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Multi-Robot Team Response to a Multi-Robot
Opponent Team

James Bruce, Michael Bowling, Brett Browning, and Manuela Veloso
{jbruce,mhb,brettb,mmv }@cs.cmu.edu
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5000 Forbes Avenue
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Abstract—Adversarial multi-robot problems, where teams of
robots compete with one another, require the development of
approaches that span all levels of control and integrate algo-
rithms ranging from low-level robot motion control, through to
planning, opponent modeling, and multiagent learning. Small-
size robot soccer, a league within the RoboCup initiative, is a
prime example of this multi-robot team adversarial environ-
ment. In this paper, we describe some of the algorithms and
approaches of our robot soccer team, CMDragons’02, developed
for RoboCup 2002. Our team represents an integration of many
components, several of which that are in themselves state-of-the-
art, into a framework designed for fast adaptation and response
to the changing environment.

I. I NTRODUCTION

RoboCup small-size robot soccer is a game where two
teams of five robots each play soccer on a 2.8m x 2.3m field
with an orange golf ball [7]. Each team must be autonomous
and must obey FIFA-like rules as dictated by a human referee.
Small-size robot soccer is unique in that teams are allowed to
use global vision, via overhead cameras, to augment any local
sensors. Additionally, teams are allowed to use off-field com-
puters to provide additional computational resources. Our ap-
proach to robot soccer focusses on global vision with an off-
field PC, which communicates commands to the robots via a
wireless radio link (see Figure 1).

Small-size games are highly dynamic, where the ball can
reach speeds of 2 to 3m/s and robots can reach speeds of over
1m/s. Controlling a team of robots in such a highly dynamic
and competitive environment is a challenging research prob-
lem. Successful teams require both good team coordination
and good individual robot skills. Indeed, it has been our ex-
perience that team performance as a whole is only as strong
as the weakest component of the system on any control path.
Thus, our development has placed equal emphasis on indi-
vidual control skills and team cooperation. In this paper, we
focus on the issues critical to team response to an opponent.

This research was sponsored by Grants Nos. DABT63-99-1-0013,
F30602-98-2-013 and F30602-97-2-020. The information in this publica-
tion does not necessarily reflect the position of the funding agencies and no
official endorsement should be inferred.

Fig. 1. An overview of the CMDragons small-size robot soccer team.

Specifically, we address individual robot skills of motion con-
trol and path planning for obstacle avoidance through to team
coordination and strategy generation.

We have developed a complete, novel tactics-strategy
framework for addressing these issues. In our framework, tac-
tics are high-level individual robot skills. Examples include
shooting, passing, blocking etc. Strategies are formulated as
plays, where a play is a sequence of tactics assigned to each
robot that are appropriate for the current game state. Tac-
tics, the primitives used by plays, control the robots through
a way-point based motion control module. The motion con-
trol module utilizes fast planning for obstacle avoidance, and
trapezoidal control rules for high-speed motion. We describe
each of these components and their role within the control
hierarchy. We do not describe the hardware, or vision and
tracking modules. Instead, we refer the reader to [4], [3] and
[2] for more information.

II. I NDIVIDUAL ROBOT SKILLS

Obstacle avoidance and motion control are closely related
issues. In our framework, obstacle avoidance and motion
control form the conduit through which high-level tactics in-
fluence the world. Regardless of how good the team coor-
dination algorithms are, if the robots cannot move quickly



Fig. 2. The control architecture is based on way-point primitives.

to their target destinations while avoiding moving and po-
tentially hostile obstacles, then the system performance as
a whole will be poor. Solving the high-speed robot control
problem is a key challenges in small-size robot soccer.

Our team hardware consists of two robot types, differential
drive robots (diffbots) and omnidirectional robots (omnibots),
making our team heterogeneous. Our approach to individ-
ual robot skills abstracts away the specifics of the robot drive
configuration at the control levels. We have developed a hi-
erarchical, way-point based, architecture capable of driving
our robots reliably at speeds that peak at about 2m/s. This
layer abstracts away the specifics of the robot hardware by
using standard target settings and accounting for the differ-
ent acceleration/velocity bounds internally. Returning time
estimates to achieve the desired target, rather than any robot
specific information, allows higher-level software to be robot
independent.

Our control framework uses the notion of a target way-
point as the primitive for communicating within the hierar-
chy. Figure 2 shows the major control modules and associ-
ated parameters that form the hierarchy. Here,x, y, and θ
are robot pose parameters in world-space with the origin at
the center of the field and thex-axis pointing towards the op-
ponents’ goal. The velocity parameters labelledvx, vy are
robot-centric speeds withvx in the direction of the robot’s
kicker andvt−max for the max speed the robot should reach at
the target point. For the robot command,ω is the robot’s rota-
tional velocity whileω1, ω2, ω3 are the robot’s motor speeds,
respectively. While three motor speeds are shown, diffbots
ignore the third speed parameter.

Commands filter through the system usually in a waypoint
format. Target points with direction and speed, that are gen-
erated by the active tactics are sent to theNav2Pointmodule.
Nav2Pointplans a path through the obstacle field to this target
(see Section II-B).Nav2Pointsends an intermediate waypoint
target, that is obstacle free, to theGo2Pointmodule which we
describe in the next section.

A. Motion Control

The role of motion control is to drive the robot as quickly
as possible to the target point with the desired target speed
and orientation. Optimal control for a diffbot or omnibot, is
known to be a difficult problem. To our knowledge, there
are no known general solutions to the problem of finding op-
timal control trajectories to general target points for a diff-
bot or omnibot. For our team, motion control is part of a
larger framework, meaning it can only consume a small part
of the available computational resources. The dynamic nature
of the task and environment means that motion control algo-
rithm must be efficient, low latency, and run at the highest
rate possible. For our team, this means motion control must
execute once for every robot on the field at the frame rate
( 30Hz). Additionally, we must carefully trade optimality for
speed and efficiency.

The limits to robot motion are mainly derived from the
robot physics and the control path dynamics. All robots have
limited acceleration and velocity capabilities due to a com-
bination finite motor torque and limited traction. Our robots
are predominantly traction limited except at speed, where mo-
tor torque becomes an issue. Velocity bounds are caused by
finite motor speeds. Thus, we need both acceleration and ve-
locity bounded control. Another major consideration is the
non-negligible latency along the primary control path. In our
system, system latency is about 100ms ([3]). Finally, the
usual noise artifacts must also be addressed. Our probabilistic
tracking module ([2]) solves most of these issues. More im-
portantly, it provides good prediction mechanisms that help
to reduce the impact of latency.

We have a distributed control architecture by virtue of the
separate sensing and actuator apparatuses, raising the ques-
tion of how best to distribute control. In our approach,
each robot operates local Proportional-Integral-Derivative
(PID) velocity control loops to maintain velocities set from
Go2Pointvia the wireless network. Future work is required
to determine if this approach is indeed the best way to dis-
tribute the control between the off-field PC and robot base.
Go2Pointgenerates the velocity command using a trapezoidal
control rule. Trapezoid control translates to constant acceler-
ating at the traction limit, coasting at the velocity bound, and
then braking at the traction limit to reach the target as quickly
as possible.

Our approach resolves control into two independent 1D
problems. We first build a Cartesian frame of reference and
then treat the control of thex andy components as separate
problems (see Figure 3). The origin of the reference frame
is set to the robot’s current location (accounting for latency)
and is rotated to the target direction. Control for each axis
is calculated using assuming trapezoidal control. Using time
estimates for the completion of each axis, the accelerations
are adjusted so that each axis completes as quickly as possi-
ble and at the same time. The total acceleration remains set
to the empirically determined traction limit.

Generating the velocity command uses the calculated



Fig. 3. The robot decomposes the problem into two 1D control problems.

trapezoids to determine the target velocity for the next time
period. For the omnibots this is just the velocity components
for each trapezoid rotated into the robot-centric frame of ref-
erence. The diffbots are a little more complicated. When in
motion the diffbots can accelerate laterally by turning while
driving, but when stationary this method fails. In this case,
the diffbots have a special case of first turning to the desired
direction and then driving.

Although not optimal, our trapezoidal control strategy re-
quires minimal computational resources and produces very
efficient paths. Moreover, its simple structure allows us to
easily compute reasonable time estimates for completion of
tasks. The control algorithm takes no account of obstacles.
Rather, obstacles are accounted for at theNav2Pointlevel de-
scribed in the next section.

B. Navigation and Obstacle Avoidance

A dynamic multi-robot adversarial environment, such as
robotic soccer, necessarily creates a challenging problem for
robot navigation. Indeed a robot faces two major goals,
namely (i) to reach its destination in the minimum possible
time, and (ii) to avoid a field of moving obstacles, which may
be adversarial.

The path-planning problem in general has been widely re-
searched on, but it is not one that has found a universal solu-
tion. Specifically, in complicated, fast evolving environments
such as RoboCup [7], currently popular approaches have their
strengths, but still leave something to be desired. In particu-
lar, most require a state discretization and are best suited for
domains with relaxed time constraints for planning. One of
the relatively recently developed tools that may help tackle
the problem of real-time path planning are Rapidly-exploring
Random Trees (RRTs) [6]. RRTs employ randomization to
explore large state spaces efficiently, and can form the basis
for a probabilistically complete though non-optimal kinody-
namic path planner. Their strengths are that they can effi-
ciently find plans in high dimensional spaces because they
avoid the state explosion that discretization faces. Further-
more, due to their incremental nature, they can maintain com-
plicated kinematic constraints if necessary. We have been
able to demonstrate the feasibility of an RRT-based algorithm
for real robot navigation in a multi-robot domain [5].

Applying the basic RRT to real robots encounters several
problems, in particular: (i) the paths found are near optimal,
but not smooth as search proceeds stepwise; (ii) the algo-
rithm is fast, but not fast enough for real robot navigation

with frame-rate replanning; (iii) the search finds a complete
path to the goal, but in real-time problems, there may not be
enough time to expand the complete path to the goal; and (iv)
the search expands a tree starting from scratch, and therefore
efficient replanning is not considered. Our RRT-based algo-
rithm, ERRT, addresses these different limitations by extend-
ing the basic RRT algorithm [5]. The contributions of our
path planner are:
• Fast post-planning path smoothing
• KD-trees for efficient data storage and access
• Replanning
We focus on explaining the replanning component, which

is crucial for the real-time navigation with difficult obstacle
avoidance specifically due to the other moving robots. (Fur-
ther details are available at [5].) ERRT allows for the input
of a “bias” to its search in the form ofcached waypointsthat
act as intermediate target points in addition to the goal point.
The cached waypoints in principle can come from any source.
But the interesting issue is that they can come from previous
incomplete searches, opening therefore a principled approach
to replanning. ERRT proceeds as follows:
• Initially, when no cached waypoints are provided, ERRT

does a basic RRT-based search in real-time and with
time constraints. The outcome of the search is a path
towards the goal. The path may be complete or incom-
plete. The world changes continuously creating a chal-
lenging problem for navigation with the robots as dy-
namic moving obstacles. Whether the path is complete
or incomplete to the goal, the robot still needs to find
a path at every cycle. The outcome of ERRT is trans-
formed into a set of cached waypoints remembering the
path that was found in the immediately previous search
iteration. These waypoints are given as input to the path
planning search at the next time step.

• When ERRT receives cached waypoints in its input, it
uses them as a bias. ERRT then expands its search tree
in three possible directions. It chooses a target state with
three probabilities, namely:

– The goal with probabilitypg,
– A random waypoint with probabilitypr,
– A random point with probability1− pg − pr.

Figure 4 illustrates these three expansions of the ERRT al-
gorithm.

With the ERRT approach, we achieve excellent coordi-
nated multi-robot team navigation. The waypoint cache pro-
vides much improved performance on difficult but possible
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Fig. 4. Extended RRT with a waypoint cache for efficient replanning.

path planning problems. In our small-size team, all the robots
successfully navigate to points using ERRT. The selection of
the points to which navigation proceeds is performed by the
high-level behavior architecture which we now describe.

III. M ULTI -ROBOT COORDINATION

For multi-robot teams in adversarial settings, good indi-
vidual skills must be employed within the team’s high-level
strategy to be effective. This strategy should emphasize the
team’s strengths while exploiting the opponent’s weaknesses.
There are three important goals that our team behavior archi-
tecture, or strategy, achieves:
• Coordinated team behavior,
• Ease of human and automated augmentation of the

team’s strategy, and
• On-line adaptation to the opponent.
The goal of on-line adaptation, specifically, is a very chal-

lenging problem. In adversarial environments, we want our
multi-robot team to adapt its team play to different opponents.
Adaptation during the short time that comprises a game is
clearly not trivial. We have pursued research on theoretically
justified multiagent learning algorithms that allow for players
to learn to respond to opponents [1]. In simulated robotic soc-
cer, we have also used a coach agent to position team mem-
bers in response to the opponent team [8]. The problem is
more complicated with a team of real robots.

All of these goals, including opponent adaptation, are
achieved through the combination of ourplaybookteam be-
havior representation and execution modules, and through the
explicit gathering and exploitation of information about the
opponent during the game.

A. Playbook: Team Behavior Representation

Possible coordinated actions of the team are stored asplays
in the playbook. The plays are self-contained, abstract, co-
ordinated plans for an entire team of agents. Plays may be
situation specific, or very general. They may involve just one
simple action for each team member, or may be a complex
sequence of coordinated behavior. An example of a simple
play, as parsed by our system, is shown in Table I(a). Notice
that the use of a human-readable syntax greatly contributes to

PLAY Naive Offense
APPLICABLE offense
DONE failure !offense
FIXEDROLES 1 3 4 2

ROLE 1 shoot true
ROLE 2 block 300 700 1
ROLE 3 defend lane ...
ROLE 4 block 900 1400 -1

PLAY Corner Out and Cross
APPLICABLE offense in-their-corner
DONE success !offense their-side
!in-their-corner
DONE failure !offense
FIXEDROLES 1 3 4 2

ROLE 1 pass 2
block 900 1400 -1

ROLE 2 position for pass { c { B 1100 400 } 300 }
receive pass
pass 3

ROLE 3 position for pass { c { B 1100 -400 } 300 }
none
none
receive pass
shoot

ROLE 4 block 300 700 1

TABLE I
TWO EXAMPLE PLAYS. THE TOP IS A SIMPLE PLAY, “NAIVE OFFENSE”,

WHILE THE BOTTOM SHOWS A MORE COMPLEX PLAY INVOLVING TWO

PASSES. THE “ ... ” CORRESPOND TO OMITTED PARAMETERS THAT

FURTHER REFINE THE SPECIFIC BEHAVIOR.

the ability for the team designers to understand, modify, and
add new plays into the team’s strategy.

Plays have three main components: applicability
(“APPLICABLE”) conditions, termination (“DONE”)
conditions, and roles (“ROLE”). The applicability conditions
are similar to operator preconditions in classical planning.
They use logical combinations of high-level predicates to
constrain the possible situations when this play may be
executed. In the naive play in Table I(a) the play is appli-
cable anytime our team is on offense, which is a high-level



predicate capturing details such as ball possession and field
position.

Unlike classical planning operators, plays have no deter-
ministic effects due to the unpredictability of the noisy en-
vironment and unknown opponent. Termination conditions,
though, provide the ability to specify when the play should
be stopped. In addition, the termination conditions specify
whether the play, upon termination, should be considered a
success or a failure. In the naive play, the only termination
condition is that the team is no longer on offense, which as
specified is considered a play failure. Success and failure of
plays is a very powerful piece of information, and its use in
adaptation during the game is described later.

The final and main component of the play are the roles. A
role is a sequence of behaviors to be carried out by a member
of the team. Each line in a role’s description defines atactic
or individual behavior that requires no team coordination. A
list of tactics is shown in Table II. Tactics are often highly pa-
rameterized for flexibility, e.g., the “block ” tactic listed in
Table I(a), and so the possible individual behaviors that can
be specified is very rich. In addition, multiple tactics can se-
quenced together to make a temporally extended coordination
of team behavior, e.g., a play to pass to another robot to shoot.
In this case, the role’s are synchronized so that all the roles
are on the same index of their tactic list. If no tactic is speci-
fied for a role at the index then the role continues to execute
its previous tactic. This synchronization and sequencing is
handled by the execution module. The ordering of the roles is
also important as it corresponds to their relative importance to
the play. The first role is the most critical, while the last role
is the least important. The execution module makes use of
this information to simplify the problem of assigning robots
to the play’s roles.

The other information provided in the play, the
“FIXEDROLES” keyword, is used when certain aspects of
the execution module are disabled. In normal circumstances
it is ignored. Another example of a play, making use of spe-
cialized predicates and sequences of tactics, is shown in Ta-
ble I(b).

B. Playbook: Team Behavior Execution

Plays are a powerful and general representation of team be-
havior, but require a robust and specialized execution module
to contribute to the goals of easy augmentation and opponent
adaptation. The execution module is composed of two parts:
a play executor and a play selector.

a) Play Executor.: The play executor is responsible for
actually instantiating the play into real robot behavior. This
instantiation consists of many key decisions: role assignment,
role switching, sequencing tactics, and opportunistic behav-
ior. Role assignment uses tactic-specific methods for select-
ing a robot to fill each role. This is performed in order of the
role’s priority. The first role considers all four field robots as
candidates to fill the role. The remaining robots are consid-
ered to fill the second role, and so on. Role switching is a very

Ball Tactics
shoot
pass
receive pass
receive deflection
clear
steal
active def

Other Tactics
defend point
defend line
defend lane
block
mark
screen
position for pass
position for loose ball
position for deflection
position for rebound
dribble to pass
dribble to shoot

TABLE II
L IST OF AVAILABLE TACTICS .

effective technique for exploiting changes in the environment
which change the effectiveness of robot’s fulfilling roles. The
play executor handles this using the tactic-specific methods
for selecting robots, using a bias toward the current robot fill-
ing the role. Sequencing is needed to move the entire team
through the sequence of tactics that make up the play. This is
performed by monitoring the currentactive player, the robot
whose role specifies a tactic related to the ball (see Table II.)
When this tactic succeeds the play is transitioned to the next
in the sequence of tactics for each role. Finally, opportunis-
tic behavior accounts for changes in the environment where
a very basic action would have a valuable outcome. For ex-
ample, the play executor evaluates the duration of time and
potential success of each robot shooting immediately. If this
can be quickly enough and with a high likelihood of success
the robot immediately switches its behavior to take advantage
of the situation. These aspects of the play executor makes
plays more general by providing basic behavior beyond what
the play specifies. This also gives our team robustness to a
changing environment, which can cause a play’s complex be-
havior to be no longer necessary or require some adjustment
to the role assignment.

b) Play Selector.: The play selector is responsible for
selecting the play out of the playbook that will be executed.
The selection system first finds the set of plays whose appli-
cability condition evaluates to true. If there is only a single
play, this play is selected for execution. If there is more than
one play available the selector chooses stochastically based
on the weights assigned to the play as specified in the play-
book. The second task of the selector is to adjust the weights
of the plays during the game. This is adjustment is performed
using the success and failure conditions of the play. A suc-



cessful play has its weight increased, while a failing play has
its weight decreased. During the game plays that do not work
well against the current opponent will be selected less and
less frequently, while successful plays will be executed more
often. This provides a powerful layer of opponent adaptation
at the highest level of strategy.

C. Gathering information towards opponent response

We have previously used the position of the opponents at
each time step to position our own team members [9]. Our
current goal is to respond to patterns of opponent positioning
over time, rather than their positions at single time steps. Vir-
tually all teams within the small-size league use static strate-
gies. Indeed, only a few teams utilize dynamic role assign-
ments within these strategies. We wish to exploit this static
structure to make better strategic decisions. Our initial ap-
proach to this is to collect a variety of histograms describing
the opponent’s capabilities (e.g. speed and acceleration), and
elements of the opponent’s strategy. The latter includes occu-
pancy (i.e., what positions the opponents occupy on the field)
and lanes of movement (i.e., how the robots move around the
field).

As an example of how clear this strategic information can
be, we collected histograms of our team performing a com-
mon, static strategy. Both the strategy and role assignment
were fixed with two attackers, two circle defenders, and one
goalie. The circle defenders defend the goal by moving on a
circle centered on the goal with predefined radius. Figure 5
shows the raw position information recorded from the track-
ing module and an occupancy histogram where darker blocks
indicate higher occupancy. The histograms were recorded
over approximately 5 minutes with the ball being moved man-
ually around the field to simulate a real game.

In our on-going work, we are analyzing which way the
robots can use the information captured by the histograms.
We have identified that this information can be used to:
• Determine if the opponent uses static positions. Sending

our robots to these locations disrupts the opponent.
• Determine what trajectories the opponent uses. Block-

ing these trajectories affects opponent motion.
• Determine where the opponent attacks from. Blocking

these positions improves our defense.
• Estimate the capabilities of the opponents. Knowing the

opponent dynamics improves our prediction.
• Estimate general strategy properties e.g., number of

robots sent to the ball. Modeling the opponent allows
us to respond at the strategy level.

IV. CONCLUSION

In this paper, we report on our most recent contributions
in our developments of our RoboCup small-size team. We
recognize that multi-robot teams in adversarial environments
face several challenging goals, including the team needs to
be composed of individually skilled robots, the robots need
to have robust team behaviors, and the team needs to adapt to

Fig. 5. Position plots and occupancy histograms of a fixed strategy, respec-
tively. Darker parts in the histogram indicate higher occupancy. The strategy
used a goalkeeper, two circle defenders each on a different radius from the
goal, an attacker and a support.

the opponent robots. In this paper, we describe our approach
to motion control and navigation that can effectively handle
a field with fast moving obstacles. We then present our new
playbook team behavior architecture. The language for the
representation of tactics and plays provides a solid basis for
the explicit incorporation of human given or learned strategies
to respond to specific opponents.
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