account for action independence. We
will however stick to sequences for simplicity.

A protocol requirementfor a safety property such as secrecy or authentication is
simply given by a setSI of initial configurationsand a setSA of attack configura-
tions, or some finite abstraction of them. Averification proceduredecides, for a given
protocol, whether there exists a valid trace from an initial to an attack configuration.

A script is a parametric sequence of actions(r1, σ1), . . . , (rn, σn), where the codo-
main of theσi’s may mention variables. A script isrealizableif there are configurations
C0, . . . , Cn+1, and grounding substitutionsγ1, . . . , γn such thatC0

r1,ι1−→ · · · rn,ιn−→Cn+1

is a trace. Scripts describe patterns of execution.
In general, there are two types of scripts of interest: the ones corresponding to the

expected runs of the protocol (writtenTER), and the scripts that an intruder devises to
mount an attack. For our purposes, the latter are more interesting, and we shall extend
their syntax for flexibility. Anattack scriptis then given by the following grammar:

A ::= · (Empty script)
| A (r, σ) (Extension with an action)
| !n A (Script iteratedn times)
| A+A (Alternative scripts)

We are particularly interested in attack scripts that are realizable in an initial configura-
tion and end in an attack configuration. We further distinguishany-time scripts, which
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where honest principals are just responding to intruder solicitation, andopportunistic
scripts, where the intruder takes advantage of moves initiated by honest principals.

3 Fine-Grained MSR

It is possible to use the definitions in Section 4 to endow MSR with a notion of cost. This
would however not be a very precise model, in particular as far as rule application failure
is concerned. Therefore, we dedicate this section to defining a finer-grained version
of MSR. We isolate the verification operations implicit in an MSR left-hand side as
separate rules. During execution, we split rule application into two steps:pre-screening
commits to a rule, whileleft-hand side verificationdecides if it should succeed or fail
(typically when messages have been tempered with). For space reasons, we describe
the compilation of an MSR specification into fine-grained MSR only intuitively.

Fine-grained MSR inherits its language of messages from MSR. However, it makes
two changes to the set of available predicates. First, it extends the network predicate
with a headerh, giving it the templateNh(m). The header is meant to identify precisely
a message within a protocol instance: it will typically contain the postulated sender and
intended recipient, the name and version number of the protocol and a step locator. An
attacker can alter the header at will. The second change is the introduction of predicates
Rv(m), which will act aslocal registersduring a verification step. Similarly to the
local state predicatesLv( ), the dynamically created superscriptv is intended to prevent
confusion.

An MSR rule application consists of two distinct phases: the left-hand side man-
dates a number of verification operations on incoming and retrieved messages, while
the right-hand side prescribes how to construct out-going or archived messages. Both
are represented succinctly in MSR, yet they can be very complex. Fine-Grained MSR
replaces each MSR ruler = (lhs → rhs) with a number ofverification rules, each
corresponding to an individual verification step inlhs, and a singlebuilding rule, which
producesrhs. Reducingrhs to atomic steps is not necessary since construction can-
not fail once verification has succeeded. Registers are used to serialize these rules in a
collection that we callrule target.

In order to account for failure, we must split rule application into two stages. During
thepre-screening phase, a rule is selected based uniquely on the predicate names (in-
cluding headers and superscripts) appearing in its left-hand side and in the current con-
figuration. In particular, the arguments are not considered. We commit to the selected
rule. Then, theverification phasechecks whether the arguments have the expected form.
In case of success, the next configuration is computed as in MSR. In case of failure, the
clean-up clause is invoked and the entire role this rule belonged to is removed. See [3]
for a formalization of these ideas.

The intruder capabilities traditionally considered for security protocol verification
follow the well-known Dolev-Yao model [8, 14]: the intruder can intercept and generate
network traffic, take apart and construct messages as long as it has all the elements to
do so in a proper way (e.g.,it should know the appropriate key in order to perform a
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cryptographic operation). This model disallows guessing unknown values and perform-
ing operations that are considered “hard” (e.g.,recovering a key from a ciphertext). Let
I be a memory predicate belonging to the intruder, so thatI(m) indicates that it knows
(or has intercepted) the messagem (this most simplistic setting can be considerably
refined). Then, the Dolev-Yao model can be expressed by the following rules:

Nh(x)→ I(x) I(x)→ Nh(x)
M∗(x)→ I(x),M∗(x) · → ∃x.I(x)

I(y), I(opy(x))→ I(x) I(x)→ I(op(x))
I(x)→ I(x), I(x) I(x)→ ·

The first line corresponds to network interception and injection. The second is access to
public information and data generation (when allowed). The third abstractly expresses
dismantling and constructing messages (of course, some combinations are disallowed).
The fourth line contains administrative rules. Note that, unsurprisingly, these capabili-
ties correspond very closely to the rules of the Fine-Grained MSR [3]. The correspon-
dence would be even more exact if we had reduced the right-hand side to atomic con-
structions.

The Dolev-Yao model allows the intruder to perform “easy” operations. Once we
explicitly assign cost to actions, we can introduce and reason about intermediate de-
grees between “easy” and “impossible”, which is really what the Dolev-Yao restrictions
boil down to. Indeed, we will allow attacks that involve performing “hard” operations,
guessing values, and subverting principals. We will also be able to quantify “easy”,
“hard” and levels in between.

Thesubversionof a principal is easily modeled by another intruder memory pred-
icate,X(A). The first row of rules below represent subversion and rehabilitation of a
principalA. The others stand for access toA’s private data and for the intruder covering
its traces.

· → X(A) X(A)→ ·
X(A),MA(x)→ X(A), I(x) X(A), I(x)→ X(A),MA(x)

We model“hard” operations by simply extending the set of patterns allowed in
rule template(I(y), I(opy(x)) → I(x)) to represent non Dolev-Yao inferences. For
example, taking a discrete logarithm is expressed as:

I(g), I(gx)→ I(x).

Clearly there are limitations to this method as it applies only to the inversion of bi-
jections. Other “hard” operations, such as finding hash collisions, can be modeled as
guessing problems.

The trivialguessing rule(· → I(x)) is unrealistic and hard to work with from a cost
accounting point of view. Therefore, following the pioneering work of Lowe [11], we
require that every guess be backed up by averification procedure. We express both the
guess and its verification as an MSR role of the following form:
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∃u, v1, v2.


. . . → Gu(x), . . .
. . .

. . . → . . . , V v1
1 (m1)

. . . → . . . , V v2
2 (m2)

V v1
1 (y), V v2

2 (y), Gu(x) → I(x)


} Guess Verification

On the right,G, V1 andV2 are local state predicates (generically calledL in Section 2)
that hold the guess and two constructions (theverifiers) that should produce the same
value if the guess is correct. See [11] for conditions required of acceptable verifiers.
The exact format can vary, as illustrated below. Guessing roles are protocol specific, in
general.

As a concrete example, the following role expresses the guess of a Diffie-Hellman
exponent:

∃u, v.
[

I(gx)→ Gu(x′), V v(gx, gx′
)

Gu(x), V v(y, y)→ I(x)

]
Note that, although this role is functionally equivalent to the discrete logarithm specifi-
cation above, the exponent is explicitly guessed here rather than reverse-engineered as
above.

A→B : {na}k
B→A : na

Our final example describes the guess of the shared keyk in
the toy protocol informally described to the right of this text.

∃u, v.
[

· → ∃n.Gu(k), Nh({n}k), V v(n)
Gu(k), V v(n), Nh′

(n)→ I(k)

]
Here, the intruder generates a noncen, makes a guess fork and sends the expected
message toB (we ignored header-formatting issues for simplicity). This copy ofn is
the first verifier and is memorized in the predicateV . The second verifier is simply the
response fromB: if the guess was correct, they will be equal, otherwise it will either
come back as a different bit-string, or be dropped byB altogether if the forgery attempt
is uncovered.

4 Cost Model

Traditional approaches to protocol analysis are only interested on whether an action is
applicable in a given state. Actions that are not applicable, either because they cannot
succeed or because “computationally infeasible”, are unobservable. In this paper, we
are concerned with the cost of successful and failed applications. Cost will be mea-
sured in terms of whatever resource of interest changes as a result of attempting the
action. Primary focuses are time and storage, but other parameters, such as energy, or
the lowered randomness of some quantity (that may be used for side-channel attacks,
for example) can also be used.

4.1 An Algebra of Cost

We will now define a generic infrastructure for expressing cost. The details of the re-
sulting algebra shall be application specific.
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We want to associate a value to each type of cost incurred by a principal. Atype,
denoted withτ , describes a resource of interest, time, space and energy are typical, but
more refined types,e.g.,verification vs. construction time, can also be expressed. Acost
baserelates a cost typeτ to a principala. We write it asτa.

How much of a given cost type is incurred by a principal takes the form of ascalar
value, which we will denote withs. Scalars can be abstract quantities (e.g.,Meadow’s
“cheap”, “ medium”, “ expensive”, etc. [13], or just0 and∞ in a Dolev-Yao setting),
numbers (inN or R for example), or even complexity bounds inO-notation. It is useful
that some form of addition (written+) and a unit (0) be defined on scalars. These could
be just free symbols, but+ can also be an actual operation. It is also very useful to have
a comparison relation (written<, with the usual variants) among scalars within a cost
base. Note that some forms of cost never decrease and+ should be monotonic with
respect to≤ for them. Time or energy are examples. This is the only case considered
in [13]. Other costs, in particular space, do not need to be monotonic, and this restriction
does not apply.

A cost itemis a cost baseτa together with a scalar values. We denote it assτa.
We extend the scalar comparison operators to cost items only when the base is the
same. Such an extension rarely makes sense if the cost type is different, and should be
evaluated on a case by case basis when the principals are not the same: one byte is one
byte for everybody, but performing a decryption will generally take different amounts
of time when hardware or implementation varies.

At this point, acost vectorC is simply a collection of cost itemss1τ
a1
1 , . . . , snτan

n ,
which we write

∑
i siτ

ai
i . Given a cost vectorC, we writeCa, Cτ , andCa

τ for its pro-
jections relative to principala, cost typeτ , and their combination, respectively. For
example,Ca =

∑
sτa∈C sτa. It should be noted that a cost vector can be seen as a

generalization of the notion of multiset.

4.2 Cost Assignment for Protocol Operations

In spite of their apparent simplicity, cryptographic protocols comprise a large number
of operations and action classes. We will now examine them and comment on their
characteristics in term of cost. Most of the issues are discussed relative to Fine-Grained
MSR, and transpire also at the level of MSR. Needless to say, similar considerations
apply to other specification languages.

Network: The network operations observable in MSR are receiving and sending a mes-
sage. We denote their associated cost asκN⇒ andκ⇒N , respectively. This gener-
ally includes time and storage components. Accounting for other transmission costs
such as network latency could be easily accommodated through a simple refinement
of (Fine-Grained) MSR.

Storage: Each of public (M∗), private(Ma) and local (L) storage has a temporal and
a spatial component. Storage operations include allocating and recording data (e.g.,
κ⇒Ma

), disposal (κMa⊥) and look-up (κMa
). Notice in particular that the spatial

component of storage disposal is negative. Note also that some values may be easier
to look-up than others, and soκMa

depends on the actual predicateM .
Registers: We do not associate any cost with register management, preferring to fold

it into the operations they participate in.
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Constructor operations: Each constructorop has a number of operations associated
with it. We consider its use as a building block of a message (κ⇒op) and during
verification. In the latter case, we distinguish between the cost of success (κop

√)
and failure (κop⊥). The cost of performing Dolev-Yao and non Dolev-Yao opera-
tions is computed in the same way in our model. What will change is likely to be
the magnitude of the scalar values.

Data operations: Atomic values are subject to generation (using∃ in MSR), and generic
values can be tested for equality. We writeκζ∃ andκζ= respectively, whereζ rep-
resents some notion of type of a value.

Subversion: We writeκ?a for the cost of subverting principala andκ!a for the cost of
its rehabilitation.

Guessing: The cost of a guessing attack can be modeled in two ways. At a high level of
abstraction, we can associate a cost to a verification procedureρG as a whole, which
accounts for the cost of the expected number of guesses and verifications until one
is successful. We writeκρG

for this omnibus, MSR-oriented, cost. Alternatively
and at a much lower-level level of detail, we can compile the verification procedure
to Fine-Grained MSR, obtaining a rolēρ, assign a cost to the individual guess itself
(κG), compute the cost of each guess and verification,C(ρ̄), as outlined below, and
estimate the number of attempts it may take until a successful guess is produced. In
general, this type of accounting will have the formf(n) C(ρ̄), wheref is a function
andn is a parameter such as the length of the data to be guessed.

Each of these operations, with sometimes the exception of guessing, are executed by a
single principal, saya (which may also be the intruder). Each will in general involve
several cost components. Therefore,κ corresponds to a cost vector relative toa. Guess
verification can be performed locally by the intruder, or require exchange of messages
with one or more principals. In the latter case, the cost vector will have appropriate
components for each of the involved parties.

In general, the accuracy of a cost-based analysis directly depends on the precision of
the cost associated with each basic action. For example, a classification into “cheap” and
“expensive” forms the basis for a Dolev-Yao investigation, while adding an intermediate
“medium” value already provides a setting in which one can start analyzing denial-
of-service situations [13]. Moving to numerical classes adds flexibility, but non-trivial
problems quickly emerge as accurate physical measurements can be difficult to gather
and work with when dependent on hardware, implementation and system load. In this
paper, we provide a flexible framework for taking cost into consideration, but have little
to say at this stage about how to best determine the granularity and magnitude of basic
costs.

4.3 Cost Calculation in MSR

The notion of cost naturally extends from individual operations to traces. First, we de-
fine the cost of a Fine-Grained MSR rule by simply adding up the cost of each operation
occurring in it. There is little to do in the case of the verification rules, while building
rules involve some work. Some rule have the option of failing, and therefore both a suc-
cess and a failure cost is associated with them: we shall consider them as if they were
different operations.
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Consider now a traceT = C0
r1,ι1−→ · · · rn,ιn−→Cn+1. Let aj be the principal executing

(rj , ιj), andCaj (rj) =
∑

i sijτ
aj

ij its cost. The cost of the trace is then given by

C(T ) =
∑

j

Caj (rj) =
∑

j

∑
i

sijτ
aj

ij

The cost calculation for a trace extends naturally to the cost of a script since substi-
tutions do not play any role when computing a cost. The presence of alternatives in an
attack script forces us to define cost for them over (multi-dimensional) intervals rather
than points. We have the following definition:

C(·) = I0

C(A (r, σ)) = C(A) + Ca[σ]r (r)
C(!n A) = n C(A)
C(A1 +A2) = [min{A1,A2},max{A1,A2}]

Here,I0 is some fixed interval, typically[0, 0]. We extend scalar product and addition
to intervals by applying these operations to its endpoint,i.e., n[a, b] = [na, nb] and
[a, b] + [c, d] = [a + c, b + d].

Since most tools for security protocol analysis rely, often symbolically, on traces,
the infrastructure we just outlined is compatible with their underlying methodology.
Indeed, systems based on explicit model checking can immediately take costs into ac-
count, while symbolic approaches need to have the cost model indirectly encoded as
part of the problem description. Similar considerations applies to analysis based on
theorem proving. In general, how easy it is to extend a tool with cost computation capa-
bilities depends on how deeply the intruder model is ingrained in their implementation.
The required modifications include tracking cost and allowing for non Dolev-Yao in-
truder actions.

Note that any tool natively supporting cost calculation (or even retrofitted to do so)
can still perform traditional verification by assigning cost∞ to non Dolev-Yao intruder
actions and abandoning any attack trace as soon as its cost reaches∞.

5 Quantitative Security Analysis

A first-class notion of cost leads to protocol analysis opportunities that lay far beyond
the traditional Dolev-Yao feasibility studies. In this section, we will examine some of
the possibilities related to time and space, well aware that many more lay out there,
waiting for the imaginative mind to grab them. We elaborate on two non Dolev-Yao
forms of verification:threshold analysistries to determine what attacks are possible
given a bound on the resources available to the intruder alone;comparative analysis
studies attack opportunities when the resource bounds of all involved parties are taken
into consideration. Denial-of-service attacks are a prime example.

5.1 Threshold Analysis

A rather trivial use of cost is to first ascertain that a protocol is secure relative to the
Dolev-Yao model, and then compute the amount of resources it requires. This may
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be useful already in situations characterized by limited capacities, such as protocols
implemented on smart-cards. IfκHW is an inventory of the available resources, this
problem is abstractly stated as “C(TER) ≤ κHW ?”.

Dually, an intruder can pre-compute the cost of mounting an attack on a discovered
vulnerability. This is generally not very interesting in a Dolev-Yao setting where an at-
tack uses the same kind of operations as the protocol itself, and the intruder is implicitly
assumed to have access to resources similar to honest principals. This becomes crucial
when the intruder experiments with “computationally infeasible” operations, princi-
pal subversion, guessing, or a combination of these non Dolev-Yao operations. Indeed,
some protocol analysis tools already allow principals to “lose keys” [12], but do not
assign any special status to this operation. The intruder can then calculate the cost of a
candidate attack and compare it with its available resources (dictionary attacks on pass-
words are the simplest instance), in symbols “C(A) ≤ κI?”. A protocol verification
tool can similarly discard attack traces as soon as their cost exceeds a predetermined
amount of intruder resources.

A protocol designer can go one step further by keeping aspects of the cost calcula-
tion as parameters. He can then determine value ranges that would require extravagant
amounts of resources from an intruder in order to implement the attack (given fore-
seeable technology): “minx.C(A(x)) � κI?”. This is how key lengths and other pa-
rameters of cryptographic algorithms have traditionally been set. The approach we are
promoting extends this form of safe parameter determination in that it takes into account
the whole protocol rather than an isolated cryptographic primitives. This is particularly
valuable as modern ciphers offer the option of variable key lengths.

5.2 Comparative Analysis

A cost infrastructure can be useful to a designer to choose a protocol among two candi-
dates based on resource usage “C(T P1) > C(T P2)?”, or on their resilience to a certain
type of attacks: “C(A1) > C(A2)?”. By the same token, an attacker or law enforcement
agency can evaluate attack strategies based on their cost.

Denial-of-service (DoS) attacks operate by having a possibly distributed intruder
waste a server’s resources with fake requests to the point where legitimate uses cannot
be serviced in any useful time frame (or the server crashes). It stresses the bounds on
the server’s resources, typically time (or service rate) and storage capacity. A precise
cost analysis, like the one proposed here, helps compute actual values for the resources
used by both the intruder and the server at different stages of the protocol execution.
The statement here is “CB(A) > CI(A)?”. Given assumptions about performance and
buffer sizes, it can help determine how many requests can be handled concurrently and
in particular by how many compromised hosts. The same calculation can be used to
determine the amount of resources needed to withstand a given target level of attack.

Consider the abstract protocol below (left), where a clientC initially contacts the
serverS with some messagem1, is given a challengem2, and receives the requested
servicem4 only after it has provided an adequate responsem3 to m2:
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C S

C → S : m1 sC
1 tCb1

m1−→ tSv1 sS
1

S → C : m2 sC
2 tCv2

m2←− tSb2 sS
2

C → S : m3 sC
3 tCb3

m3−→ tSv3 sS
3 [= −(sS

1 + sS
2 )] T

S → C : m4 sC
4 tCv4

m4←− tSb4 sS
4 [= 0]

The exchange on the right shows the time (taxi) and space (sa
i ) cost incurred by each

principal. Let us measure time in seconds and space in bytes. We wrotetabi for the time
a spent building messagemi andta

′

vi for the timea′ spent verifying it. For simplicity, we
assume that the time incurred in a failed verification is alsotavi. Our approach allows for
a much more precise model. It is reasonable to assume that the server will not allocate
any buffer space upon sendingm4, hencesS

4 = 0 and that it releases any used buffer
space as soon as it has verifiedm3, i.e.,sS

3 = −(sS
2 + sS

3 ). We further assume that the
server will time-out afterT seconds if it does not receive messagem3 from C. In this
case it will deallocate the spacesS

2 + sS
3 .

This simple protocol template is susceptible to three forms of time DoS, and one
form of space DoS:

– An attacker can induce the server to waste time unsuccessfully verifying a fake
messagem1. This time is at mosttSv1. The server’s verification rate is therefore at
least1/tSv1, which must be matched by the intruder in order to successfully attackS.
While this is easily achieved as a fakem1 can be an arbitrary string,tSv1 will often
be comparable to networking overhead in a protocol designed with DoS attacks in
mind.
As a concrete example, a simple initial request containing the client’s name, a
timestamp, a nonce and a checksum will take under 1µs to verify on fast hardware.
Therefore, the server can process at least 1,000,000 requests per second. Assuming
that the server has a 1 Gbit/s network interface and that request packets are 50 bytes
long (i.e.,400 bits), the network layer will be able to deliver 2,500,000 packets per
second to the protocol.
A dedicated attacker may match these numbers. He may also perform the attack
through a number of compromised hosts, which will typically have more limited
computing power and bandwidth. While an arbitrary string can be put together in
1µs on many home computers, typical outbound network speeds are less than 4
Mbit/s. Therefore, the attacker will need to synchronize 250 compromised hosts to
overwhelm the server with a simultaneous attack.

– A time-out waiting for the reception ofm3 leads to another potential point of DoS.
In this case, the server has spenttSv1 + tSb2 while the attacker has incurred a costtCb1.
Again, this gives us a way to compare the attacker’s and the server’s rate.
Continuing our example,tSv1 + tSb2 may amount to 100µs as the server’s response
will generally involve the generation of a nonce or of cryptographic material. There-
fore, the resulting rate may be 10,000 replies per second.

– Another option for time DoS is the reception of a fake messagem3 by S. HereS
needs to spendtSv1 + tSb2 + tSv3 seconds, while the attacker’s cost amounts totCb1
plus the minimal time it takes to produce the counterfeitm3 (the intruder is likely
to ignorem2). This strategy wastes more server time, but it will release storage
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earlier unless carefully timed. Moreover, the reception of a large number of garbled
message may trigger countermeasures on the server.
Looking at our example again, the verification of a fake messagem3 will typically
involves substantial use of cryptography, often expensive asymmetric cryptography.
We can then taketSv1 + tSb2 + tSv3 to be 10 milliseconds, which results in a rate of
just 100 exchanges per second.

In all these situations, the resilience of the server is given by comparing the service rate
as measured above, with the individual attack rate multiplied by the number of attackers.
Our methodology can give useful ranges as it takes into account the exact structure of
the messages involved, including that of the messages faked by the intruder.

– A time-out onm3 is also the target of a space DoS. LetB be the size in bytes of the
buffer whereS stores received bits ofm1 and generated fragments ofm2. Then,
S can serve at mostn(B) = B/(sS

1 + sS
2 ) concurrent requests: the largerB, the

larger the number of parallel attacks the system can withstand. The space allocation
rate is given by(sS

1 + sS
2 )/(tSv1 + tSb2) bytes per second relative to an individual

attacker, while the space reclamation rate is at least(sS
1 + sS

2 )/(T + tSv3).
Now, givenB, we can calculate optimal values for the time-outT . First,T should
be large enough for all legitimate usage pattern to complete:T > tmin. On the
other hand, it should not be so large that an attacker coalition may file more than
n(B)− 1 fake service requests while waiting for time-out on any initial exchange:
T ≤ (tSv1+tSb2)×(n(B)−1). We are looking for the maximum value ofT satisfying
these bounds.
Concretely, ifsS

1 + sS
2 = 128 bytes,tSv1 + tSb2 = 10 milliseconds,tmin = 90s,

and the maximum number of expected parallel attacks is10, 000, we deduce that
B should be at least1.28 Mb, and thatT can be about 1 minute and 40 seconds.
If this value is too low, thenB should be increased (which would make the system
resilient to more concurrent attacks).
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