
Carnegie Mellon University
Research Showcase @ CMU

Department of Engineering and Public Policy Carnegie Institute of Technology

10-2008

Detecting Selfish Behavior in a Cooperative
Commons
Hyun Jin Kim
Carnegie Mellon University

Jon M. Peha
Carnegie Mellon University, peha@andrew.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/epp
Part of the Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase @ CMU. It has
been accepted for inclusion in Department of Engineering and Public Policy by an authorized administrator of Research Showcase @ CMU. For more
information, please contact research-showcase@andrew.cmu.edu.

Recommended Citation
New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008. 3rd IEEE Symposium on , 1- 12.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fepp%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/epp?utm_source=repository.cmu.edu%2Fepp%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fepp%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/epp?utm_source=repository.cmu.edu%2Fepp%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=repository.cmu.edu%2Fepp%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

To appear in IEEE DySPAN 2008

 1

Detecting Selfish Behavior in a Cooperative Commons

Hyun Jin Kim and Jon M. Peha

Carnegie Mellon University

{hyunjin, peha}@cmu.edu

Abstract

A cooperative commons is a type of ad hoc network in which all devices are required to communicate

and carry each other’s traffic, even when devices are associated with different administrative domains.

Thus, infrastructure is constructed at little cost to each owner. One unusual feature of the cooperative

commons is that as more devices join, total communication capacity increases. These advantages are

possible when devices are willing to cooperate and use their own resources to carry traffic of others, but

are undermined by selfish behavior, where a device’s actions increases benefit for that device while

decreasing the average benefit for all devices. This paper demonstrates that selfish behavior cannot be

detected with the prominent routing protocols currently used in ad hoc networks, and proposes a novel

approach that includes use of routing protocols in which selfish behavior cannot be concealed, and

watchdog algorithms that observe behavior of neighbors for signs of selfishness. We prove that our

approach reliably detects all acts of selfishness by individual devices in a network where devices are fixed

and there are no packet collisions. We demonstrate that our watchdog algorithms work with a general

class of routing protocols, and show how existing routing protocols can be extended to fit in that class.

1. Introduction

If it proves to be viable, the cooperative commons could provide a valuable and radically different

approach to the deployment of wireless infrastructure and the management of spectrum [1-3]. A block of

spectrum could be allocated for shared use by any and all wireless devices. Unlike today’s unlicensed

spectrum bands, all devices in the cooperative commons would be able to communicate with each other

using an established protocol, and would be required to cooperate with each other.

A cooperative commons could be established in a number of ways. First, a regulator or license-holder

may allocate a spectrum band in which a device can only be deployed if it cooperates as part of a

cooperative commons [1, 2]. Second, a cooperative commons may form in today’s unlicensed bands, if

enough people choose to participate, although with this approach, the cooperative commons must

contend with some unlicensed devices that are not part of the commons. A number of commercial

companies, such as Meraki in San Francisco [10] and non-profit organizations, such as NetEquality Equal

Access Community Internet [5], and the Champaign-Urbana Community Wireless Network [6], have

pursued this approach [7]. Third, devices in a cooperative commons may share spectrum with the existing

licensed primary spectrum user, and operate as secondary devices [1, 2]; secondary devices may

cooperate both to avoid harmful interference to the primary, and to carry each other’s traffic. Many

researchers have suggested this approach using cognitive radio system (e.g. [8, 9]).

In any one of the above scenarios, the end devices form their own shared infrastructure,

fundamentally changing the cost of large-scale deployment. For example, this may make a wireless

metropolitan-area network financially sustainable where it would not be sustainable today [10].

Moreover, this can lead to far greater spectral efficiency [3, 11], perhaps alleviating the shortage of

available spectrum [3]. However, there are serious security challenges associated with the cooperative

commons [1, 2], some of which are addressed in this paper.

To appear in IEEE DySPAN 2008

 2

A cooperative commons is one type of ad hoc network without pre-existing infrastructure, but with

additional technical challenges that are not present in typical ad hoc networks. First, because any device

is allowed to join the cooperative commons, devices must cooperate with and carry traffic for other

devices, even though these devices do not serve the same administrative domain [1, 2]. This leads to

many challenges. For example, no protocol can be adopted for which it is assumed that cooperating

devices have a trust relationship. Second, there is no limit in the number of devices that may join a

cooperative commons. Thus, protocols must remain efficient even if the network grows large. The

potential for large size also has benefits. One unusual advantage of the cooperative commons is that as

more devices are added, total system capacity increases. This occurs because increasing the number of

devices may decrease the mean distance between devices, so that devices can reduce transmit power and

increase frequency reuse [3, 11]. Consequently, communications capacity increases, which is referred to

as cooperative gain [1-3].

Because devices in a cooperative commons cooperate and carry each other’s traffic, these devices

must be willing to use their own battery power and delay their own packets in order to forward packets

for unaffiliated devices outside their administrative domain. However, there may be devices that exhibit

selfish behavior, which is behavior that increases the benefit for this device, but decreases the average

benefit for all devices, by some reasonable measure of benefit. For example, consider a network in which

a device establishes a path with routing packets before sending data packets. An effective selfish

behavior would be to drop these routing packets or forward with a time-to-live (TTL) of 0 so that no paths

can be established. A device could thereby avoid forwarding many subsequent data packets. Another

selfish behavior would be to make paths that include the selfishly behaving device seem longer than they

really are, perhaps by artificially increasing hop counts so the sources are more likely to choose another

routes that appear to be shorter. The selfish acts above are even more problematic when combined with

selfish manipulation of transmit power. Often, part of detecting selfish behavior is requiring devices to

watch the transmissions of their neighbors [16-23, 26]. When devices know that their behavior is

observed by neighbors, they may still suppress routing packets selfishly and evade detection by

transmitting at a power large enough to be seen by the watchdogs, but too small to be received by the

nominal recipient.

In a cooperative commons, there may be devices that behave maliciously to disrupt and damage

normal network operation, a topic that is also being studied [12]. This paper addresses selfish behavior

which has received less attention.

Our approach detects selfish behavior that involves routing protocol packets but not data packets

because devices can benefit greatly from selfish behavior with routing packets, but not with data packets.

When Device A behaves selfishly and drops a data packet, Device A may benefit at that moment by

avoiding a transmission. However, the dropped data packet is likely to be retransmitted to Device A,

possibly causing a collision that prevents Device A from receiving a packet it wants. Moreover, if Device A

selfishly drops data packets but handles routing packets in accordance with the protocol, then the source

may repeatedly attempt to reestablish a route through Device A, which will create additional packets that

Device A must carry. Therefore, although selfish behavior in dealing with data packets may benefit a

device in the short term, it ends up wasting resources in the long term. On the other hand, manipulating

even a small number of routing protocol packets can provide a big gain because a device may be able to

avoid subsequent transmission of a potentially large number of data packets for others.

To appear in IEEE DySPAN 2008

 3

This paper presents a novel approach that makes it possible for all devices behaving selfishly to be

detected by one or more neighbors. We require each Device A to observe the behavior of its neighbors

even when those neighbors are transmitting to devices other than Device A, and to watch for signs of

selfishness. No approach based on this can succeed when steerable antennae can change transmission

direction from one packet to the next, because if a device can send entirely different content to each of

its neighbors, then a wathdog device can only observe packets sent to it deliberately. However, as long as

there are no steerable antennae such that a device that increases the power it radiates in one direction by

x% also increases the power in all directions by x%, it is possible to detect selfish behavior.

Similarly, when neighboring devices violate the protocol in a coordinated or complementary way, no

approach can succeed in detecting all forms of selfish behavior. Consider the case where Device A and all

of its neighbors collude to avoid expending resources on devices outside the group. Device A can drop all

routing packets that attempt to establish a path unless the source or destination of that path is among the

device’s partners in collusion. The only devices that can observe Device A’s violations of the protocol also

benefit from those violations. Vulnerability to collusion is an inherent and potentially problematic

property of a cooperative commons. However, any device can join a cooperative commons, so no device

can be assured of having neighbors willing to collude. In this paper, we consider the case where few

devices are willing to collude selfishly. We will show that if a device behaves selfishly and its neighbors

follow the prescribed protocol and watchdog algorithms, then one or more of those neighbors will detect

the selfish behavior. Moreover, while we will assume that multiple devices do not collude, we will allow

for the possibility that a single device may create multiple identities through a Sybil attack [29]; selfish

behavior can be detected even if those collocated identities collude.

Section 2 presents reviews previous work on detecting selfish behavior in ad hoc networks, and

explains why no existing approach can detect all selfish behaviors described above in the context of a

cooperative commons. Our approach requires use of routing protocols with characteristics that are

generally not present today. Section 3 states our requirements for routing protocols, and how some

prominent routing protocols can be extended to meet these requirements. Section 4 describes how

selfish behavior is detected and proves that all selfish acts are detected in an environment in which

devices are fixed, and packets are not lost. Although it is beyond the scope of this paper, these

mechanisms can be extended to support a more realistic environment that includes mobility and packet

loss. We conclude this paper in Section 5.

2. Related Work

 Many approaches [16-27] have been suggested to detect selfish behavior in different kinds of ad

hoc networks, although not necessarily for a cooperative commons. In some approaches, devices

determine whether a neighbor is selfish based entirely on what they observe (watchdog-based schemes).

In other approaches, devices make decisions in part on what they are told by others (which would include

acknowledgement-based schemes). While many previously proposed approaches may be effective in the

networks for which they were intended, none detects selfish behavior in the unique context of a

cooperative commons.

 In a number of approaches [16-24], a device that selfishly drops packets is detected as follows.

After transmitting a packet that must be forwarded, a device observes its neighbors. Failure to forward

the packet is identified as selfish behavior, but all these watchdog-based schemes mis-detect devices that

are cooperative as selfish in several common situations.

To appear in IEEE DySPAN 2008

 4

One cause for these problems is duplicate suppression, which is generally needed in ad hoc

networks. When a packet is flooded, many devices receive multiple duplicates (although duplicates can

differ in fields that change en route like hop count). With duplicate suppression, each node forwards only

one. Duplicate suppression vastly decreases the overhead of flooding, which is an important feature of

routing protocols typically used in ad hoc networks such as Dynamic Source Routing (DSR) [13] and Ad-

hoc On-demand Distance Vector (AODV) [14]. However, when a device does not forward a routing packet

because that device has already forwarded a duplicate, the watchdog schemes that have previously been

proposed [16-24] would misidentify this as selfish behavior.

The occasional false positive might be tolerable if it were rare, as devices might then reasonably

assume that neighbors that are only rarely seen acting selfishly are really cooperating. However, the false

positives described above may be a common occurrence for some unfortunate devices. Consider the

topology where a source floods a routing packet, and both Devices A and B re-flood the packet. Device C,

that is a neighbor of both Devices A and B, forwards the packet from Device A, but suppresses the

duplicate from Device B. Thus, Device B concludes that Device C is acting selfishly. Every time the source

floods a new packet, Device C will be seen as behaving selfishly by either Devices A or B, depending on

whose packet Device C receives first. Moreover, the same problem will occur in any topology with a loop.

 When duplicate suppression is used, watchdog-based detection approaches are also vulnerable

to a timing attack. Typically, routing protocols that suppress duplicate packets, such as DSR [13] and

AODV [14], allow a device to suppress any later legitimate packets as long as one is forwarded, even if the

duplicates arriving later provide better paths. Thus, a device can wait to receive several duplicates, and

only forward the packet with the longest path, reducing the chance that a route through this device will

be selected. Current watchdog approaches would not detect this.

 As explained in Section 1, a device can also use power control to evade detection by watchdog

schemes, and the previously proposed watchdog schemes [16-24] have no way to detect selfish behavior

when this technique is used.

In some approaches, devices rely in part on information they do not observe themselves. This

category includes the approach based on two-hop acknowledgements [26-28]. In this approach, devices

observe their neighbors for possible selfish behavior similar to the watchdog-based approaches. When

Device A becomes suspicious of its neighbor Device B, Device A transmits a packet through Device B to

Device C with a request for an explicit 2-hop acknowledgement from Device C. When Device C

successfully receives the packet with the request, Device C sends an acknowledgement to Device A after

cryptographically hashing [26-27] or signing [28] the packet. Device A concludes that Device B has

forwarded the packet when Device A receives the acknowledgement from Device C.

 The above detection approach requires a security association between any pair of devices, and

this is fine for the context for which it was developed. However, trusting other devices does not work

without identity verification of devices due to the possibility of a Sybil Attack [23]; to lengthen a route, a

device may use multiple identities. Unless it is guaranteed that a device is only assigned a unique identity,

i.e. with tamper-proof hardware, approaches like this will not work in a cooperative commons.

In addition to the authentication challenges in a cooperative commons, approaches that are based on

trusting other devices suffer from another problem; devices may intentionally lie. For example, devices

using the two-hop acknowledgement scheme may choose not to send acknowledgements so their

neighbors appear to be acting selfishly.

To appear in IEEE DySPAN 2008

 5

3. Routing Protocol Features

Although known approaches cannot reliably detect selfishness in a cooperative commons due to

complications like duplicate suppression and power control, we can make selfish behavior detectable by

requiring that the underlying routing protocol has features that are not found in current protocols. In this

section, we propose a set of features. Section 4 will show how selfish behavior involving routing protocols

with these features can always be detected.

 Path lengths are measured in hops. Where information on path length is equally recent, we

define the best path as the one with the minimum hop count. We allow but do not require the routing

protocol to favor paths with more recent information about length. For example, the path with a higher

“sequence number” takes higher precedence in AODV [14], regardless of hop counts. Duplicate

suppression is allowed, but a duplicate cannot be suppressed if it announces a better path than was

previously known.

 Every device maintains the addresses of the two-hop neighbors that are on the best paths to

reach destinations in their routing tables. With this field, devices can check if packets travel on correct

paths. If the routing table stores full source routed paths, this field is not needed.

 Power control has been suggested for energy-efficient routing in ad hoc networks [30]. In

protocols such as DSR [13], AODV [14], and Destination Sequenced Distance Vector (DSDV) [15], a device

uses maximum power to transmit packets without specified recipients, but on packets with specified

recipients, power is reduced to the minimum level that is sufficient to reach the intended recipient(s). In

order to prevent the selfish attack with transmission power control as described in Section 1, we require

devices to transmit all routing packets at maximum power.

Our mechanism detects selfishness for packet types that fall in any of three categories.

Definitions of these three categories and the algorithm that indicates how devices handle packets of each

category are described in Sections 3.1 to 3.3. Section 3.4 describes how minor changes to a number of

existing protocols can make all of their packet types fall within these three categories.

3.1 GENERAL ANNOUNCEMENT

 Packets in the first category, which we call GENERAL ANNOUNCEMENTs, are flooded through the

network to announce the distance to the device that initiated the flood. In some protocols, GENERAL

ANNOUNCEMENTs are targeted to a specific destination to find the shortest path. . With minor changes,

Routes Request packets (RREQ) in DSR [13] and AODV [14], and Update messages in DSDV [15] are

prominent examples of this category.

GENERAL ANNOUNCEMENTs must contain three fields that are common to routing protocols: the

addresses of the source and the destination, and the distance to the source. Distance can be represented

by hop count, or any field from which hop count can be derived (i.e. full source-routed path in DSR [13]).

The source that floods the GENERAL ANNOUNCEMENT may set a TTL, but it is not required. These

packets also contain atypical fields. One is the address of the device that is the next hop to the source,

which we call next_to_source. The 1-bit duplicate_flag indicates whether the packet is a duplicate.

Sending a duplicate packet with the flag set allows a watchdog to verify that the packet was not selfishly

dropped. A device that receives a GENERAL ANNOUNCEMENT with this bit set is required to forward the

To appear in IEEE DySPAN 2008

 6

packet only if it announces a path to the source that is better than the best path that the receiving device

knew previously. Since this is often not the case, the packet can be dropped, without risk that the

behavior will be identified as selfish. Other than fields cited above (duplicate_flag, next_to_source, path

traveled, hop_ count, and TTL), we assume that fields in a GENERAL ANNOUNCEMENT remain unchanged

as the packet is forwarded through the network.

Every device promiscuously listens to packet transmissions, and here is how a device acts after

receiving a GENERAL ANNOUNCEMENT. If the packet has a TTL that has expired, no action is required and

the device may drop the packet. If there is no TTL that has expired, and the duplicate_flag is set, then the

device is required to respond if and only if the packet announces a path to the source that is better than

the best path that the device knew previously. If the duplicate_flag is not set, then the device must

respond in one of the following two ways. If the GENERAL ANNOUNCEMENT is targeted to a specific

destination and the device knows of a path to that destination, then the device may respond by sending a

TARGETED ANNOUNCEMENT to the sender with information about the best known path to the

destination. The TTL field is set such that the sum of the TTL and the Hop_count is the same as the

received packet, and the duplicate_flag is not set. If it does not send such a TARGETED ANNOUNCEMENT,

the device must forward the GENERAL ANNOUNCEMENT to all of the device’s neighbors as follows. The

Hop_count of the outgoing packet is one plus the Hop_count of the incoming packet, or the length of the

shortest path this device knows back to the source, whichever is smaller. If there is a TTL field, the device

sets the TTL such that the sum of the TTL and the Hop_count is the same as for the received packet. The

device sets the duplicate_flag of the packet if and only if the device already flooded a duplicate packet

with a path back to the source of the flood that was as good as, or better than the path announced in this

packet. In cases where the device updates its routing table because of this GENERAL ANNOUNCEMENT,

the two-hop neighbor in the table is the device indicated in the next_to_source of the this packet.

3.2 TARGETED ANNOUNCEDMENT

 Packets in the second class, which we call TARGETED ANNOUNCEMENTs, are typically used to

confirm working paths. These packets are sent along paths that have been previously identified as valid

with the minimum number of hops, perhaps using GENERAL ANNOUNCEMENTs or some other means.

TARGETED ANNOUNCEMENTs are unicast along working paths, and announce the distance to devices that

initiated these packets. With modifications, Route Reply packets (RREP) in DSR [13] and AODV [14] are

examples.

 TARGETED ANNOUNCEMENTs contain fields that are common to today’s routing protocols: the

addresses of the source and destination, distance to the source, and recipient, which is the neighbor to

whom this packet is addressed. TARGETED ANNOUNCEMENTs may contain the TTL field, but it is not

required. TARGETED ANNOUNCEMENTs also contain three atypical fields: the addresses of the device that

is the next hop to the source and the device that is the next hop to the destination beyond the recipient,

which we call next_to_source and next_to_destination respectively. Specifying the next_to_destination

tells the recipient to whom it must forward the packet so as not to be identified as behaving selfishly, and

specifying next_to_source tells the device so indicated to watch for selfish behavior. There is also a 1-bit

duplicate_flag field, as described above for GENERAL ANNOUNCEMENTs. Other than fields cited above

(duplicate_flag, next_to_source, next_to_destination, path traveled, hop count, recipient, and TTL), we

To appear in IEEE DySPAN 2008

 7

assume that fields in a TARGETED ANNOUNCEMENT remain unchanged as the packet is forwarded

through the network.

Every device promiscuously listens to packet transmissions, regardless of the recipient specified

in the packet header. Here is how a device handles a TARGETED ANNOUNCEMENT. If the packet

announces a path to the source that is better than what is in the device’s routing table, then it updates

the hop count field and the two-hop neighbor field, as indicated in the next_to_source of the TARGETED

ANNOUNCEMENT, in the routing table. If the packet contains a TTL that has expired, no action is required.

If there is no TTL that has expired and the device is the intended recipient, then the device forwards the

TARGETED ANNOUNCEMENT if and only if the duplicate_flag is not set or the packet announces a path

back to the source that is shorter than the previously known best path. When forwarding, the device sets

the Hop_count of the outgoing packet to either one plus the Hop_count of the incoming packet, or the

length of the shortest path this device knows back to the source, whichever is smaller. If the packet

contains a TTL, the device sets the TTL such that the sum of the TTL and the Hop_count is the same as for

the received packet. The device sets the next_to_source as the 1-hop neighbor from which the device

received the TARGETED ANNOUNCEMENT, and the next_to_destination as indicated in the two-hop

neighbor field for the intended destination in the routing table. The device sets the duplicate_flag only if

the device has already sent a packet to the same neighbor announcing a path back to the source that was

as good or better than the one in this TARGETED ANNOUNCEMENT.

3.3 UPDATE

 A device broadcasts a packet of the third class, which we call UPDATE packets to report that a

route that went through the device is broken, or has increased in length. Update packets contain the

sender’s address, and for every path that has changed, the destination and the new path length. (If a

protocol only uses UPDATEs where the length has become infinity, then this path length is implicit.)

A device responds to an UPDATE as follows. If the device knows of a better path to the

destination that does not go through the sender of the UPDATE, then the device sends a TARGETED

ANNOUNCEMENT to the sender with information on this path. Otherwise, the device updates its table as

appropriate. If paths get worse, the device may transmit its own UPDATE packet, but we do not require

this. With modifications, Route Error packets (RERR) in DSR [13] and AODV [14] , and Update messages

that are generated when path lengths increase in DSDV [15], are prominent examples.

3.4 Extending Known Routing Protocols

 Known routing protocols can be extended such that all routing packets fit in the categories

described above. In DSR [13], a RREQ can be easily extended to a GENERAL ANNOUNCEMENT by adding

the duplicate_flag. The next_to_Source field is already in the RREQ since DSR is source routed, and the

hop_count field can be easily derived. A RREP can be extended to be a TARGETED ANNOUNCEMENT by

adding the duplicate_flag and the hop_count. The next_to_source and the next_to_destination are

implicit in the source route. A RERR is an UPDATE packet without any modification.

Similarly, all of the routing protocol packets for AODV [14] can be extended. A RREQ becomes a

GENERAL ANNOUNCEMENT by adding the next_to_source and the duplicate_flag. The next_to_source,

next_to_destination, and duplicate_flag fields can be added to a RREP packet to be a TARGETED

ANNOUNCEMENT. By looking in the routing table, every device can easily obtain the values for the

To appear in IEEE DySPAN 2008

 8

next_to_source and the next_to_destination. A RERR packet and a HELLO message are UPDATEs without

modification.

Unlike current DSR and AODV protocols, which only require the RREQ and the RERR to be

transmitted at maximum power, devices must transmit all routing packets at maximum power. Moreover,

DSR and AODV allow devices to suppress duplicate packets, but we require devices to propagate duplicate

packets if they announce shorter paths.

 It is also possible to devise proactive routing protocols whose routing protocol packets all fit

within the above categories. For example, each device could periodically flood a GENERAL

ANNOUNCEMENT, which would allow all other devices to find the current shortest path back to the

originator of the packet.

Note that there are protocols containing packet types that do not fall within any of the above

categories, and which therefore cannot easily be extended such that selfishness is detectable using the

algorithms described in this paper. For example, there are packets that are flooded with a field that

specifies forwarders, as in [31]. If a device is allowed to choose which of its neighbors forward a packet

and which do not, then a device can behave selfishly by specifying only those neighbors that are not on

the shortest path. Thus, only the longer paths that go through this device will be visible and longer paths

are less likely to be selected.

4. Detecting Instances of Selfishness

This section presents our detection mechanism. It proves that our mechanism detects every

instance of selfishness and never identifies a device as behaving selfishly when that device follows the

protocol under simplifying about the environment. These assumptions are described in Section 4.1. A

follow-up paper will extend the mechanism to a more complex environment.

Selfish behavior can take one of three forms: failing to correctly transmit a packet that should be

transmitted, transmitting a packet that should not be transmitted, and transmitting a packet at the

incorrect power. (Forwarding a packet incorrectly is both failing to forward correctly, and transmitting a

packet that should not be transmitted.) With the categories of packets defined in Section 3, the only time

a device is required to transmit a packet is after that device has received a GENERAL or TARGETED

ANNOUNCEMENT. Thus, the sender of such packet can watch to ensure that the proper action is taken by

all neighbors. When a device fails to respond as required in a way that might be selfish, a watchdog

mechanism identifies this behavior as selfish. This mechanism is described in Section 4.2. As described in

Section 1, a device can also behave selfishly through power manipulation alone. To detect this, all devices

observe the power levels of packets received from all neighbors. This mechanism is described in Section

4.3. Where devices generate packets at their own initiate in violation of the protocol and in a way that

might be selfish, this must be detected by a different mechanism, which is described in Section 4.4. For

this, devices observe their neighbors promiscuously to detect packets containing incorrect information.

4.1 Assumptions

 It is possible to accurately detect every instance of selfish behavior in an environment where

packets are not lost due to interference, links between neighbors are bidirectional, devices are stationary,

and queuing delays are bounded. More precisely:

To appear in IEEE DySPAN 2008

 9

1. No Packet Loss: Let PAB be the power threshold from Device A to Device B where PAB is a constant.

If Device A transmits a packet to Device B at power ≥ PAB, then Device B always receives the

packet. On the other hand, if Device A transmits at power lower than PAB, then Device B never

receives the packet.

2. Bidirectionality: Devices send packets to and accept packets from their neighbors. A Device A

considers another Device B to be its neighbor if and only if Device A has successfully received a

packet from Device B and Device B has successfully received a packet from Device A.

3. Power Relation: For packets traveling from any Device A to Device B, increasing Device A’s

transmit power increases the received power at Device B.

4. Bounded Delay: Any packet that a device intends to transmit will be transmitted and will be

received by all neighbors within a period of duration x after arriving, and all devices in the

network know the duration x.

Theorem 1 If Devices A and B are neighbors and Device A transmits a packet at maximum power,

then Device B receives it.

Proof:

 By assumption, Devices A and B are neighbors. According to Assumption 2 above, if Devices A

and B are neighbors, then Device B has successfully received a packet from Device A. By Assumption 1,

Device B receives a packet only if Device A transmits the packet at a power ≥ PAB, which implies that

Device A transmitted some Packet Q at a power ≥ PAB. By definition, Device A’s maximum power is

greater than or equal to the power at which Packet Q was transmitted, so this maximum power is ≥ PAB.

By assumption 2, whenever Device A transmits a packet at any power above PAB, which would include

Device A’s maximum power, Device B must receive the packet. QED

4.2 Selfishness in Packet Forwarding

 As discussed in section 1, after receiving a TARGETED or GENERAL ANNOUNCEMENT, a device

that does not want to carry traffic for others can alter fields to make a path look worse than it is, or it can

stop spreading news of good routes that include the device itself. Thus, after transmitting a TARGETED or

GENERAL ANNOUNCEMENT, a device determines which of its neighbors are expected to respond, perhaps

by forwarding the packet. It then watches those neighbors until the expected packets are observed, and

makes sure that the neighbor did not alter any field in a selfish manner.

Each device uses a Verification Table to keep track of anticipated responses from neighbors.

Each entry in the Table represents a packet for which that device is waiting for a response. Each entry

contains the packet, a neighbor_list and a timer. The neighbor_list is the list of neighboring devices that

are expected to respond. The timer indicates the expiration time of the entry; whenever an entry is

added, the timer is set to expire after a period of duration x, as defined in Assumption 4.

Sections 4.2.1 and 4.2.2 present and prove the effectiveness of watchdog mechanisms that can

determine whether all neighbors who are required to respond to a packet have indeed responded.

Section 4.2.1 addresses TARGETED ANNOUNCEMENTs and Section 4.2.2 addresses GENERAL

ANNOUNCEMENTs. It is assumed in these sections that devices can tell when a neighbor forwards a

packet correctly, which in this paper means a device is transmitting the packet without any alterations

that could possibly constitute selfish behavior. Section 4.2.3 describes how this is achieved. Section 4.2.4

explains why a separate watchdog mechanism of this kind is not needed for UPDATEs.

4.2.1Detection with a TARGETED ANNOUNCEMENT

To appear in IEEE DySPAN 2008

 10

This section describes the algorithm which detects devices that behave selfishly when receiving a

TARGETED ANNOUNCEMENT. After transmitting a TARGETED ANNOUNCEMENT, a device must monitor if

it expects its neighbor to forward the packet, which occurs when the duplicate_flag is not set and the TTL

(if specified) is not expiring. In this case the device creates an entry for that packet in the Verification

Table in which the neighbor_list consists of this neighbor.

If the device overhears its neighbor forward the TARGETED ANNOUNCEMENT, the device checks

that its neighbor has not increased the hop count by more than one. It also verifies that the packet was

forwarded correctly, the details of which will be presented in Section 4.2.3. If all conditions are met, the

device removes the entry for this neighbor from the Verification Table. On the other hand, if the timer for

an entry expires, then the device concludes that the device in the neighbor_list of that expiring entry has

behaved selfishly by failing to forward the TARGETED ANNOUNCEMENT correctly.

We now prove the correctness of our algorithm; selfish acts of this type will be identified by the

algorithm, and a device’s behavior will only be identified as selfish if that device is violating the protocol in

a potentially selfish manner. Because there is often no easy way to prevent the Sybil attack [29] in a

cooperative commons, we allow the possibility that any device may have multiple identities. We first

prove that if Identity B behaves selfishly, then a neighboring Identity A can detect it. We then prove that

even if Device B has multiple identities, it will be identified as selfish by at least one other device if and

only if Device B behaves selfishly.

Theorem 2 Let Identity A (IDA) follow the protocol and transmit a TARGETED ANNOUNCEMENT to

its neighbor Identity B (IDB). Let the protocol require IDB to forward the TARGETED ANNOUNCEMENT, but

IDB fails to forward the TARGETED ANNOUNCEMENT correctly. Then, IDA detects IDB’s behavior as selfish

using the mechanism in Section 4.2.1.

Proof (by contradiction):

Assume that IDA does not detect IDB’s selfish behavior. Thus, no entries in IDA’s Verification Table

expire when IDB is in the neighbor_list. This implies that either the entry was never added to the

Verification Table, or the entry was added and removed before the timer of the entry expires.

As described in Section 3.2, a device is required to forward a TARGETED ANNOUNCEMENT if and

only if the duplicate_flag is not set and the TTL counter is not expired (if specified), or the duplicate_flag is

set, the TTL counter is not expired (if specified) and the packet announces a better path than what IDA has

announced before. If IDA announces a better path than what IDA previously announced with the

duplicate_flag set, this implies that IDA has violated the protocol as specified in Section 3.2, contradicting

the assumption that IDA follows the protocol. Thus, the assumption that IDB was required to forward the

TARGETED ANNOUNCEMENT implies that IDB received the packet with the duplicate_flag not set and the

TTL counter not expiring (if specified). As the algorithm in Section 5.2.1 specifies, a device creates an

entry in the table when the device forwards a packet with the duplicate_flag not set and the TTL counter

not expiring (if one is specified). This implies that IDA did create an entry in its table. Thus, the entry must

have been removed before the timer expired.

As specified in the algorithm in Section 4.2.1, IDA will remove the entry from its table only when it

overhears IDB transmit the packet, and IDA has verified that the packet was forwarded correctly. This

contradicts the assumption. QED

To appear in IEEE DySPAN 2008

 11

Theorem 3 Let Identity A (IDA) and Identity B (IDB) be on the path with the smallest hop counts.

Then, IDA and IDB cannot belong to the same device.

Proof (by contradiction):

 Assume that IDA and IDB are identities of the same device. By assumption, the shortest path

includes both IDA and IDB, and possibly other identities in between. Without loss of generality, let the

transmission power of IDB be ≥ the transmission power of IDA. This implies that all neighbors of IDA

are

neighbors of IDB, which in turn implies that IDA’s neighbor, which is on the same shortest path and is not

located in between IDA and IDB, is also a neighbor of IDB. Hence, there exists a path between that

neighbor and IDB, excluding IDA and all other identities in between IDA and IDB (if any). This path is shorter

since it does not include any identities that were not in the original path, and it excludes at least one (IDA)

that was on the original path. However, this contradicts the assumption that both IDA and IDB are on the

shortest path. QED

 As described in Section 3.2, a TARGETED ANNOUNCEMENT is sent along the path that sender

believes has the minimum number of hops. Theorem 4 shows that, as long as this is the case, a device

behaving selfishly will be detected by a neighboring device, even if devices are able to assume multiple

identities.

Theorem 4 Let Identity A (IDA) follow the protocol and transmit a TARGETED ANNOUNCEMENT to

its neighbor Identity B (IDB) along a path with the smallest hop count from a source to a destination. Let

the protocol require IDB to forward the TARGETED ANNOUNCEMENT, but IDB fails to forward the

TARGETED ANNOUNCEMENT correctly. Then, an identity on a different device from Identity IDB identifies

IDB’s behavior as selfish using the mechanism in Section 4.2.1.

Proof:

 The TARGETED ANNOUNCEMENT is sent along the path that has the minimum number of hops,

so by Theorem 3, IDA and IDB belong to different devices. Moreover, by Theorem 2, IDA detects selfish

behavior of IDB. Therefore, it is the device with the identity IDA that detects selfish behavior of another

device with the identity IDB.

Theorem 5 Let Identity A (IDA) follow the protocol, and conclude using the mechanisms in Section

4.2.1 that Identity B (IDB) has behaved selfishly. Then, (i) IDB has received a TARGETED ANNOUNCEMENT

that IDB was required to forward correctly, (ii) IDB failed to forward the packet correctly and at the

required power before its behavior is identified as selfish, and (iii) IDB did not ever intend to forward the

packet correctly and at the required power.

Proof:

As described in this section, IDA detects IDB’s behavior as selfish only when a timer expires, and

the entry in IDA’s table associated with that timer includes IDB as the neighbor_list. A device creates an

entry in the Verification Table associated with a given neighbor when and only when it forwards a packet

to that neighbor with the duplicate_flag not set and the TTL counter of that packet not expiring (if

specified). Thus, IDB must have been IDA’s neighbor, and IDA must have transmitted a TARGETED

ANNOUNCEMENT to IDB with the duplicate_flag not set and the TTL counter greater than one. By

assumption, IDA follows the protocol that requires a device to transmit a TARGETED ANNOUNCEMENT at

To appear in IEEE DySPAN 2008

 12

maximum power, as explained in Section 3. Hence, by Theorem 1, when IDA transmits a TARGETED

ANNOUNCEMENT to IDB, IDA must have transmitted at maximum power, and IDB that is a neighbor of IDA

(by assumption) must have received the packet. Since the duplicate_flag was not set and the TTL counter

did not reach zero, IDB was required to forward the packet. Thus, (i) is proven.

As described in Section 4.2.1, IDA would remove the entry associated with a neighbor if it sees

that neighbor forward the associated packet correctly. Since the entry is still there when the timer

expires, IDA did not see this occur before the timer expires. By Theorem 1, IDA receives the packet that

the neighbor IDB transmits at maximum power. As described in Section 3, the protocol requires a device

to transmit a TARGETED ANNOUNCEMENT at maximum power. Since IDA follows the protocol and did not

see IDB forwarding the packet correctly, IDB did not forward the packet correctly at the required power

before IDA’s timer expired, which is the time at which IDA identifies IDB’s behavior as selfish. Thus, (ii) is

proven.

As described in Section 4.2, IDA’s timer expires a period of duration x after it forwards the

TARGETED ANNOUNCEMENT. By Assumption 4 in Section 4.1, any packet that IDB intends to transmit will

be transmitted within the period of duration x. Since the packet has not been forwarded correctly and at

the required power when the timer expires, and the protocol requires that the timer expires a period of

duration x after the packet was received, IDB did not intend to forward the packet correctly and at the

required power. Thus, (iii) is proven.

4.2.2 Detection with a GENERAL ANNOUNCEMENT

In this section, we describe the algorithm which detects devices that behave selfishly after

receiving a GENERAL ANNOUNCEMENT. Similar to Section 4.2.1, a device that is flooding a GENERAL

ANNOUNCEMENT must determine whether it requires any of its neighbors to forward that packet, and if

so, the device must monitor to ensure that the packet has been forwarded correctly. As discussed in

Section 3.1, the device does not watch that its neighbor(s) forwards the packet if and only if the

duplicate_flag is set or the TTL counter (if specified) is expiring, in which case no entry is added to the

Verification Table. In other cases where the duplicate_flag is not set and the TTL counter (if specified) is

bigger than one, the device determines which of its neighbors will be required to forward the packet. The

device does not require all of its neighbors to forward the packet; the device does not require further

forwarding from those neighbors, including the previous hop that flooded this GENERAL

ANNOUNCEMENT, that previously flooded the GENERAL ANNOUNCEMENT and retransmitting this packet

will not announce smaller hop counts. For all other neighbors, the device adds an entry to the

Verification Table (i.e., the neighbor_list for this entry contains all other neighbors).

When a device overhears its neighbor transmit a packet, the device checks that its neighbor

transmits correctly. There are two cases to consider. If the overheard GENERAL ANNOUNCEMENT has

the hop count that is not increased by more than one, and the sum of the hop count and the TTL counter

is the same as what the device previously transmitted, the device confirms that that neighbor follows the

protocol. The other case is that the neighbor responds by transmitting the corresponding TARGETED

ANNOUNCEMENT. In case the packet contains the TTL counter, the device confirms that the sum of the

TTL counter and the hop count of the TARGETED ANNOUNCEMENT is unchanged. Once the device

confirms that the neighbor transmits correctly, the device removes that neighbor from the neighbor_list

of every entry associated with the overheard packet. If the timer of an entry expires in the Verification

To appear in IEEE DySPAN 2008

 13

Table, the device detects that its neighbors that remain in the neighbor_list behave selfishly and fail to

forward the packet correctly.

We now prove the correctness of our algorithm in a similar manner to Section 4.2.1. We prove

that selfish behavior of this type will be identified by the algorithm, and a device’s behavior will only be

identified as selfish if that device is violating the protocol in a potentially selfish manner. We first prove

that if Identity B behaves selfishly with a GENERAL ANNOUNCEMENT, then the neighboring Identity A will

detect it. We then prove that even if Device B has multiple identities, it will be identified as selfish by at

least one other device if and only if Device B behaves selfishly.

Theorem 6 Let Identity A (IDA) and Identity B (IDB) be neighbors. Let IDA follow the protocol, and

transmit a GENERAL ANNOUNCEMENT. IDB neither forwards the GENERAL ANNOUNCEMENT correctly,

nor responds by transmitting a TARGETED ANNOUNCEMENT correctly when IDB is required to do one of

the two. Then, IDA detects IDB’s behavior as selfish using the algorithm in Section 4.2.2.

Proof (by contradiction):

Assume that IDA does not detect IDB’s behavior as selfish. Thus, no entries in IDA’s Verification

Table expire when IDB is included in the neighbor_list. This implies that either the entry, of which the

neighbor_list contains IDB,, was never added to the Verification Table, or the entry was added and IDB was

removed from the neighbor_list before the timer expires.

 As described in Section 3.1, a device is required to forward a GENERAL ANNOUNCEMENT if and

only if the duplicate_flag is not set and the TTL counter is not 0, or the duplicate_flag is set and the TTL

counter is not 0 and the packet announces a better path than IDA has announced before. If IDA announces

a better path than what IDA previously announced with the duplicate_flag set, this implies that IDA has

violated the protocol as specified in Section 3.2, contradicting the assumption that IDA follows the

protocol. By assumption, IDB was required to either forward the packet or respond with a TARGETED

ANNOUNCEMENT, which implies that the duplicate_flag was not set, and the TTL counter was not 0.

Since IDA is assumed to follow the protocol, this in turn implies that IDA did create an entry in its

Verification Table, and IDB was in the neighbor_list.

 As described above, IDA will remove the entry from its table only when it overhears IDB transmit

either the GENERAL or TARGETED ANNOUNCEMENT, and IDA has verified that the packet was forwarded

correctly. This contradicts the assumption. QED

As described in Section 3.1, a GENERAL ANNOUNCEMENT announces the distance to the source

and a device may choose the path with the minimum hop counts using the GENERAL ANNOUNCEMENT. It

is the device on the shortest path that must be watched for selfish behavior to evade the watchdog

mechanism and avoid forwarding subsequent data packets. Theorem 7 shows that, a device that is on the

shortest path and behaves selfishly will be detected by a neighbor, even if devices are able to assume

multiple identities.

Theorem 7 Let Identity A (IDA) and Identity B (IDB) be neighbors. Let IDA follow the protocol and

flood a GENERAL ANNOUNCEMENT. Let the protocol require IDB to either forward the GENERAL

ANNOUNCEMENT correctly, or responds by transmitting a TARGETED ANNOUNCEMENT, but IDB fails to do

one of the two. If the GENERAL ANNOUNCEMENT travels along a path with minimum hop count, an

To appear in IEEE DySPAN 2008

 14

identity on a different device from IDB identifies IDB’s behavior as selfish using the algorithm in Section

4.2.2.

Proof:

 By Theorem 6, IDA identifies IDB’s behavior as selfish. By assumption, the GENERAL

ANNOUNCEMENT travels on the path that has the minimum hop count. Therefore, by Theorem 3, if IDA

and IDB are on the shortest path, they belong to different devices. Therefore, it is the device with the

identity IDA that detects selfish behavior of another device with the identity IDB. QED

Theorem 8 Let Identity A (IDA) follow the protocol. Let IDA conclude using the algorithm in Section

4.2.2 that Identity B (IDB) was behaving selfishly. Then, (i) IDB has received a GENERAL ANNOUNCEMENT

that it was required to either forward, or respond by transmitting the TARGETED ANNOUNCEMENT

correctly, (ii) IDB failed to transmit the packet correctly and at the required power before its behavior is

identified as selfish, and (iii) IDB did not ever intend to transmit the packet correctly and at the required

power.

Proof:

 As described in Section 4.2.2, IDA detects IDB’s behavior as selfish only when a timer expires, and

the entry in IDA’s Verification Table associated with that timer includes IDB in the neighbor_list. A device

creates an entry in the Verification Table and adds a given neighbor to the neighbor_list when and only

when it floods a packet with the duplicate_flag not set and the TTL counter not expiring, and that

neighbor will announce the shortest path by forwarding this packet. Therefore, IDB must have been a

neighbor of IDA, and IDA must have transmitted a GENERAL ANOUNCEMENT to IDB with the duplicate_flag

not set and the TTL counter greater than one, and forwarding this packet will make IDB to announce the

shortest path.

By assumption, IDA follows the protocol that requires a device to transmit a GENERAL

ANNOUNCEMENT at maximum power, as explained in Section 3. Hence, IDA must have transmitted at

maximum power. Since IDA and IDB are neighbors, IDB must have received this GENERAL

ANNOUNCEMENT by Theorem 1. Since the duplicate_flag was not set and the TTL counter was not 0, IDB

was required to either forward the GENERAL ANNOUNCEMENT, or transmit the corresponding TARGETED

ANNOUNCEMENT. Thus, (i) was proven.

 As described in Section 4.2.2, IDA would remove a neighbor from an entry’s neighbor_list if it sees

that neighbor transmit a corresponding packet for that entry correctly (i.e., that neighbor either forwards

the GENERAL ANNOUNCEMENT or transmits the TARGETED ANNOUNCEMENT associated with that entry).

Since the entry still contains IDB in the neighbor_list when the timer expires, IDA did not see this occur

before the timer expires. By Theorem 1, IDA receives the packet that the neighbor IDB transmits at

maximum power. As described in Section 3, the protocol requires a device to transmit both GENERAL

and TARGETED ANNOUNCEMENT at maximum power. Since IDA follows the protocol and did not see IDB

forwarding the packet correctly, IDB did not transmit the packet correctly before IDA’s timer expired,

which is the time at which IDA identifies IDB’s behavior as selfish. Thus, (ii) is proven.

 As described in Section 4.2, IDA’s timer expires a period of duration x after it forwards the

GENERAL ANNOUNCEMENT. By Assumption 4 in Section 4.1, any packet that IDB intends to transmit will

be transmitted within the period of duration x. Thus, since the packet has not been transmitted correctly

To appear in IEEE DySPAN 2008

 15

when the timer expires, and the protocol requires that the timer expires a period of duration x after the

packet was received, IDB did not intend to transmit the packet. Thus, (iii) is proven. QED

4.2.3 Verifying a Packet was Correctly Forwarded

In cases where Device A expects its neighboring Device B to forward a routing packet, Device A

monitors the neighbor’s transmissions until it observes the expected packet. Most of the fields in a

routing packet do not change en route, so Device A expects to see that all of these fields exactly match

the packet it just transmitted. The greater challenge for a watchdog mechanism designed to detect all

selfish behavior is to detect incorrect changes to fields that are allowed to change en route.

Of the fields presented in Sections 3.1 and 3.2, there are only two that change en route, and that

can be altered selfishly. One is the hop_count, which is addressed in Sections 4.2.1 and 4.2.2 for the

separate cases of TARGETED and GENERAL ANNOUNCEMENTs, respectively. The other is the TTL counter,

which we explicitly allow but do not require. Although devices are expected to change the TTL, we

require the sum of the hop_count and TTL to be the same as that of the packet that the device received,

as described in Sections 3.1 and 3.2. Thus, if the hop_count can be verified, then the TTL can also be easily

verified.

For the remaining next_to_source, next_to_destination, and duplicate_flag fields described in

Sections 3.1 and 3.2 that change en route, we now show that any modifications that are inconsistent with

the protocol are not selfish acts, since the device that made these modifications would not benefit.

Incorrectly changing fields related to the path the packet has taken or will take can prevent some

packets from reaching their destinations. For example, Device A may insert an incorrect address in the

next_to_source, which is in both the GENERAL and TARGETED ANNOUNCEMENT. Alternatively, Device A

may insert an incorrect address in the next_to_destination, which is only in the TARGETED

ANNOUNCEMENT. Changing these fields causes the packet to be mis-routed, and even though the source

of the packet believes that the packet is traveling on a valid path, the packet may not reach the intended

device. We also allow (but do not require) packets to contain addresses of devices on the path. Altering

one or more addresses will have the same effect of mis-routing packets as described above. These

actions are disruptive, but none benefits Device A; because none affects the hop count, so changing these

fields incorrectly does not make the announced paths through Device A less attractive. Moreover, if a

path through Device A is selected, the fact that this path could be invalid is unlikely to reduce the number

of packets that Device A must handle. If a path through Device A does not work, the source may

repeatedly attempt to reestablish the path, creating additional packets that watchdog devices will expect

Device A to carry. In addition, as described in Section 3.2, all of Device A’s neighbors promiscuously

monitor transmissions, and can therefore learn the valid paths through Device A. Thus, the next time one

of Device A’s neighbors receives a GENERAL ANNOUNCEMENT, it may inform the source about the path

that goes through Device A, and there is nothing Device A can do to prevent this.

A device may violate the protocol and set the duplicate_flag on the packet that is not a duplicate,

expecting the neighbor to drop the packet. However, our algorithm specifies that the neighbor does not

take the option of dropping but instead forwards the packet if it announces the shortest path. Therefore,

as long as neighbors follow the protocol, the device gains no benefit by setting the duplicate_flag when

the packet is not a duplicate. Similarly, if the device does not set the duplicate_flag for a packet that is a

duplicate, this may increase the control traffic, but it does not change any device’s estimation of the paths

available or their lengths.

To appear in IEEE DySPAN 2008

 16

 4.2.4 Detection When Forwarding an UPDATE

Failing to respond to an UPDATE is not a selfish act. As described in Section 3.3, UPDATE packets

are used to announce routes that are broken, or have increased in length. When Device A fails to

transmit an UPDATE even though there are changes in the paths that go through Device A, other devices

that use those paths do not learn about the changes; those devices still consider the paths that go

through Device A as good as previously known, and transmit packets to Device A, expecting Device A to

forward packets. Thus, not responding to an UPDATE packet can only increase a device’s burden.

4.3 Selfishness in Power Manipulation

 As explained in Section 1, when a device knows that its behavior is watched by a neighbor, the

device can behave selfishly and pretend to cooperate by forwarding a packet at a power level that is

observable to the watchdog and not to other devices. As described in Section 3, our algorithm requires

devices to transmit control packets, which include GENERAL ANNOUNCEMENTs, TARGETED

ANNOUNCEMENTs, and UPDATEs at maximum power so that detection of the selfish behavior of

manipulating transmission power is observable. However, if the threshold power to reach the watchdog

device is greater than the threshold power to reach the next hop to the destination of the packet, the

device may transmit at a reduced and sufficient power to reach the watchdog device, instead of

transmitting at maximum power such that the watchdog fails to identify the device’s behavior as selfish.

Devices keep track of the maximum received power for all neighbors in the Power Table. This

table consists of two columns; the first column, denoted as address, records the IP address of the

neighbor from which the packet is transmitted, and the second column, denoted as Pmax, represents the

maximum received power at which the device has ever received packets.

 Here is the description of the algorithm. Whenever a device receives a packet from a neighbor,

the device compares the received power with that neighbor’s stored maximum power Pmax in the Power

Table. If the received power of the packet is smaller than Pmax, then the device identifies that neighbor’s

behavior as selfishly reducing transmission power.

 Whenever a device receives a packet from its neighbor, if the received power is greater than that

neighbor’s Pmax, then the device sets Pmax equal to this received power. When updating Pmax, the device

not only considers control packets but also data packets from the neighbor because the neighbor may

increase transmission power for the neighbor’s own data packets to reduce the chance of retransmission.

 We now prove that if a device transmits a control packet at a power at which at least one

neighbor but not all neighbors are able to receive the transmission, then at least one neighbor will detect

this selfish behavior.

Theorem 9 Device B manipulates power such that at least one of its neighbors does not receive

Packet P, and at least one neighbor does receive the packet. Without loss of generality, let Device A

receive the packet, and let Device C not receive the packet. Then Device A detects that Device B has

manipulated transmission power of the packet in a selfish manner using the mechanism in Section 4.3.

Proof: By assumption, Device A received Packet P. This implies that packet P was transmitted at power

that is greater than or equal to the power threshold PBA from Device B to Device A by Assumption 1. By

To appear in IEEE DySPAN 2008

 17

assumption, Device C did not receive Packet P, and by Assumption 1, Packet P was transmitted at power

below the power threshold PBC from Device B to Device C. Therefore, PBA < PBC.

 By assumption, Device B and Device C are neighbors, so by Assumption 2, Device C must have

received a packet successfully from Device B. Without loss of generality, let this packet be labeled as

Packet Q. By Assumption 1, Packet Q must have been transmitted at power greater than or equal to PBC.

Since PBA < PBC, Packet Q was also transmitted at a power greater than PBA. By Assumption 1, Device A

also received Packet Q. Since Device A received both Packets P and Q, and Packet P was transmitted at

power less than PBC, and Packet Q was transmitted at power greater than or equal to PBC, by Assumption 2,

the received power for Packet Q was greater than received power for Packet P.

Device A maintains the maximum received power Pmax it has observed from Device B in its Power

Table. This Pmax must be greater than or equal to the received power for Packet Q, which is greater than

the received power for Packet P. Thus, Pmax is greater than the received power for Packet P. As described

above, whenever Device A receives Packet P from Device B at a power less than Pmax, Device A concludes

that Device B is selfishly manipulating power. QED

Theorem 10 Let Device A and Device B be neighbors. Let Device A detect that Device B has

manipulated power in a selfish manner when transmitting Packet P using the mechanism in Section 4.3.

Then, Device B must have violated the protocol.

Proof:

 For Device A to conclude that Device B has selfishly manipulated transmit power for Packet P,

Packet P must be a routing packet, and the received power of Packet P must be less than the Pmax in

Device A’s table.

 When Device A sets the Pmax associated with Device B, Device A sets Pmax equal to the received

power of the packet that Device A just received from Device B. Thus, Device A once received a packet

from Device B at received power Pmax. Without loss of generality, let this packet be labeled as Packet Q.

By Assumption 3, the fact that received power for Packet Q is greater than the received power for Packet

P implies that the transmit power for Packet Q is greater than the transmit power from Packet P. This

implies that Device B transmitted Packet P at power less than Device B’s maximum power. The protocol

requires that all routing control packets be transmitted at maximum power. Thus, Device B violated the

protocol. QED

4.4 Selfishness in Packet Fabrication

 As explained in Section 1, a device may make the path through the device look longer than it

really is. This can be done without responding to a received packet as in Section 4.2; the device can

simply generate a packet that announces arbitrarily high distance to a given destination.

 In contrast, it is not a selfish act if the announced path is better than the best path that the

device knows. Such actions can only increase the load on the device. Thus, we focus on mechanisms that

can detect the announcement of worse paths.

As discussed in Section 3, we allow (but do not require) packets to carry some field indicating the

freshness of the information on path length, such as sequence number in AODV [14]. If this field used,

To appear in IEEE DySPAN 2008

 18

the announced path is better than the real one if there is more recent information on the former, e.g. the

sequence number in AODV is higher, or if the information is equally recent and the hop count is smaller.

The announced path is worse if there is equally recent information, and the hop count is larger, so this is

the case we must detect reliably. If the information on the announced path is less recent than a

previously announced path, e.g. the AODV sequence number is lower, then the announcement will simply

be ignored.

 As described in Section 3.2, all devices listen promiscuously to all routing packets generated by

their neighbors. When a device overhears its neighbor transmitting a TARGETED ANNOUNCEMENT that

announces a worse path than what the neighbor has learned about, the device transmits the TARGETED

ANNOUNCEMENT with the superior path information to that neighbor (i,e. the recipient). The device sets

the TTL of this packet as one plus the TTL of the overheard TARGETED ANNOUNCEMENT so that all

devices that learned the worse path will learn the better path. The device does not set the duplicate_flag

since the device requires its neighbor to forward the packet. The next_to_source is the next hop to reach

the source of the TARGETED ANNOUNCEMENT, which can be found in the routing table, and the

next_to_destination is the same as that from the original TARGETED ANNOUNCEMENT that announced

worse path. This device creates an entry in the Verification Table and watches if that neighbor forwards

the TARGETED ANNOUNCEMENT correctly, using the mechanism described in Section 4.2.1.

Similarly, when a device overhears its neighbor transmitting a GENERAL ANNOUNCEMENT or an

UPDATE, and the device knows a better path to the same source or destination, respectively, the device

transmits a GENERAL ANNOUNCEMENT that announces the better path. The TTL of this packet is one plus

the TTL of the overheard packet for the same reason as explained above, and the next_to_source of this

packet is the next hop to the the source of the GENERAL ANNOUNCEMENT, as can be found in the routing

table. The device does not set the duplicate_flag on this announcing packet. This device creates an entry

in the Verification Table for that neighbor, and watches if that neighbor forwards the GENERAL

ANNOUNCEMENT correctly using the mechanism presented in Section 4.2.2.

We now prove the correctness of our algorithms. We prove that if a device fabricates any

routing control packet that is either a GENERAL ANNOUNCEMENT, a TARGETED ANNOUNCEMENT, or an

UPDATE, and that announces a path that the device knows is not the best, some neighbor will detect it.

Moreover, we prove that if a device’s behavior is identified as selfish, that device has violated some

requirement of the protocol. We assume that the device acting selfishly still transmits routing packets at

maximum power, as selfish power manipulation is already detected by the algorithm in described Section

4.3.

Theorem 11 Let all of Device A’s neighbors follow the protocol. Device A transmits a routing packet

at maximum power to one or more of its neighbors indicating a path to Device D (where D≠A), although

Device A knows about a superior path to Device D. Moreover, Device A does not follow this routing

packet within a period of duration 2x by transmitting another routing packet at maximum power to the

same neighbor or neighbors, where this other routing packet announces the superior path. Then one or

more of Device A’s neighbors will identify Device A as selfish using the mechanism in Section 4.4.

Proof:

As specified in Sections 3.2 to 3.4, a device sends a GENERAL ANNOUNCEMENT, a TARGETED

ANNOUNCEMENT, or an UPDATE to announce the path from the device to the source that initiates the

packet. By assumption, Device A knows a superior path to Device D (where D≠A) that Device A has

To appear in IEEE DySPAN 2008

 19

previously learned about. This implies that there is a neighbor that is the next hop to Device D on the

superior path, and Device D must have learned about the superior path when that neighbor announced

the superior path.

By assumption, the packet was transmitted at maximum power, so by Theorem 1, all neighbors

received the packet. By assumption, all Device A’s neighbors follow the protocol, including the neighbor

that is the next hop to Device D on the superior path. As described in Section 4.4, when a device

overhears its neighbor transmitting a packet, and the device knows a better path to the same source, the

device transmits a packet at maximum power with the better path information to that neighbor within

the period of duration x after receiving the packet. Thus, that neighbor transmits a packet with the

superior path information at maximum power within the period of duration x, which means within

duration 2x after Device A transmitted its packet. By theorem 1, Device A must receive the packet, which

occurs within 2x after the incorrect packet was generated by Device A. Because it is assumed that all

neighbors follow the protocol, if the packet that Device A transmitted to announce a worse path was a

TARGETED ANNOUNCEMENT, then the neighbor will transmit a TARGETED ANNOUNCEMENT with the

superior path information, and if the packet Device A transmits was a GENERAL ANNOUNCEMENT or an

UPDATE, then the neighbor will transmit a GENERAL ANNOUNCEMENT, as specified in Section 4.4.

As described in Section 4.4, the GENERAL or TARGETED ANNOUNCEMENT will be sent with the

duplicate_flag not set. The protocol therefore requires Device A to forward this packet within the period

of duration x upon receiving the packet. By assumption, Device A does not follow this routing packet

within a period of duration 2x with another routing packet to the same neighbor or neighbors, where this

other routing packet announces the superior path. Therefore, if the packet that the neighbor transmits to

Device A is a TARGETED ANNOUNCEMENT, the neighbor detects selfish behavior of Device A by Theorem

2, and if the packet that the neighbor transmits is the GENERAL ANNOUNCEMENT, the neighbor detects

selfish behavior of Device A by Theorem 6. QED

Theorem 12 Let Device B identify Device A’s behavior as selfish using the mechanism n Section 4.4,

where Device B follows the protocol. Then (i) Device A must have transmitted a packet indicating a path

to some destination Device D (where D≠A), although Device A knew a superior path to Device D, (ii)

Device A received a packet that it was supposed to transmit, (iii) Device A failed to forward the packet

correctly before its behavior is identified as selfish, and (iv) Device A did not ever intend to transmit the

packet correctly.

Proof:

As described in Section 4.4, Device B concludes using this mechanism that Device A is acting

selfishly only if either Device A has sent a TARGETED ANNOUNCEMENT to Device A and concluding using

the mechanism in Section 4.2.1 that Device A selfishly failed to forward the packet correctly at maximum

power, or Device A has sent a GENERAL ANNOUNCEMENT to Device A and concluding using the

mechanism in Section 4.2.2 that Device A selfishly failed to forward the packet correctly at maximum

power. In the case of a TARGETED ANNOUNCEMENT, by Theorem 5, (i) Device A has received a

TARGETED ANNOUNCEMENT that Device A was required to forward correctly, (ii) Device A failed to

forward the packet correctly and at the required power before its behavior is identified as selfish, and (iii)

Device A did not ever intend to forward the packet correctly and at the required power. In the case of a

GENERAL ANNOUNCEMENT, by Theorem 8, (i) Device A has received a GENERAL ANNOUNCEMENT that it

was required to either forward, or respond by transmitting the TARGETED ANNOUNCEMENT correctly, (ii)

To appear in IEEE DySPAN 2008

 20

Device A failed to transmit the packet correctly before its behavior is identified as selfish, and (iii) Device A

did not ever intend to transmit the packet correctly. Thus, in either case, the theorem is proven.

5. Conclusion

A cooperative commons is a promising and novel approach to reduce the cost of blanketing an

area with coverage and to use spectrum more efficiently, if all devices cooperate [1-3, 10]. However, the

approach may not be viable if devices do not cooperate by behaving selfishly or maliciously [1, 2]. A

particularly effective form of selfish behavior is for a device to handle (or mishandle) routing packets in

such a way that far fewer routes through that device are selected. The device can then avoid forwarding a

potentially large number of data packets for others. Given the lack of rewards for cooperating with

devices belonging to other owners and other administrative domains, selfish behavior must somehow be

deterred if the cooperative commons is ever to become as valuable as its proponents hope. The first step

towards deterrence is reliable detection of selfish behavior.

We have demonstrated that it is not possible to reliably detect selfish behavior in the routing

protocols used today in ad hoc networks. Typical watchdog approaches are unable to detect some forms

of selfish behavior, such as when power control is used to conceal that behavior. Perhaps even worse,

these approaches can falsely label some behavior as selfish when the devices are following the protocol,

as often occurs with duplicate suppression. Other approaches assume trust relationships that are

appropriate in other contexts, but may not be achievable in a cooperative commons. Thus, in addition to

developing effective watchdog algorithms, it is necessary to adopt routing protocols that are suitable for a

cooperative commons in which selfish behavior is observable.

We have shown that effective detection of selfish behavior in a cooperative commons is possible,

as long as devices do not use rapidly steerable antennae and devices are generally not able to collude

with neighbors. These two exceptions are unavoidable limitations in a cooperative commons. We have

defined broad categories of routing control packets in which selfishness can be detected, and shown that

packets in common routing protocols can be extended to fit into these categories.

For any routing protocol that meets our requirements, including the extended versions of DSR

[13] and AODV [14], our proposed new watchdog algorithms can detect every instance of selfish behavior

under some simplifying assumptions, i.e. where there are no packet losses, devices are not moving, and

queuing delay is bounded. Moreover, the watchdog algorithms never identify a device’s behavior as

selfish if that device is complying with the protocol. In a more complex and realistic environment where

those simplifying assumptions are relaxed, our approach is still effective in detecting devices that

repeatedly exhibit selfish behavior.

A follow-on paper will describe how our approach can be extended to identify devices that

repeatedly behave selfishly in a more complex environment in which packets are lost, queuing delay can

grow large, and path loss between two devices can change over time due to mobility or other causes. For

example, to accommodate shadowing and multipath, we include a margin for error so that received

power can fluctuate even when the transmit power does not.

Of course, detection of selfish behavior is only the first step. Our future work will address

deterrence, and how devices can respond after determining that a neighbor is behaving selfishly.

To appear in IEEE DySPAN 2008

 21

8. References

[1] J. M. Peha. “Emerging Technology and Spectrum Policy Reform,” International Telecommunications

Union (ITU) Workshop on Market Mechanism for Spectrum Management, January 2007.

www.ece.cmu.edu/~peha/wireless.html

[2] J. M. Peha, “Sharing Spectrum through Spectrum Policy Reform and Cognitive Radio,” to appear in

Proceedings of the IEEE. www.ece.cmu.edu/~peha/wireless.html

[3] D. Reed. “Comments for FCC Spectrum Task Force on Spectrum Policy,”

www.reed.com/OpenSpectrum/FCC02-135Reed.html, July 10, 2002.

 [4] Meraki Wireless Network, http://meraki.com/.

[5] NetEquality Equal Access Community Internet, http://www.netequality.org/.

[6] The Champaign-Urbana Community Wireless Network, http://www.cuwin.net/

[7] R. Bruno, M. Conti, and E. Gregori. “Mesh Networks: Commodity Multihop Ad Hoc Networks.” In IEEE

Communication Magazine, Vol. 43, Issue 3, pp. 123-131, March 2005.

[8] T. Fujii, Y. Suzuki. Ad-hoc Cognitive Radio-Development to Frequency Sharing System by Using Multi-

hop Network-. Proc. IEEE DySPAN 2005, pp.589-92, Nov. 205.

[9] K. Hamdi, and K. B. Letaief. “Cooperative Communications for Cognitive Radio Networks.” PGNet 2007,

Jun. 2007.

[10] J. M. Peha, B. Gilden, R. Savage, S. Sheng, B. Yankiver, "Finding an Effective Sustainable Model for a

Wireless Metropolitan-Area Network: Analyzing the Case of Pittsburgh," 35th Telecommunications Policy

Research Conference, (TPRC) Sept. 2007. www.ece.cmu.edu/~peha/wireless.html

[11] A. Agarwal and P. R. Kumar. “Capacity Bounds for Ad hoc and Hybrid Networks,” ACM SIGCOMM

Computer Communications Review, Vol. 34, No. 3, July 2004.

[12] Y.-C. Hu and A. Perrig. "A Survey of Secure Wireless Ad Hoc Routing." In IEEE Security & Privacy,

special issue on Making Wireless Work, 2(3):28-39, May/June 2004.

[13] D.B. Johnson, D. A. Maltz, and J. Broch. “DSR: The Dynamic Source Routing Protocol for

Multi-Hop Wireless Ad Hoc Networks.” In Ad Hoc Networking, edited by Charles E. Perkins,

Chapter 5, pp. 139-172, Addison-Wesley, 2001.

[14] C. E. Perkins and E. M. Royer. “Ad Hoc On Demand Distance Vector (AODV) Routing.” IETF lnternet

Draft, http://www.ietf.org/rfc/rfc3561.txt, July 2003.

[15] C. E. Perkins and P. Bhagwat. “Highly Dynamic Destination-Sequenced Distance-Vector Routing

(DSDV) for Mobile Computers.” In Proceedings of the ACM SIGCOMM: Computer Communications Review,

Vol. 24, No. 4, pp. 234-244, Oct. 1994.

[16] S. Marti, T.J. Guili, K. Lai, and M. Baker. “Mitigating routing misbehavior in mobile ad

hoc networks.” In Proceedings of MOBICOM 2000, p. 255-265, 2000.

To appear in IEEE DySPAN 2008

 22

 [17] P. Michiardi and R. Molva. “Core: a Collaborative Reputation Mechanism to Enforce

Node Cooperation in Mobile Ad hoc Networks,” In Proceedings of the IFIP TC6/TC11 Sixth

Joint Working Conference on Communications and Multimedia Security, p. 107-121,

Deventer, The Netherlands, 2002.

[18] S. Buchegger and J.-Y. Le Boudec. “Nodes Bearing Grudges: Towards Routing Security,

Fairness, and Robustness in Mobile Ad Hoc Networks.” In Proceedings of the Tenth

Euromicro Workshop on Parallel, Distributed, Network-based Processing, p. 403-410,

January 2002.

[19] S. Buchegger and J.-Y. Le Boudec. “Performance Analysis of the CONFIDANT protocol.”

In Proceedings of 3
rd

 ACM International Symposium on Mobile Ad Hoc Networking and

Computing, June 2002.

[20] S. Buchegger, C. Tissieres, and J.-Y. Le Boudec. “A Test-Bed for Misbehavior Detection in

Mobile Ad-hoc Networks – How Much Can Watchdogs Really Do?” In Proceedings of the

Sixth IEEE Workshop on Mobile Computing Systems and Applications, 2004.

[21] Y. Rebahi, V. Mujica, and D. Sisalem. “A Reputation-Based Trust Mechanism for Ad hoc

Networks.” In Proceedings of the 10
th

 IEEE Symposium on Computers and Communications,

p. 37-42, 2005.

[22] Q. He, D. Wu, and P. Khosla. “SORI: A Secure and Objective Reputation-based Incentive

Scheme for Ad-hoc Networks.” In Proceedings of IEEE WCNC2004, March 2004.

[23] S. Bansal and M. Baker. “Observation-based Cooperation Enforcement in Ad-hoc

Networks.” Technical Report, Stanford University, 2003.

[24] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. “Sustaining Cooperation in Multi-Hop Wireless

Networks.” In Proceedings of the 2
nd

 Conference on Symposium on Networked Systems Design

Implementation, Vol. 2, pp. 231-244, 2005.

 [25] Y. Yoo and D. P. Agrawal. “Why Does It Pay to Be Selfish in a MANET?” IEEE Wireless

Communications, Vol. 13, issue 6, pp. 87-97, Dec. 2006.

[26] K. Balakrishnan, J. Deng, and P. K. Varshney. “TWOACK: Preventing Selfishness in Mobile Ad Hoc

Networks, “in Proceedings of IEEE Wireless Communications and Networking Conference, vol. 4, p. 2137-

2142, 2005.

[27] K. Liu, J. Deng, and K. Balakrishnan. "An Acknowledgement-Based Approach for the Detection of

Routing Misbehavior in MANETs," IEEE Transaction on Mobile Computing, Vol. 6, No. 5, May 2007.

 [28] D. Djenouri and N. Badache. “New Approach for Selfish Nodes Detection in Mobile Ad hoc

Networks.” Workshop of the 1
st

 International Conference on Security and Privacy for Emerging Areas in

Communication Networks, p. 288-294, September 2005.

[29] J. R. Douceur. “The Sybil Attack.” In First International Workshop on Peer-to-Peer Systems (IPTPS ’02),

Mar. 2002.

To appear in IEEE DySPAN 2008

 23

[30] S. Singh, M. Woo, and C. S. Raghavendra, “Power aware routing in mobile ad hoc networks.” In

Proceedings of ACM MOBICOM, 1998, pp. 181-190.

 [31] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, L. Viennot. “Optimized Link State

Routing Protocol for Ad Hoc Networks.” In Proceedings of the 5
th

 IEEE Multi Topic Conference (INMIC

2001), 2001.

	Carnegie Mellon University
	Research Showcase @ CMU
	10-2008

	Detecting Selfish Behavior in a Cooperative Commons
	Hyun Jin Kim
	Jon M. Peha
	Recommended Citation

