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Detecting Selfish Behavior in a Cooperative Commons 

Hyun Jin Kim and Jon M. Peha 

Carnegie Mellon University 

{hyunjin, peha}@cmu.edu 

Abstract 

A cooperative commons is a type of ad hoc network in which all devices are required to communicate 

and carry each other’s traffic, even when devices are associated with different administrative domains.  

Thus, infrastructure is constructed at little cost to each owner.  One unusual feature of the cooperative 

commons is that as more devices join, total communication capacity increases.  These advantages are 

possible when devices are willing to cooperate and use their own resources to carry traffic of others, but 

are undermined by selfish behavior, where a device’s actions increases benefit for that device while 

decreasing the average benefit for all devices.  This paper demonstrates that selfish behavior cannot be 

detected with the prominent routing protocols currently used in ad hoc networks, and proposes a novel 

approach that includes use of routing protocols in which selfish behavior cannot be concealed, and 

watchdog algorithms that observe behavior of neighbors for signs of selfishness.  We prove that our 

approach reliably detects all acts of selfishness by individual devices in a network where devices are fixed 

and there are no packet collisions.  We demonstrate that our watchdog algorithms work with a general 

class of routing protocols, and show how existing routing protocols can be extended to fit in that class.   

1.   Introduction 

If it proves to be viable, the cooperative commons could provide a valuable and radically different 

approach to the deployment of wireless infrastructure and the management of spectrum [1-3].  A block of 

spectrum could be allocated for shared use by any and all wireless devices.  Unlike today’s unlicensed 

spectrum bands, all devices in the cooperative commons would be able to communicate with each other 

using an established protocol, and would be required to cooperate with each other.   

A cooperative commons could be established in a number of ways.  First, a regulator or license-holder 

may allocate a spectrum band in which a device can only be deployed if it cooperates as part of a 

cooperative commons [1, 2].  Second, a cooperative commons may form in today’s unlicensed bands, if 

enough people choose to participate, although with this approach, the cooperative commons must 

contend with some unlicensed devices that are not part of the commons.  A number of commercial 

companies, such as Meraki in San Francisco [10] and non-profit organizations, such as NetEquality Equal 

Access Community Internet [5], and the Champaign-Urbana Community Wireless Network [6], have 

pursued this approach [7].  Third, devices in a cooperative commons may share spectrum with the existing 

licensed primary spectrum user, and operate as secondary devices [1, 2]; secondary devices may 

cooperate both to avoid harmful interference to the primary, and to carry each other’s traffic.  Many 

researchers have suggested this approach using cognitive radio system (e.g. [8, 9]). 

In any one of the above scenarios, the end devices form their own shared infrastructure, 

fundamentally changing the cost of large-scale deployment.  For example, this may make a wireless 

metropolitan-area network financially sustainable where it would not be sustainable today [10].  

Moreover, this can lead to far greater spectral efficiency [3, 11], perhaps alleviating the shortage of 

available spectrum [3].  However, there are serious security challenges associated with the cooperative 

commons [1, 2], some of which are addressed in this paper. 
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A cooperative commons is one type of ad hoc network without pre-existing infrastructure, but with 

additional technical challenges that are not present in typical ad hoc networks.  First, because any device 

is allowed to join the cooperative commons, devices must cooperate with and carry traffic for other 

devices, even though these devices do not serve the same administrative domain [1, 2].  This leads to 

many challenges.  For example, no protocol can be adopted for which it is assumed that cooperating 

devices have a trust relationship.  Second, there is no limit in the number of devices that may join a 

cooperative commons.  Thus, protocols must remain efficient even if the network grows large.  The 

potential for large size also has benefits.  One unusual advantage of the cooperative commons is that as 

more devices are added, total system capacity increases. This occurs because increasing the number of 

devices may decrease the mean distance between devices, so that devices can reduce transmit power and 

increase frequency reuse [3, 11].  Consequently, communications capacity increases, which is referred to 

as cooperative gain [1-3].   

Because devices in a cooperative commons cooperate and carry each other’s traffic, these devices 

must be willing to use their own battery power and delay their own packets in order to forward packets 

for unaffiliated devices outside their administrative domain.  However, there may be devices that exhibit 

selfish behavior, which is behavior that increases the benefit for this device, but decreases the average 

benefit for all devices, by some reasonable measure of benefit.  For example, consider a network in which 

a device establishes a path with routing packets before sending data packets.  An effective selfish 

behavior would be to drop these routing packets or forward with a time-to-live (TTL) of 0 so that no paths 

can be established.  A device could thereby avoid forwarding many subsequent data packets.  Another 

selfish behavior would be to make paths that include the selfishly behaving device seem longer than they 

really are, perhaps by artificially increasing hop counts so the sources are more likely to choose another 

routes that appear to be shorter.  The selfish acts above are even more problematic when combined with 

selfish manipulation of transmit power.  Often, part of detecting selfish behavior is requiring devices to 

watch the transmissions of their neighbors [16-23, 26].  When devices know that their behavior is 

observed by neighbors, they may still suppress routing packets selfishly and evade detection by 

transmitting at a power large enough to be seen by the watchdogs, but too small to be received by the 

nominal recipient.   

In a cooperative commons, there may be devices that behave maliciously to disrupt and damage 

normal network operation, a topic that is also being studied [12].  This paper addresses selfish behavior 

which has received less attention.     

Our approach detects selfish behavior that involves routing protocol packets but not data packets 

because devices can benefit greatly from selfish behavior with routing packets, but not with data packets.  

When Device A behaves selfishly and drops a data packet, Device A may benefit at that moment by 

avoiding a transmission.  However, the dropped data packet is likely to be retransmitted to Device A, 

possibly causing a collision that prevents Device A from receiving a packet it wants.  Moreover, if Device A 

selfishly drops data packets but handles routing packets in accordance with the protocol, then the source 

may repeatedly attempt to reestablish a route through Device A, which will create additional packets that 

Device A must carry.  Therefore, although selfish behavior in dealing with data packets may benefit a 

device in the short term, it ends up wasting resources in the long term.  On the other hand, manipulating 

even a small number of routing protocol packets can provide a big gain because a device may be able to 

avoid subsequent transmission of a potentially large number of data packets for others.   
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This paper presents a novel approach that makes it possible for all devices behaving selfishly to be 

detected by one or more neighbors.  We require each Device A to observe the behavior of its neighbors 

even when those neighbors are transmitting to devices other than Device A, and to watch for signs of 

selfishness.  No approach based on this can succeed when steerable antennae can change transmission 

direction from one packet to the next, because if a device can send entirely different content to each of 

its neighbors, then a wathdog device can only observe packets sent to it deliberately.  However, as long as 

there are no steerable antennae such that a device that increases the power it radiates in one direction by 

x% also increases the power in all directions by x%, it is possible to detect selfish behavior.    

Similarly, when neighboring devices violate the protocol in a coordinated or complementary way, no 

approach can succeed in detecting all forms of selfish behavior.  Consider the case where Device A and all 

of its neighbors collude to avoid expending resources on devices outside the group.  Device A can drop all 

routing packets that attempt to establish a path unless the source or destination of that path is among the 

device’s partners in collusion.  The only devices that can observe Device A’s violations of the protocol also 

benefit from those violations.   Vulnerability to collusion is an inherent and potentially problematic 

property of a cooperative commons. However, any device can join a cooperative commons, so no device 

can be assured of having neighbors willing to collude.  In this paper, we consider the case where few 

devices are willing to collude selfishly.  We will show that if a device behaves selfishly and its neighbors 

follow the prescribed protocol and watchdog algorithms, then one or more of those neighbors will detect 

the selfish behavior.  Moreover, while we will assume that multiple devices do not collude, we will allow 

for the possibility that a single device may create multiple identities through a Sybil attack [29]; selfish 

behavior can be detected even if those collocated identities collude. 

Section 2 presents reviews previous work on detecting selfish behavior in ad hoc networks, and 

explains why no existing approach can detect all selfish behaviors described above in the context of a 

cooperative commons.  Our approach requires use of routing protocols with characteristics that are 

generally not present today.  Section 3 states our requirements for routing protocols, and how some 

prominent routing protocols can be extended to meet these requirements.  Section 4 describes how 

selfish behavior is detected and proves that all selfish acts are detected in an environment in which 

devices are fixed, and packets are not lost.  Although it is beyond the scope of this paper, these 

mechanisms can be extended to support a more realistic environment that includes mobility and packet 

loss.  We conclude this paper in Section 5.   

2. Related Work 

 Many approaches [16-27] have been suggested to detect selfish behavior in different kinds of ad 

hoc networks, although not necessarily for a cooperative commons.  In some approaches, devices 

determine whether a neighbor is selfish based entirely on what they observe (watchdog-based schemes).  

In other approaches, devices make decisions in part on what they are told by others (which would include 

acknowledgement-based schemes).  While many previously proposed approaches may be effective in the 

networks for which they were intended, none detects selfish behavior in the unique context of a 

cooperative commons.   

 In a number of approaches [16-24], a device that selfishly drops packets is detected as follows.  

After transmitting a packet that must be forwarded, a device observes its neighbors.  Failure to forward 

the packet is identified as selfish behavior, but all these watchdog-based schemes mis-detect devices that 

are cooperative as selfish in several common situations. 
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One cause for these problems is duplicate suppression, which is generally needed in ad hoc 

networks.  When a packet is flooded, many devices receive multiple duplicates (although duplicates can 

differ in fields that change en route like hop count).  With duplicate suppression, each node forwards only 

one.  Duplicate suppression vastly decreases the overhead of flooding, which is an important feature of 

routing protocols typically used in ad hoc networks such as Dynamic Source Routing (DSR) [13] and Ad-

hoc On-demand Distance Vector (AODV) [14].  However, when a device does not forward a routing packet 

because that device has already forwarded a duplicate, the watchdog schemes that have previously been 

proposed [16-24] would misidentify this as selfish behavior.   

The occasional false positive might be tolerable if it were rare, as devices might then reasonably 

assume that neighbors that are only rarely seen acting selfishly are really cooperating.  However, the false 

positives described above may be a common occurrence for some unfortunate devices.  Consider the 

topology where a source floods a routing packet, and both Devices A and B re-flood the packet.  Device C, 

that is a neighbor of both Devices A and B, forwards the packet from Device A, but suppresses the 

duplicate from Device B.  Thus, Device B concludes that Device C is acting selfishly.  Every time the source 

floods a new packet, Device C will be seen as behaving selfishly by either Devices A or B, depending on 

whose packet Device C receives first.  Moreover, the same problem will occur in any topology with a loop.   

 When duplicate suppression is used, watchdog-based detection approaches are also vulnerable 

to a timing attack.   Typically, routing protocols that suppress duplicate packets, such as DSR [13] and 

AODV [14], allow a device to suppress any later legitimate packets as long as one is forwarded, even if the 

duplicates arriving later provide better paths.  Thus, a device can wait to receive several duplicates, and 

only forward the packet with the longest path, reducing the chance that a route through this device will 

be selected.  Current watchdog approaches would not detect this.       

 As explained in Section 1, a device can also use power control to evade detection by watchdog 

schemes, and the previously proposed watchdog schemes [16-24] have no way to detect selfish behavior 

when this technique is used.   

In some approaches, devices rely in part on information they do not observe themselves.  This 

category includes the approach based on two-hop acknowledgements [26-28].  In this approach, devices 

observe their neighbors for possible selfish behavior similar to the watchdog-based approaches.  When 

Device A becomes suspicious of its neighbor Device B, Device A transmits a packet through Device B to 

Device C with a request for an explicit 2-hop acknowledgement from Device C.   When Device C 

successfully receives the packet with the request, Device C sends an acknowledgement to Device A after 

cryptographically hashing [26-27] or signing [28] the packet.  Device A concludes that Device B has 

forwarded the packet when Device A receives the acknowledgement from Device C.   

 The above detection approach requires a security association between any pair of devices, and 

this is fine for the context for which it was developed.  However, trusting other devices does not work 

without identity verification of devices due to the possibility of a Sybil Attack [23]; to lengthen a route, a 

device may use multiple identities.  Unless it is guaranteed that a device is only assigned a unique identity, 

i.e. with tamper-proof hardware, approaches like this will not work in a cooperative commons. 

In addition to the authentication challenges in a cooperative commons, approaches that are based on 

trusting other devices suffer from another problem; devices may intentionally lie.  For example, devices 

using the two-hop acknowledgement scheme may choose not to send acknowledgements so their 

neighbors appear to be acting selfishly.   
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3. Routing Protocol Features   

Although known approaches cannot reliably detect selfishness in a cooperative commons due to 

complications like duplicate suppression and power control, we can make selfish behavior detectable by 

requiring that the underlying routing protocol has features that are not found in current protocols.  In this 

section, we propose a set of features.  Section 4 will show how selfish behavior involving routing protocols 

with these features can always be detected.   

 

 Path lengths are measured in hops.  Where information on path length is equally recent, we 

define the best path as the one with the minimum hop count.  We allow but do not require the routing 

protocol to favor paths with more recent information about length.  For example, the path with a higher 

“sequence number” takes higher precedence in AODV [14], regardless of hop counts. Duplicate 

suppression is allowed, but a duplicate cannot be suppressed if it announces a better path than was 

previously known. 

 Every device maintains the addresses of the two-hop neighbors that are on the best paths to 

reach destinations in their routing tables.  With this field, devices can check if packets travel on correct 

paths. If the routing table stores full source routed paths, this field is not needed.   

 Power control has been suggested for energy-efficient routing in ad hoc networks [30]. In 

protocols such as DSR [13], AODV [14], and Destination Sequenced Distance Vector (DSDV) [15], a device 

uses maximum power to transmit packets without specified recipients, but on packets with specified 

recipients, power is reduced to the minimum level that is sufficient to reach the intended recipient(s).  In 

order to prevent the selfish attack with transmission power control as described in Section 1, we require 

devices to transmit all routing packets at maximum power.   

Our mechanism detects selfishness for packet types that fall in any of three categories.  

Definitions of these three categories and the algorithm that indicates how devices handle packets of each 

category are described in Sections 3.1 to 3.3. Section 3.4 describes how minor changes to a number of 

existing protocols can make all of their packet types fall within these three categories. 

3.1 GENERAL ANNOUNCEMENT 

 Packets in the first category, which we call GENERAL ANNOUNCEMENTs, are flooded through the 

network to announce the distance to the device that initiated the flood.  In some protocols, GENERAL 

ANNOUNCEMENTs are targeted to a specific destination to find the shortest path.  .  With minor changes, 

Routes Request packets (RREQ) in DSR [13] and AODV [14], and Update messages in DSDV [15] are 

prominent examples of this category.   

GENERAL ANNOUNCEMENTs must contain three fields that are common to routing protocols: the 

addresses of the source and the destination, and the distance to the source.  Distance can be represented 

by hop count, or any field from which hop count can be derived (i.e. full source-routed path in DSR [13]).  

The source that floods the GENERAL ANNOUNCEMENT may set a TTL, but it is not required.   These 

packets also contain atypical fields.  One is the address of the device that is the next hop to the source, 

which we call next_to_source.  The 1-bit duplicate_flag indicates whether the packet is a duplicate.  

Sending a duplicate packet with the flag set allows a watchdog to verify that the packet was not selfishly 

dropped. A device that receives a GENERAL ANNOUNCEMENT with this bit set is required to forward the 
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packet only if it announces a path to the source that is better than the best path that the receiving device 

knew previously.  Since this is often not the case, the packet can be dropped, without risk that the 

behavior will be identified as selfish. Other than fields cited above (duplicate_flag, next_to_source, path 

traveled, hop_ count, and TTL), we assume that fields in a GENERAL ANNOUNCEMENT remain unchanged 

as the packet is forwarded through the network.   

Every device promiscuously listens to packet transmissions, and here is how a device acts after 

receiving a GENERAL ANNOUNCEMENT.  If the packet has a TTL that has expired, no action is required and 

the device may drop the packet.  If there is no TTL that has expired, and the duplicate_flag is set, then the 

device is required to respond if and only if the packet announces a path to the source that is better than 

the best path that the device knew previously.  If the duplicate_flag is not set, then the device must 

respond in one of the following two ways. If the GENERAL ANNOUNCEMENT is targeted to a specific 

destination and the device knows of a path to that destination, then the device may respond by sending a 

TARGETED ANNOUNCEMENT to the sender with information about the best known path to the 

destination.  The TTL field is set such that the sum of the TTL and the Hop_count is the same as the 

received packet, and the duplicate_flag is not set.  If it does not send such a TARGETED ANNOUNCEMENT, 

the device must forward the GENERAL ANNOUNCEMENT to all of the device’s neighbors as follows.  The 

Hop_count of the outgoing packet is one plus the Hop_count of the incoming packet, or the length of the 

shortest path this device knows back to the source, whichever is smaller.  If there is a TTL field, the device 

sets the TTL such that the sum of the TTL and the Hop_count is the same as for the received packet.  The 

device sets the duplicate_flag of the packet if and only if the device already flooded a duplicate packet 

with a path back to the source of the flood that was as good as, or better than the path announced in this 

packet.  In cases where the device updates its routing table because of this GENERAL ANNOUNCEMENT, 

the two-hop neighbor in the table is the device indicated in the next_to_source of the this packet.   

 

3.2 TARGETED ANNOUNCEDMENT 

 

 Packets in the second class, which we call TARGETED ANNOUNCEMENTs, are typically used to 

confirm working paths.  These packets are sent along paths that have been previously identified as valid 

with the minimum number of hops, perhaps using GENERAL ANNOUNCEMENTs or some other means.  

TARGETED ANNOUNCEMENTs are unicast along working paths, and announce the distance to devices that 

initiated these packets.  With modifications, Route Reply packets (RREP) in DSR [13] and AODV [14] are 

examples.      

 TARGETED ANNOUNCEMENTs contain fields that are common to today’s routing protocols: the 

addresses of the source and destination, distance to the source, and recipient, which is the neighbor to 

whom this packet is addressed.  TARGETED ANNOUNCEMENTs may contain the TTL field, but it is not 

required. TARGETED ANNOUNCEMENTs also contain three atypical fields: the addresses of the device that 

is the next hop to the source and the device that is the next hop to the destination beyond the recipient, 

which we call next_to_source and next_to_destination respectively.   Specifying the next_to_destination 

tells the recipient to whom it must forward the packet so as not to be identified as behaving selfishly, and 

specifying next_to_source tells the device so indicated to watch for selfish behavior.  There is also a 1-bit 

duplicate_flag field, as described above for GENERAL ANNOUNCEMENTs. Other than fields cited above 

(duplicate_flag, next_to_source, next_to_destination, path traveled, hop count, recipient, and TTL), we 
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assume that fields in a TARGETED ANNOUNCEMENT remain unchanged as the packet is forwarded 

through the network. 

Every device promiscuously listens to packet transmissions, regardless of the recipient specified 

in the packet header.   Here is how a device handles a TARGETED ANNOUNCEMENT.  If the packet 

announces a path to the source that is better than what is in the device’s routing table, then it updates 

the hop count field and the two-hop neighbor field, as indicated in the next_to_source of the TARGETED 

ANNOUNCEMENT, in the routing table.  If the packet contains a TTL that has expired, no action is required.  

If there is no TTL that has expired and the device is the intended recipient, then the device forwards the 

TARGETED ANNOUNCEMENT if and only if the duplicate_flag is not set or the packet announces a path 

back to the source that is shorter than the previously known best path.  When forwarding, the device sets 

the Hop_count of the outgoing packet to either one plus the Hop_count of the incoming packet, or the 

length of the shortest path this device knows back to the source, whichever is smaller.  If the packet 

contains a TTL, the device sets the TTL such that the sum of the TTL and the Hop_count is the same as for 

the received packet.  The device sets the next_to_source as the 1-hop neighbor from which the device 

received the TARGETED ANNOUNCEMENT, and the next_to_destination as indicated in the two-hop 

neighbor field for the intended destination in the routing table.  The device sets the duplicate_flag only if 

the device has already sent a packet to the same neighbor announcing a path back to the source that was 

as good or better than the one in this TARGETED ANNOUNCEMENT.    

3.3 UPDATE 

 A device broadcasts a packet of the third class, which we call UPDATE packets to report that a 

route that went through the device is broken, or has increased in length.  Update packets contain the 

sender’s address, and for every path that has changed, the destination and the new path length.  (If a 

protocol only uses UPDATEs where the length has become infinity, then this path length is implicit.)   

A device responds to an UPDATE as follows.  If the device knows of a better path to the 

destination that does not go through the sender of the UPDATE, then the device sends a TARGETED 

ANNOUNCEMENT to the sender with information on this path.  Otherwise, the device updates its table as 

appropriate.  If paths get worse, the device may transmit its own UPDATE packet, but we do not require 

this.    With modifications, Route Error packets (RERR) in DSR [13] and AODV [14] , and Update messages 

that are generated when path lengths increase in DSDV [15], are prominent examples. 

3.4 Extending Known Routing Protocols 

 Known routing protocols can be extended such that all routing packets fit in the categories 

described above.  In DSR [13], a RREQ can be easily extended to a GENERAL ANNOUNCEMENT by adding 

the duplicate_flag.  The next_to_Source field is already in the RREQ since DSR is source routed, and the 

hop_count field can be easily derived.  A RREP can be extended to be a TARGETED ANNOUNCEMENT by 

adding the duplicate_flag and the hop_count.  The next_to_source and the next_to_destination are 

implicit in the source route.  A RERR is an UPDATE packet without any modification.     

Similarly, all of the routing protocol packets for AODV [14] can be extended.  A RREQ becomes a 

GENERAL ANNOUNCEMENT by adding the next_to_source and the duplicate_flag. The next_to_source, 

next_to_destination, and duplicate_flag fields can be added to a RREP packet to be a TARGETED 

ANNOUNCEMENT.  By looking in the routing table, every device can easily obtain the values for the 
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next_to_source and the next_to_destination.  A RERR packet and a HELLO message are UPDATEs without 

modification.   

Unlike current DSR and AODV protocols, which only require the RREQ and the RERR to be 

transmitted at maximum power, devices must transmit all routing packets at maximum power.  Moreover, 

DSR and AODV allow devices to suppress duplicate packets, but we require devices to propagate duplicate 

packets if they announce shorter paths.   

 It is also possible to devise proactive routing protocols whose routing protocol packets all fit 

within the above categories.  For example, each device could periodically flood a GENERAL 

ANNOUNCEMENT, which would allow all other devices to find the current shortest path back to the 

originator of the packet. 

Note that there are protocols containing packet types that do not fall within any of the above 

categories, and which therefore cannot easily be extended such that selfishness is detectable using the 

algorithms described in this paper.  For example, there are packets that are flooded with a field that 

specifies forwarders, as in [31].  If a device is allowed to choose which of its neighbors forward a packet 

and which do not, then a device can behave selfishly by specifying only those neighbors that are not on 

the shortest path.  Thus, only the longer paths that go through this device will be visible and longer paths 

are less likely to be selected.     

4. Detecting Instances of Selfishness 

This section presents our detection mechanism.  It proves that our mechanism detects every 

instance of selfishness and never identifies a device as behaving selfishly when that device follows the 

protocol under simplifying about the environment.  These assumptions are described in Section 4.1.  A 

follow-up paper will extend the mechanism to a more complex environment.   

Selfish behavior can take one of three forms: failing to correctly transmit a packet that should be 

transmitted, transmitting a packet that should not be transmitted, and transmitting a packet at the 

incorrect power.  (Forwarding a packet incorrectly is both failing to forward correctly, and transmitting a 

packet that should not be transmitted.)  With the categories of packets defined in Section 3, the only time 

a device is required to transmit a packet is after that device has received a GENERAL or TARGETED 

ANNOUNCEMENT.  Thus, the sender of such packet can watch to ensure that the proper action is taken by 

all neighbors.  When a device fails to respond as required in a way that might be selfish, a watchdog 

mechanism identifies this behavior as selfish.  This mechanism is described in Section 4.2.  As described in 

Section 1, a device can also behave selfishly through power manipulation alone.  To detect this, all devices 

observe the power levels of packets received from all neighbors.  This mechanism is described in Section 

4.3.  Where devices generate packets at their own initiate in violation of the protocol and in a way that 

might be selfish, this must be detected by a different mechanism, which is described in Section 4.4.  For 

this, devices observe their neighbors promiscuously to detect packets containing incorrect information. 

4.1 Assumptions 

 It is possible to accurately detect every instance of selfish behavior in an environment where 

packets are not lost due to interference, links between neighbors are bidirectional, devices are stationary, 

and queuing delays are bounded.  More precisely:  
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1. No Packet Loss: Let PAB be the power threshold from Device A to Device B where PAB is a constant.  

If Device A transmits a packet to Device B at power ≥ PAB, then Device B always receives the 

packet.  On the other hand, if Device A transmits at power lower than PAB, then Device B never 

receives the packet.   

2. Bidirectionality: Devices send packets to and accept packets from their neighbors.  A Device A 

considers another Device B to be its neighbor if and only if Device A has successfully received a 

packet from Device B and Device B has successfully received a packet from Device A.   

3. Power Relation: For packets traveling from any Device A to Device B, increasing Device A’s 

transmit power increases the received power at Device B. 

4. Bounded Delay: Any packet that a device intends to transmit will be transmitted and will be 

received by all neighbors within a period of duration x after arriving, and all devices in the 

network know the duration x. 

 

Theorem 1 If Devices A and B are neighbors and Device A transmits a packet at maximum power, 

then Device B receives it.     

 

Proof: 

 By assumption, Devices A and B are neighbors.  According to Assumption 2 above, if Devices A 

and B are neighbors, then Device B has successfully received a packet from Device A.  By Assumption 1, 

Device B receives a packet only if Device A transmits the packet at a power ≥ PAB, which implies that 

Device A transmitted some Packet Q at a power ≥ PAB.   By definition, Device A’s maximum power is 

greater than or equal to the power at which Packet Q was transmitted, so this maximum power is ≥ PAB.  

By assumption 2, whenever Device A transmits a packet at any power above PAB, which would include 

Device A’s maximum power, Device B must receive the packet.   QED 

  

4.2 Selfishness in Packet Forwarding 

 As discussed in section 1, after receiving a TARGETED or GENERAL ANNOUNCEMENT, a device 

that does not want to carry traffic for others can alter fields to make a path look worse than it is, or it can 

stop spreading news of good routes that include the device itself.  Thus, after transmitting a TARGETED or 

GENERAL ANNOUNCEMENT, a device determines which of its neighbors are expected to respond, perhaps 

by forwarding the packet.  It then watches those neighbors until the expected packets are observed, and 

makes sure that the neighbor did not alter any field in a selfish manner.  

Each device uses a Verification Table to keep track of anticipated responses from neighbors.  

Each entry in the Table represents a packet for which that device is waiting for a response.  Each entry 

contains the packet, a neighbor_list and a timer.  The neighbor_list is the list of neighboring devices that 

are expected to respond.  The timer indicates the expiration time of the entry; whenever an entry is 

added, the timer is set to expire after a period of duration x, as defined in Assumption 4.       

Sections 4.2.1 and 4.2.2 present and prove the effectiveness of watchdog mechanisms that can 

determine whether all neighbors who are required to respond to a packet have indeed responded. 

Section 4.2.1 addresses TARGETED ANNOUNCEMENTs and Section 4.2.2 addresses GENERAL 

ANNOUNCEMENTs.  It is assumed in these sections that devices can tell when a neighbor forwards a 

packet correctly, which in this paper means a device is transmitting the packet without any alterations 

that could possibly constitute selfish behavior.  Section 4.2.3 describes how this is achieved.  Section 4.2.4 

explains why a separate watchdog mechanism of this kind is not needed for UPDATEs.    

4.2.1Detection with a TARGETED ANNOUNCEMENT 
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This section describes the algorithm which detects devices that behave selfishly when receiving a 

TARGETED ANNOUNCEMENT.  After transmitting a TARGETED ANNOUNCEMENT, a device must monitor if 

it expects its neighbor to forward the packet, which occurs when the duplicate_flag is not set and the TTL 

(if specified) is not expiring.  In this case the device creates an entry for that packet in the Verification 

Table in which the neighbor_list consists of this neighbor. 

If the device overhears its neighbor forward the TARGETED ANNOUNCEMENT, the device checks 

that its neighbor has not increased the hop count by more than one. It also verifies that the packet was 

forwarded correctly, the details of which will be presented in Section 4.2.3.  If all conditions are met, the 

device removes the entry for this neighbor from the Verification Table.  On the other hand, if the timer for 

an entry expires, then the device concludes that the device in the neighbor_list of that expiring entry has 

behaved selfishly by failing to forward the TARGETED ANNOUNCEMENT correctly.       

We now prove the correctness of our algorithm; selfish acts of this type will be identified by the 

algorithm, and a device’s behavior will only be identified as selfish if that device is violating the protocol in 

a potentially selfish manner. Because there is often no easy way to prevent the Sybil attack [29] in a 

cooperative commons, we allow the possibility that any device may have multiple identities.  We first 

prove that if Identity B behaves selfishly, then a neighboring Identity A can detect it.  We then prove that 

even if Device B has multiple identities, it will be identified as selfish by at least one other device if and 

only if Device B behaves selfishly.  

Theorem 2 Let Identity A (IDA) follow the protocol and transmit a TARGETED ANNOUNCEMENT to 

its neighbor Identity B (IDB).  Let the protocol require IDB to forward the TARGETED ANNOUNCEMENT, but 

IDB fails to forward the TARGETED ANNOUNCEMENT correctly.  Then, IDA detects IDB’s behavior as selfish 

using the mechanism in Section 4.2.1. 

Proof (by contradiction): 

Assume that IDA does not detect IDB’s selfish behavior.  Thus, no entries in IDA’s Verification Table 

expire when IDB is in the neighbor_list.   This implies that either the entry was never added to the 

Verification Table, or the entry was added and removed before the timer of the entry expires.   

As described in Section 3.2, a device is required to forward a TARGETED ANNOUNCEMENT if and 

only if the duplicate_flag is not set and the TTL counter is not expired (if specified), or the duplicate_flag is 

set, the TTL counter is not expired (if specified) and the packet announces a better path than what IDA has 

announced before.  If IDA announces a better path than what IDA previously announced with the 

duplicate_flag set, this implies that IDA has violated the protocol as specified in Section 3.2, contradicting 

the assumption that IDA follows the protocol. Thus, the assumption that IDB was required to forward the 

TARGETED ANNOUNCEMENT implies that IDB received the packet with the duplicate_flag not set and the 

TTL counter not expiring (if specified).  As the algorithm in Section 5.2.1 specifies, a device creates an 

entry in the table when the device forwards a packet with the duplicate_flag not set and the TTL counter 

not expiring (if one is specified).  This implies that IDA did create an entry in its table.  Thus, the entry must 

have been removed before the timer expired. 

As specified in the algorithm in Section 4.2.1, IDA will remove the entry from its table only when it 

overhears IDB transmit the packet, and IDA has verified that the packet was forwarded correctly.  This 

contradicts the assumption.    QED 
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Theorem 3 Let Identity A (IDA) and Identity B (IDB) be on the path with the smallest hop counts.  

Then, IDA and IDB cannot belong to the same device.   

Proof (by contradiction): 

 Assume that IDA and IDB are identities of the same device.  By assumption, the shortest path 

includes both IDA and IDB, and possibly other identities in between.  Without loss of generality, let the 

transmission power of IDB be ≥ the transmission power of IDA.  This implies that all neighbors of IDA
 
are 

neighbors of IDB, which in turn implies that IDA’s neighbor, which is on the same shortest path and is not 

located in between IDA and IDB, is also a neighbor of IDB.  Hence, there exists a path between that 

neighbor and IDB, excluding IDA and all other identities in between IDA and IDB (if any).  This path is shorter 

since it does not include any identities that were not in the original path, and it excludes at least one (IDA) 

that was on the original path.  However, this contradicts the assumption that both IDA and IDB are on the 

shortest path.   QED 

 As described in Section 3.2, a TARGETED ANNOUNCEMENT is sent along the path that sender 

believes has the minimum number of hops.  Theorem 4 shows that, as long as this is the case, a device 

behaving selfishly will be detected by a neighboring device, even if devices are able to assume multiple 

identities.   

Theorem 4   Let Identity A (IDA) follow the protocol and transmit a TARGETED ANNOUNCEMENT to 

its neighbor Identity B (IDB) along a path with the smallest hop count from a source to a destination.  Let 

the protocol require IDB to forward the TARGETED ANNOUNCEMENT, but IDB fails to forward the 

TARGETED ANNOUNCEMENT correctly.   Then, an identity on a different device from Identity IDB identifies 

IDB’s behavior as selfish using the mechanism in Section 4.2.1.    

Proof: 

 The TARGETED ANNOUNCEMENT is sent along the path that has the minimum number of hops, 

so by Theorem 3, IDA and IDB belong to different devices.  Moreover, by Theorem 2, IDA detects selfish 

behavior of IDB.  Therefore, it is the device with the identity IDA that detects selfish behavior of another 

device with the identity IDB.   

Theorem 5 Let Identity A (IDA) follow the protocol, and conclude using the mechanisms in Section 

4.2.1 that Identity B (IDB) has behaved selfishly.  Then, (i) IDB has received a TARGETED ANNOUNCEMENT 

that IDB was required to forward correctly, (ii) IDB failed to forward the packet correctly and at the 

required power before its behavior is identified as selfish, and (iii) IDB did not ever intend to forward the 

packet correctly and at the required power.     

Proof: 

As described in this section, IDA detects IDB’s behavior as selfish only when a timer expires, and 

the entry in IDA’s table associated with that timer includes IDB as the neighbor_list.  A device creates an 

entry in the Verification Table associated with a given neighbor when and only when it forwards a packet 

to that neighbor with the duplicate_flag not set and the TTL counter of that packet not expiring (if 

specified).  Thus, IDB must have been IDA’s neighbor, and IDA must have transmitted a TARGETED 

ANNOUNCEMENT to IDB with the duplicate_flag not set and the TTL counter greater than one.  By 

assumption, IDA follows the protocol that requires a device to transmit a TARGETED ANNOUNCEMENT at 
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maximum power, as explained in Section 3.  Hence, by Theorem 1, when IDA transmits a TARGETED 

ANNOUNCEMENT to IDB, IDA must have transmitted at maximum power, and IDB that is a neighbor of IDA 

(by assumption) must have received the packet.  Since the duplicate_flag was not set and the TTL counter 

did not reach zero, IDB was required to forward the packet.  Thus, (i) is proven. 

As described in Section 4.2.1, IDA would remove the entry associated with a neighbor if it sees 

that neighbor forward the associated packet correctly.  Since the entry is still there when the timer 

expires, IDA did not see this occur before the timer expires.  By Theorem 1, IDA receives the packet that 

the neighbor IDB transmits at maximum power.   As described in Section 3, the protocol requires a device 

to transmit a TARGETED ANNOUNCEMENT at maximum power.  Since IDA follows the protocol and did not 

see IDB forwarding the packet correctly, IDB did not forward the packet correctly at the required power 

before IDA’s timer expired, which is the time at which IDA identifies IDB’s behavior as selfish.  Thus, (ii) is 

proven. 

As described in Section 4.2, IDA’s timer expires a period of duration x after it forwards the 

TARGETED ANNOUNCEMENT.  By Assumption 4 in Section 4.1, any packet that IDB intends to transmit will 

be transmitted within the period of duration x.  Since the packet has not been forwarded correctly and at 

the required power when the timer expires, and the protocol requires that the timer expires a period of 

duration x after the packet was received, IDB did not intend to forward the packet correctly and at the 

required power.  Thus, (iii) is proven.  

4.2.2 Detection with a GENERAL ANNOUNCEMENT 

In this section, we describe the algorithm which detects devices that behave selfishly after 

receiving a GENERAL ANNOUNCEMENT.  Similar to Section 4.2.1, a device that is flooding a GENERAL 

ANNOUNCEMENT must determine whether it requires any of its neighbors to forward that packet, and if 

so, the device must monitor to ensure that the packet has been forwarded correctly.  As discussed in 

Section 3.1, the device does not watch that its neighbor(s) forwards the packet if and only if the 

duplicate_flag is set or the TTL counter (if specified) is expiring, in which case no entry is added to the 

Verification Table.  In other cases where the duplicate_flag is not set and the TTL counter (if specified) is 

bigger than one, the device determines which of its neighbors will be required to forward the packet.  The 

device does not require all of its neighbors to forward the packet; the device does not require further 

forwarding from those neighbors, including the previous hop that flooded this GENERAL 

ANNOUNCEMENT, that previously flooded the GENERAL ANNOUNCEMENT and retransmitting this packet 

will not announce smaller hop counts.  For all other neighbors, the device adds an entry to the 

Verification Table (i.e., the neighbor_list for this entry contains all other neighbors).    

When a device overhears its neighbor transmit a packet, the device checks that its neighbor 

transmits correctly.  There are two cases to consider.  If the overheard GENERAL ANNOUNCEMENT has 

the hop count that is not increased by more than one, and the sum of the hop count and the TTL counter 

is the same as what the device previously transmitted, the device confirms that that neighbor follows the 

protocol.   The other case is that the neighbor responds by transmitting the corresponding TARGETED 

ANNOUNCEMENT.  In case the packet contains the TTL counter, the device confirms that the sum of the 

TTL counter and the hop count of the TARGETED ANNOUNCEMENT is unchanged.  Once the device 

confirms that the neighbor transmits correctly, the device removes that neighbor from the neighbor_list 

of every entry associated with the overheard packet.  If the timer of an entry expires in the Verification 
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Table, the device detects that its neighbors that remain in the neighbor_list behave selfishly and fail to 

forward the packet correctly.       

We now prove the correctness of our algorithm in a similar manner to Section 4.2.1.  We prove 

that selfish behavior of this type will be identified by the algorithm, and a device’s behavior will only be 

identified as selfish if that device is violating the protocol in a potentially selfish manner.  We first prove 

that if Identity B behaves selfishly with a GENERAL ANNOUNCEMENT, then the neighboring Identity A will 

detect it.  We then prove that even if Device B has multiple identities, it will be identified as selfish by at 

least one other device if and only if Device B behaves selfishly.  

Theorem 6 Let Identity A (IDA) and Identity B (IDB) be neighbors.  Let IDA follow the protocol, and 

transmit a GENERAL ANNOUNCEMENT.  IDB neither forwards the GENERAL ANNOUNCEMENT correctly, 

nor responds by transmitting a TARGETED ANNOUNCEMENT correctly when IDB is required to do one of 

the two.  Then, IDA detects IDB’s behavior as selfish using the algorithm in Section 4.2.2. 

Proof (by contradiction): 

Assume that IDA does not detect IDB’s behavior as selfish.  Thus, no entries in IDA’s Verification 

Table expire when IDB is included in the neighbor_list.  This implies that either the entry, of which the 

neighbor_list contains IDB,, was never added to the Verification Table, or the entry was added and IDB was 

removed from the neighbor_list before the timer expires.     

 As described in Section 3.1, a device is required to forward a GENERAL ANNOUNCEMENT if and 

only if the duplicate_flag is not set and the TTL counter is not 0, or the duplicate_flag is set and the TTL 

counter is not 0 and the packet announces a better path than IDA has announced before.  If IDA announces 

a better path than what IDA previously announced with the duplicate_flag set, this implies that IDA has 

violated the protocol as specified in Section 3.2, contradicting the assumption that IDA follows the 

protocol.  By assumption, IDB was required to either forward the packet or respond with a TARGETED 

ANNOUNCEMENT, which implies that the duplicate_flag was not set, and the TTL counter was not 0.  

Since IDA is assumed to follow the protocol,  this in turn implies that IDA did create an entry in its 

Verification Table, and IDB was in the neighbor_list.   

 As described above, IDA will remove the entry from its table only when it overhears IDB transmit 

either the GENERAL or TARGETED ANNOUNCEMENT, and IDA has verified that the packet was forwarded 

correctly.  This contradicts the assumption.  QED 

As described in Section 3.1, a GENERAL ANNOUNCEMENT announces the distance to the source 

and a device may choose the path with the minimum hop counts using the GENERAL ANNOUNCEMENT.  It 

is the device on the shortest path that must be watched for selfish behavior to evade the watchdog 

mechanism and avoid forwarding subsequent data packets.  Theorem 7 shows that, a device that is on the 

shortest path and behaves selfishly will be detected by a neighbor, even if devices are able to assume 

multiple identities.   

Theorem 7  Let Identity A (IDA) and Identity B (IDB) be neighbors.  Let IDA follow the protocol and 

flood a GENERAL ANNOUNCEMENT.  Let the protocol require IDB to either forward the GENERAL 

ANNOUNCEMENT correctly, or responds by transmitting a TARGETED ANNOUNCEMENT, but IDB fails to do 

one of the two.  If the GENERAL ANNOUNCEMENT travels along a path with minimum hop count, an 
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identity on a different device from IDB identifies IDB’s behavior as selfish using the algorithm in Section 

4.2.2.    

Proof: 

 By Theorem 6, IDA identifies IDB’s behavior as selfish.   By assumption, the GENERAL 

ANNOUNCEMENT travels on the path that has the minimum hop count.  Therefore, by Theorem 3, if IDA 

and IDB are on the shortest path, they belong to different devices.  Therefore, it is the device with the 

identity IDA that detects selfish behavior of another device with the identity IDB.  QED 

Theorem 8 Let Identity A (IDA) follow the protocol.  Let IDA conclude using the algorithm in Section 

4.2.2 that Identity B (IDB) was behaving selfishly.  Then, (i) IDB has received a GENERAL ANNOUNCEMENT 

that it was required to either forward, or respond by transmitting the TARGETED ANNOUNCEMENT 

correctly, (ii) IDB failed to transmit the packet correctly and at the required power before its behavior is 

identified as selfish, and (iii) IDB did not ever intend to transmit the packet correctly and at the required 

power.      

Proof: 

 As described in Section 4.2.2, IDA detects IDB’s behavior as selfish only when a timer expires, and 

the entry in IDA’s Verification Table associated with that timer includes IDB in the neighbor_list.  A device 

creates an entry in the Verification Table and adds a given neighbor to the neighbor_list when and only 

when it floods a packet with the duplicate_flag not set and the TTL counter not expiring, and that 

neighbor will announce the shortest path by forwarding this packet.   Therefore, IDB must have been a 

neighbor of IDA, and IDA must have transmitted a GENERAL ANOUNCEMENT to IDB with the duplicate_flag 

not set and the TTL counter greater than one, and forwarding this packet will make IDB to announce the 

shortest path.   

By assumption, IDA follows the protocol that requires a device to transmit a GENERAL 

ANNOUNCEMENT at maximum power, as explained in Section 3.  Hence, IDA must have transmitted at 

maximum power.  Since IDA and IDB are neighbors, IDB must have received this GENERAL 

ANNOUNCEMENT by Theorem 1.  Since the duplicate_flag was not set and the TTL counter was not 0, IDB 

was required to either forward the GENERAL ANNOUNCEMENT, or transmit the corresponding TARGETED 

ANNOUNCEMENT.  Thus, (i) was proven.   

 As described in Section 4.2.2, IDA would remove a neighbor from an entry’s neighbor_list if it sees 

that neighbor transmit a corresponding packet for that entry correctly (i.e., that neighbor either forwards 

the GENERAL ANNOUNCEMENT or transmits the TARGETED ANNOUNCEMENT associated with that entry).  

Since the entry still contains IDB in the neighbor_list when the timer expires, IDA did not see this occur 

before the timer expires.   By Theorem 1, IDA receives the packet that the neighbor IDB transmits at 

maximum power.   As described in Section 3, the protocol requires a device to transmit both GENERAL 

and TARGETED ANNOUNCEMENT at maximum power.  Since IDA follows the protocol and did not see IDB 

forwarding the packet correctly, IDB did not transmit the packet correctly before IDA’s timer expired, 

which is the time at which IDA identifies IDB’s behavior as selfish.  Thus, (ii) is proven.   

 As described in Section 4.2, IDA’s timer expires a period of duration x after it forwards the 

GENERAL ANNOUNCEMENT.  By Assumption 4 in Section 4.1, any packet that IDB intends to transmit will 

be transmitted within the period of duration x.  Thus, since the packet has not been transmitted correctly 
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when the timer expires, and the protocol requires that the timer expires a period of duration x after the 

packet was received, IDB did not intend to transmit the packet.  Thus, (iii) is proven.  QED 

4.2.3 Verifying a Packet was Correctly Forwarded 

In cases where Device A expects its neighboring Device B to forward a routing packet, Device A 

monitors the neighbor’s transmissions until it observes the expected packet.  Most of the fields in a 

routing packet do not change en route, so Device A expects to see that all of these fields exactly match 

the packet it just transmitted.  The greater challenge for a watchdog mechanism designed to detect all 

selfish behavior is to detect incorrect changes to fields that are allowed to change en route.   

Of the fields presented in Sections 3.1 and 3.2, there are only two that change en route, and that 

can be altered selfishly.  One is the hop_count, which is addressed in Sections 4.2.1 and 4.2.2 for the 

separate cases of TARGETED and GENERAL ANNOUNCEMENTs, respectively.   The other is the TTL counter, 

which we explicitly allow but do not require.  Although devices are expected to change the TTL, we 

require the sum of the hop_count and TTL to be the same as that of the packet that the device received, 

as described in Sections 3.1 and 3.2. Thus, if the hop_count can be verified, then the TTL can also be easily 

verified. 

For the remaining next_to_source, next_to_destination, and duplicate_flag fields described in 

Sections 3.1 and 3.2 that change en route, we now show that any modifications that are inconsistent with 

the protocol are not selfish acts, since the device that made these modifications would not benefit.  

Incorrectly changing fields related to the path the packet has taken or will take can prevent some 

packets from reaching their destinations.  For example, Device A may insert an incorrect address in the 

next_to_source, which is in both the GENERAL and TARGETED ANNOUNCEMENT.  Alternatively, Device A 

may insert an incorrect address in the next_to_destination, which is only in the TARGETED 

ANNOUNCEMENT.  Changing these fields causes the packet to be mis-routed, and even though the source 

of the packet believes that the packet is traveling on a valid path, the packet may not reach the intended 

device.  We also allow (but do not require) packets to contain addresses of devices on the path.  Altering 

one or more addresses will have the same effect of mis-routing packets as described above.  These 

actions are disruptive, but none benefits Device A; because none affects the hop count, so changing these 

fields incorrectly does not make the announced paths through Device A less attractive.  Moreover, if a 

path through Device A is selected, the fact that this path could be invalid is unlikely to reduce the number 

of packets that Device A must handle.  If a path through Device A does not work, the source may 

repeatedly attempt to reestablish the path, creating additional packets that watchdog devices will expect 

Device A to carry.  In addition, as described in Section 3.2, all of Device A’s neighbors promiscuously 

monitor transmissions, and can therefore learn the valid paths through Device A.  Thus, the next time one 

of Device A’s neighbors receives a GENERAL ANNOUNCEMENT, it may inform the source about the path 

that goes through Device A, and there is nothing Device A can do to prevent this. 

A device may violate the protocol and set the duplicate_flag on the packet that is not a duplicate, 

expecting the neighbor to drop the packet.  However, our algorithm specifies that the neighbor does not 

take the option of dropping but instead forwards the packet if it announces the shortest path.  Therefore, 

as long as neighbors follow the protocol, the device gains no benefit by setting the duplicate_flag when 

the packet is not a duplicate.  Similarly, if the device does not set the duplicate_flag for a packet that is a 

duplicate, this may increase the control traffic, but it does not change any device’s estimation of the paths 

available or their lengths. 
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 4.2.4 Detection When Forwarding an UPDATE 

Failing to respond to an UPDATE is not a selfish act.  As described in Section 3.3, UPDATE packets 

are used to announce routes that are broken, or have increased in length.  When Device A fails to 

transmit an UPDATE even though there are changes in the paths that go through Device A, other devices 

that use those paths do not learn about the changes; those devices still consider the paths that go 

through Device A as good as previously known, and transmit packets to Device A, expecting Device A to 

forward packets.   Thus, not responding to an UPDATE packet can only increase a device’s burden. 

4.3 Selfishness in Power Manipulation 

 As explained in Section 1, when a device knows that its behavior is watched by a neighbor, the 

device can behave selfishly and pretend to cooperate by forwarding a packet at a power level that is 

observable to the watchdog and not to other devices.  As described in Section 3, our algorithm requires 

devices to transmit control packets, which include GENERAL ANNOUNCEMENTs, TARGETED 

ANNOUNCEMENTs, and UPDATEs at maximum power so that detection of the selfish behavior of 

manipulating transmission power is observable.  However, if the threshold power to reach the watchdog 

device is greater than the threshold power to reach the next hop to the destination of the packet, the 

device may transmit at a reduced and sufficient power to reach the watchdog device, instead of 

transmitting at maximum power such that the watchdog fails to identify the device’s behavior as selfish. 

Devices keep track of the maximum received power for all neighbors in the Power Table.  This 

table consists of two columns; the first column, denoted as address, records the IP address of the 

neighbor from which the packet is transmitted, and the second column, denoted as Pmax, represents the 

maximum received power at which the device has ever received packets.   

 Here is the description of the algorithm.  Whenever a device receives a packet from a neighbor, 

the device compares the received power with that neighbor’s stored maximum power Pmax in the Power 

Table.  If the received power of the packet is smaller than Pmax, then the device identifies that neighbor’s 

behavior as selfishly reducing transmission power.   

 Whenever a device receives a packet from its neighbor, if the received power is greater than that 

neighbor’s Pmax, then the device sets Pmax equal to this received power.  When updating Pmax, the device 

not only considers control packets but also data packets from the neighbor because the neighbor may 

increase transmission power for the neighbor’s own data packets to reduce the chance of retransmission.   

 We now prove that if a device transmits a control packet at a power at which at least one 

neighbor but not all neighbors are able to receive the transmission, then at least one neighbor will detect 

this selfish behavior. 

Theorem 9 Device B manipulates power such that at least one of its neighbors does not receive 

Packet P, and at least one neighbor does receive the packet.  Without loss of generality, let Device A 

receive the packet, and let Device C not receive the packet.  Then Device A detects that Device B has 

manipulated transmission power of the packet in a selfish manner using the mechanism in Section 4.3. 

Proof: By assumption, Device A received Packet P.  This implies that packet P was transmitted at power 

that is greater than or equal to the power threshold PBA from Device B to Device A by Assumption 1.  By 
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assumption, Device C did not receive Packet P, and by Assumption 1, Packet P was transmitted at power 

below the power threshold PBC from Device B to Device C.  Therefore, PBA < PBC. 

 By assumption, Device B and Device C are neighbors, so by Assumption 2, Device C must have 

received a packet successfully from Device B.  Without loss of generality, let this packet be labeled as 

Packet Q.  By Assumption 1, Packet Q must have been transmitted at power greater than or equal to PBC.  

Since PBA < PBC, Packet Q was also transmitted at a power greater than PBA.  By Assumption 1, Device A 

also received Packet Q.  Since Device A received both Packets P and Q, and Packet P was transmitted at 

power less than PBC, and Packet Q was transmitted at power greater than or equal to PBC, by Assumption 2, 

the received power for Packet Q was greater than received power for Packet P.   

Device A maintains the maximum received power Pmax it has observed from Device B in its Power 

Table.  This Pmax must be greater than or equal to the received power for Packet Q, which is greater than 

the received power for Packet P.  Thus, Pmax is greater than the received power for Packet P.  As described 

above, whenever Device A receives Packet P from Device B at a power less than Pmax, Device A concludes 

that Device B is selfishly manipulating power.  QED 

 

Theorem 10 Let Device A and Device B be neighbors.  Let Device A detect that Device B has 

manipulated power in a selfish manner when transmitting Packet P using the mechanism in Section 4.3.  

Then, Device B must have violated the protocol.   

Proof: 

 For Device A to conclude that Device B has selfishly manipulated transmit power for Packet P, 

Packet P must be a routing packet, and the received power of Packet P must be less than the Pmax in 

Device A’s table.    

 When Device A sets the Pmax associated with Device B, Device A sets Pmax equal to the received 

power of the packet that Device A just received from Device B.  Thus, Device A once received a packet 

from Device B at received power Pmax.  Without loss of generality, let this packet be labeled as Packet Q.  

By Assumption 3, the fact that received power for Packet Q is greater than the received power for Packet 

P implies that the transmit power for Packet Q is greater than the transmit power from Packet P.  This 

implies that Device B transmitted Packet P at power less than Device B’s maximum power.  The protocol 

requires that all routing control packets be transmitted at maximum power.  Thus, Device B violated the 

protocol.  QED 

4.4 Selfishness in Packet Fabrication 

 As explained in Section 1, a device may make the path through the device look longer than it 

really is.  This can be done without responding to a received packet as in Section 4.2; the device can 

simply generate a packet that announces arbitrarily high distance to a given destination.      

 In contrast, it is not a selfish act if the announced path is better than the best path that the 

device knows.  Such actions can only increase the load on the device.  Thus, we focus on mechanisms that 

can detect the announcement of worse paths.   

As discussed in Section 3, we allow (but do not require) packets to carry some field indicating the 

freshness of the information on path length, such as sequence number in AODV [14].  If this field used,  
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the announced path is better than the real one if there is more recent information on the former, e.g. the 

sequence number in AODV is higher, or if the information is equally recent and the hop count is smaller.  

The announced path is worse if there is equally recent information, and the hop count is larger, so this is 

the case we must detect reliably.  If the information on the announced path is less recent than a 

previously announced path, e.g. the AODV sequence number is lower, then the announcement will simply 

be ignored.   

 As described in Section 3.2, all devices listen promiscuously to all routing packets generated by 

their neighbors.  When a device overhears its neighbor transmitting a TARGETED ANNOUNCEMENT that 

announces a worse path than what the neighbor has learned about, the device transmits the TARGETED 

ANNOUNCEMENT with the superior path information to that neighbor (i,e. the recipient).  The device sets 

the TTL of this packet as one plus the TTL of the overheard TARGETED ANNOUNCEMENT so that all 

devices that learned the worse path will learn the better path.  The device does not set the duplicate_flag 

since the device requires its neighbor to forward the packet.  The next_to_source is the next hop to reach 

the source of the TARGETED ANNOUNCEMENT, which can be found in the routing table, and the 

next_to_destination is the same as that from the original TARGETED ANNOUNCEMENT that announced 

worse path.  This device creates an entry in the Verification Table and watches if that neighbor forwards 

the TARGETED ANNOUNCEMENT correctly, using the mechanism described in Section 4.2.1.   

Similarly, when a device overhears its neighbor transmitting a GENERAL ANNOUNCEMENT or an 

UPDATE, and the device knows a better path to the same source or destination, respectively, the device 

transmits a GENERAL ANNOUNCEMENT that announces the better path.  The TTL of this packet is one plus 

the TTL of the overheard packet for the same reason as explained above, and the next_to_source of this 

packet is the next hop to the the source of the GENERAL ANNOUNCEMENT, as can be found in the routing 

table.  The device does not set the duplicate_flag on this announcing packet.   This device creates an entry 

in the Verification Table for that neighbor, and watches if that neighbor forwards the GENERAL 

ANNOUNCEMENT correctly using the mechanism presented in Section 4.2.2.   

We now prove the correctness of our algorithms.  We prove that if a device fabricates any 

routing control packet that is either a GENERAL ANNOUNCEMENT, a TARGETED ANNOUNCEMENT, or an 

UPDATE, and that announces a path that the device knows is not the best, some neighbor will detect it.   

Moreover, we prove that if a device’s behavior is identified as selfish, that device has violated some 

requirement of the protocol.  We assume that the device acting selfishly still transmits routing packets at 

maximum power, as selfish power manipulation is already detected by the algorithm in described Section 

4.3. 

Theorem 11 Let all of Device A’s neighbors follow the protocol.  Device A transmits a routing packet 

at maximum power to one or more of its neighbors indicating a path to Device D (where D≠A), although 

Device A knows about a superior path to Device D.  Moreover, Device A does not follow this routing 

packet within a period of duration 2x by transmitting another routing packet at maximum power to the 

same neighbor or neighbors, where this other routing packet announces the superior path.  Then one or 

more of Device A’s neighbors will identify Device A as selfish using the mechanism in Section 4.4. 

Proof: 

As specified in Sections 3.2 to 3.4, a device sends a GENERAL ANNOUNCEMENT, a TARGETED 

ANNOUNCEMENT, or an UPDATE to announce the path from the device to the source that initiates the 

packet.   By assumption, Device A knows a superior path to Device D (where D≠A) that Device A has 
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previously learned about.  This implies that there is a neighbor that is the next hop to Device D on the 

superior path, and Device D must have learned about the superior path when that neighbor announced 

the superior path.     

By assumption, the packet was transmitted at maximum power, so by Theorem 1, all neighbors 

received the packet.  By assumption, all Device A’s neighbors follow the protocol, including the neighbor 

that is the next hop to Device D on the superior path.  As described in Section 4.4, when a device 

overhears its neighbor transmitting a packet, and the device knows a better path to the same source, the 

device transmits a packet at maximum power with the better path information to that neighbor within 

the period of duration x after receiving the packet.   Thus, that neighbor transmits a packet with the 

superior path information at maximum power within the period of duration x, which means within 

duration 2x after Device A transmitted its packet.  By theorem 1, Device A must receive the packet, which 

occurs within 2x after the incorrect packet was generated by Device A.   Because it is assumed that all 

neighbors follow the protocol, if the packet that Device A transmitted to announce a worse path was a 

TARGETED ANNOUNCEMENT, then the neighbor will transmit a TARGETED ANNOUNCEMENT with the 

superior path information, and if the packet Device A transmits was a GENERAL ANNOUNCEMENT or an 

UPDATE, then the neighbor will transmit a GENERAL ANNOUNCEMENT, as specified in Section 4.4. 

As described in Section 4.4, the GENERAL or TARGETED ANNOUNCEMENT will be sent with the 

duplicate_flag not set.  The protocol therefore requires Device A to forward this packet within the period 

of duration x upon receiving the packet.  By assumption, Device A does not follow this routing packet 

within a period of duration 2x with another routing packet to the same neighbor or neighbors, where this 

other routing packet announces the superior path.  Therefore, if the packet that the neighbor transmits to 

Device A is a TARGETED ANNOUNCEMENT, the neighbor detects selfish behavior of Device A by Theorem 

2, and if the packet that the neighbor transmits is the GENERAL ANNOUNCEMENT, the neighbor detects 

selfish behavior of Device A by Theorem 6. QED 

Theorem 12 Let Device B identify Device A’s behavior as selfish using the mechanism n Section 4.4, 

where Device B follows the protocol.  Then (i) Device A must have transmitted a packet indicating a path 

to some destination Device D (where D≠A), although Device A knew a superior path to Device D, (ii) 

Device A received a packet that it was supposed to transmit, (iii) Device A failed to forward the packet 

correctly before its behavior is identified as selfish, and (iv) Device A did not ever intend to transmit the 

packet correctly.    

Proof:  

As described in Section 4.4, Device B concludes using this mechanism that Device A is acting 

selfishly only if either Device A has sent a TARGETED ANNOUNCEMENT to Device A and concluding using 

the mechanism in Section 4.2.1 that Device A selfishly failed to forward the packet correctly at maximum 

power, or Device A has sent a GENERAL ANNOUNCEMENT to Device A and concluding using the 

mechanism in Section 4.2.2 that Device A selfishly failed to forward the packet correctly at maximum 

power.  In the case of a TARGETED ANNOUNCEMENT, by Theorem 5, (i) Device A has received a 

TARGETED ANNOUNCEMENT that Device A was required to forward correctly, (ii) Device A failed to 

forward the packet correctly and at the required power before its behavior is identified as selfish, and (iii) 

Device A did not ever intend to forward the packet correctly and at the required power.    In the case of a 

GENERAL ANNOUNCEMENT, by Theorem 8, (i) Device A has received a GENERAL ANNOUNCEMENT that it 

was required to either forward, or respond by transmitting the TARGETED ANNOUNCEMENT correctly, (ii) 
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Device A failed to transmit the packet correctly before its behavior is identified as selfish, and (iii) Device A 

did not ever intend to transmit the packet correctly.   Thus, in either case, the theorem is proven. 

5.  Conclusion 

A cooperative commons is a promising and novel approach to reduce the cost of blanketing an 

area with coverage and to use spectrum more efficiently, if all devices cooperate [1-3, 10]. However, the 

approach may not be viable if devices do not cooperate by behaving selfishly or maliciously [1, 2].   A 

particularly effective form of selfish behavior is for a device to handle (or mishandle) routing packets in 

such a way that far fewer routes through that device are selected. The device can then avoid forwarding a 

potentially large number of data packets for others.  Given the lack of rewards for cooperating with 

devices belonging to other owners and other administrative domains, selfish behavior must somehow be 

deterred if the cooperative commons is ever to become as valuable as its proponents hope.  The first step 

towards deterrence is reliable detection of selfish behavior.  

We have demonstrated that it is not possible to reliably detect selfish behavior in the routing 

protocols used today in ad hoc networks.  Typical watchdog approaches are unable to detect some forms 

of selfish behavior, such as when power control is used to conceal that behavior.  Perhaps even worse, 

these approaches can falsely label some behavior as selfish when the devices are following the protocol, 

as often occurs with duplicate suppression.   Other approaches assume trust relationships that are 

appropriate in other contexts, but may not be achievable in a cooperative commons. Thus, in addition to 

developing effective watchdog algorithms, it is necessary to adopt routing protocols that are suitable for a 

cooperative commons in which selfish behavior is observable.   

We have shown that effective detection of selfish behavior in a cooperative commons is possible, 

as long as devices do not use rapidly steerable antennae and devices are generally not able to collude 

with neighbors.  These two exceptions are unavoidable limitations in a cooperative commons.  We have 

defined broad categories of routing control packets in which selfishness can be detected, and shown that 

packets in common routing protocols can be extended to fit into these categories. 

For any routing protocol that meets our requirements, including the extended versions of DSR 

[13] and AODV [14], our proposed new watchdog algorithms can detect every instance of selfish behavior 

under some simplifying assumptions, i.e. where there are no packet losses, devices are not moving, and 

queuing delay is bounded.  Moreover, the watchdog algorithms never identify a device’s behavior as 

selfish if that device is complying with the protocol.  In a more complex and realistic environment where 

those simplifying assumptions are relaxed, our approach is still effective in detecting devices that 

repeatedly exhibit selfish behavior.  

A follow-on paper will describe how our approach can be extended to identify devices that 

repeatedly behave selfishly in a more complex environment in which packets are lost, queuing delay can 

grow large, and path loss between two devices can change over time due to mobility or other causes.  For 

example, to accommodate shadowing and multipath, we include a margin for error so that received 

power can fluctuate even when the transmit power does not. 

Of course, detection of selfish behavior is only the first step.  Our future work will address 

deterrence, and how devices can respond after determining that a neighbor is behaving selfishly. 
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