
Carnegie Mellon University
Research Showcase @ CMU

� &�&*!�)��%)*!*+*� � � &&#�&���&$'+* � (�� � !�%��

�����	

� � � �	 ������� ��� ��� �� ���	 �� �� � ��������� �� ��
	 �

� �
� ����� �� � ��� �
Carnegie Mellon University

� ��
��
 �� ��� � � �
Carnegie Mellon University

� &##&,�* !)��%����� !*!&%�#�,&(")��*� 0'���(� '&)!*&(-��$ +�� �+�(&�&*!�)

� � (*�&��* � � &�&*!�)�� &$$&%)

/!)�� &%��(� %���� (&�� � � !%��!)��(&+� *�*&�-&+��&(��(� ��� %��&'�%��� � �))�� -�* ��� � &&#�&���&$'+* � (�� � !�%���� *�� �)� � (� �� &, ��) ����� � � ���*� �)��� � %
� � � � '* � ���&(�!%�#+)!&%�!%��&�&*!�)��%)*!*+*��� -�� %��+* &(!. � ��� �$!%!)*(� *&(�&����)� � (� �� &, ��) ����� � � ��� &(�$&(��!%�&($ � *!&%��'#��) ��� &%*� �*
(�)� � (� �) & , ��) ��� %�(� , ��$ +�� �+ �

� +� #!) � ��� %
� (&�� � � !%�)�&���+*&%&$&+)��� � %*)��%��� +#*!�� � � %*��-)*� $)��� � � � � ��	��

��

�

ÜberSim: A Multi-Robot Simulator for Robot Soccer
Brett Browning* and Erick Tryzelaar**

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
+1 412 268 6021

*brettb@cs.cmu.edu, **erickt@andrew.cmu.edu
ABSTRACT
A realistic simulation engine can be a powerful tool for speeding
up the software development time cycle for robot control systems.
To be useful, the simulation engine must capture, at a suitable
level of resolution, the interfaces, structure and dynamics of the
real world that are important to the performance of the control
system. In this paper, we present a new multi-robot simulation
engine, called ÜberSim, for simulating games of robot soccer. The
goal of ÜberSim is to create a simulation environment that
enables control systems to be developed rapidly and transferred to
the real system with minimal change in behavior. For robot
soccer, where dynamics play an integral role in robot behavior,
ÜberSim must capture at a reasonable level of resolution the
physical interactions between the robots, field, and ball. Thus,
ÜberSim has been built on top of a high-fidelity physics
simulation engine that models friction between object surfaces,
elastic collisions between objects, and finite accelerations of
objects with non-negligible mass and rotational inertia. We
present the details of ÜberSim in its current form and describe its
use for developing robot control systems. As a means to evaluate
the simulation, we present some empirical comparisons between
the performance of robots operating in the ÜberSim simulation
and robots operating in the real world.

Keywords
Simulation, Multi-robot, Multi-agent, Robot soccer, RoboCup

1. INTRODUCTION
Developing new control software for robot teams can be a
difficult and challenging task. Testing and debugging robot
software is often a long and tedious process. Whether it is from
limited, or no, communication bandwidth or the extra effort
required keeping robots running through battery changes, code
development on a robot system is often much slower than
development within a simulation environment. Clearly, the ability
to rapidly prototype software within a simulation environment can
be of great benefit to developing robot control if the resulting
software can be transferred from simulation to the real thing with
minimal overhead.

For software developed in simulation to be transferable to the real

robot, the simulator must capture the characteristics of the
environment that are important. Of course, what characteristics
are important is dependent upon the task the robot control
software, and the environment.

In this paper, we are primarily interested in adversarial multi-
robot domains, or more specifically, small-size robot soccer [7].
Small-size robot soccer is a fast moving game played by
autonomous heterogeneous robot teams. In such an environment,
to reliably develop control software in simulation that is to be
transferred to the real system, the simulation engine must simulate
realistic dynamical interactions between the different objects in
the environment. Secondly, the heterogeneous nature of the robot
teams means that it should be easy to add and reconfigure robots
in the simulated environment. Nearly all freely available multi-
robot simulation environments use low-fidelity dynamics models
and rarely consider collision dynamics. Hence, most robot soccer
teams develop custom simulation environments to meet their
needs. However, developing simulation engines with high-fidelity
dynamics models and collision models that can be simulated in
real-time is a non-trivial problem. Moreover, if the simulation
environment does not provide facilities to easily add and
reconfigure robot types, its use by other researchers will be
limited making the exercise a high cost to reward venture.

To address this issue we have begun an Open Source project,
called ÜberSim, to develop a publicly available robot soccer
simulation engine with high-fidelity dynamics and collisions
models and extensible robot classes. The ultimate goal for
ÜberSim is to produce a useable simulation engine capable of
simulating a wide variety of robot types ranging from small-size
soccer robots to legged robots such as the Sony AIBO. In this
paper, we describe the ÜberSim approach and delve into the
details of the first release of ÜberSim. The current version of
ÜberSim, available at [11], implements a small-size robot league
simulation engine. It provides a high-fidelity simulation
environment and re-configurable robot classes for differential
drive robots and three-wheeled omni-directional robots. The
simulation engine interconnects with the CMDragons’02 small-
size robot software, as used at RoboCup 2002, which is available
at [11] (see [3,4] for more details about the CMDragons’02
software). We then present some empirical demonstrations of the
simulator in action.

The following section describes the motivation and approach for
ÜberSim. Additionally, the section specifies the requirements that
ÜberSim must meet to be useful. Section 3 describes the technical
details of the ÜberSim implementation. Section 4 presents some
empirical results used to evaluate the simulator and demonstrate
its operational capabilities. Section 5 describes the similarities and
differences between ÜberSim and the related literature. Finally,
section 6 concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

2. APPROACH AND SPECIFICATIONS
In this section we describe the motivation for ÜberSim, the
approach we have taken, and the concrete specifications for the
small-size implementation that is the focus for this paper.

2.1 ÜberSim Motivation and Approach
Many robotics researchers make use of simulation tools, whether
developed in-house or publicly available, to speed up the software
development cycle. We argue that such simulators are really only
as useful as their ability to simulate the characteristics of the
world that are important to the control task at hand. If a simulator
does not suitably capture the interactions of the simulated robot
with its surrounding environment, then the ability to develop
control systems that can be easily transferred to the real robot will
be hindered. What makes a simulator useful is its ability to
support meaningful code development that can be transferred to
the real robots easily. This means the more realistic a simulator is,
without adversely affecting its ability to simulate at real-time
speeds or faster, the more useful a simulator is. What
characteristics of the environment need to be simulated in high
fidelity depends upon the environment, the task requirements, and
the robot’s action and perception capabilities. ÜberSim is
primarily intended for use as a high fidelity robot soccer simulator
that enables rapid development of software control systems that
can be transferred to real robots with a minimum of overhead.

RoboCup robot soccer [7] is an adversarial multi-robot research
domain where autonomous teams of robots compete against one
another in a game of soccer. The domain has a broad range of
leagues including small-size robots (< 18cm), mid-size robots
(<50cm), Sony AIBO’s, simulated agents, and humanoids. Our
group has participated at RoboCup competitions virtually since its
inception. Throughout, we have made heavy use of simulators as a
tool for rapidly prototyping software. A simulator can enable one
to develop software without the unnecessary overhead of running
real robots and then transfer the software to the real system for
final testing and fine-tuning. Additionally, a simulator limits
resource conflicts, as the robots are a shared resource, from
slowing down development and allows development to continue
even if the robots are temporally unavailable. Clearly, simulators
can have a powerful impact on development productivity. Indeed,
we argue that the utility of a simulator is a function of how much
it improves the development rate.

Robot soccer, the target domain for ÜberSim, is a highly dynamic
task with a broad range of heterogeneous robots even within a
single league. Moreover, it is a very competitive domain meaning
that robots are typically pushed to the limits of their capabilities
and new hardware innovations are constantly appearing. Thus,
realistic environment dynamics and extensible, re-configurable
robot classes are the keys to building a useful robot soccer
simulator for developing robot control software. Realistic
dynamics include motions and physical interactions between
robots and the environment, robots and the ball, robots and other
robots. Realistic dynamics are required to enable control systems
to be developed in simulation that explore the boundaries of what
a robot is capable of. If there is a mismatch between a robot’s
simulated capabilities and its real capabilities, then it is most
likely that control software will work as designed in simulation
but fail on the real thing. Extensible, re-configurable robot classes
are required because of the diversity of robot types and
capabilities even within a single league. Moreover, new hardware

is always being developed so the simulated robot configuration
and capabilities need to be regularly revised.

The first question that one naturally asks is: “Are the simulators
available that fit these requirements?” To our knowledge, the
answer is no. There are no publicly available simulators that allow
simulation of robot soccer at a high enough fidelity to support
useable software development. Indeed, many teams across the
competition traditionally develop in house simulators to fit their
requirements. The problem with this approach is that it is
inefficient in terms of cost to benefit. As a result many poor
quality simulators are developed rather than a few high-quality
simulation engines.

The ÜberSim approach to this problem is distinctly different.
Firstly, we created ÜberSim as an Open Source project in the
hope that wide availability of the simulator will concentrate
development to produce a more complete, broadly useable,
simulator as opposed to many partially useable simulators.
Secondly, ÜberSim is built around a maturing Open Source high-
fidelity simulation package, the Open Dynamics Engine [9]. By
using an existing physics simulation engine some of the
development effort is negated, and we ensure that ÜberSim will
have realistic, correct, and fairly complete physics models.
Clearly, the latter point is critical to accurately simulating the
world in a high-fidelity manner. A third part of the ÜberSim
approach is robot extensibility. ÜberSim is targeted towards
providing parameterized robot classes that are easy to extend and
re-configure. As ÜberSim is built on a rigid body simulator, the
robot shapes and actuators are generic enough to allow simulation
of a wide range of robot types. Hence, one goal of the ÜberSim
project is to provide a structure that makes adding new robot types
or parameter modification of an existing robot types easy.

Ideally, we would like ÜberSim to become a cross-league
development tool in the long term. In the shorter term, we desire
ÜberSim to be useful enough to operate as a generic small-size
robot soccer simulator. In this paper, we present a first step
towards this goal by building a simulator for an existing small-
size team. In the next section we describe the specific
requirements for ÜberSim to operate as the simulator for our
small-size team CMDragons [4]. This naturally leads to section 3
where we describe the ÜberSim implementation for this task.

2.2 ÜberSim Small-Size Specifications
The small-size robot domain consists of two teams of five robots
playing soccer with an orange golf ball on a 2.8m x 2.3m carpeted
field. Each robot must fit within a 18cm diameter cylinder that is
15cm tall and may have color markings for identification
purposes. The small-size league is characterized by its allowance
of off-field computers for processing and overhead cameras for
‘global vision’ perception purposes. Although not individually
autonomous, each team is an autonomous entity where the off-
field computer(s) communicate to the robots via radio. Figure 1
shows a typical set up.

The task for ÜberSim is to provide an identical interface to the
small-size robot control software such that control software
cannot distinguish between reality and simulation. Three
interfaces are required: Perception and action interfaces, and a
control interface for specifying the environment configuration and
controlling simulation execution. The first part of the specification
is to determine at what level the perception and action interfaces

operate. The choices range between simulating the raw input and
outputs of the system (i.e. camera input and voltage output to the
actuators) to simulating the interfaces at some higher level of
perception processing and action generation.

wireless

Off field
PC

Overhead
camera

Figure 1. A typical small-size robot soccer game set up.

Due to the use of global vision and off field processing in small-
size robot soccer, a nature choice is to simulate the output of high-
level vision and the radio interface used to send commands to the
robots. There are a number of motivating factors for this choice.
Firstly, many small-size teams make use of a vision server that
produces fairly similar output information (e.g. [4]). Similarly,
many teams use some form of radio server program that accepts
robot relative velocity commands for each robot. Typically, each
robot locally runs servo control loops of some kind to maintain a
commanded velocity making the robots essentially remote
controlled vehicles. Figure 2 shows the resulting interfaces that
ÜberSim must simulate.

 �[�\� ��FRQI!�[���
@ 30Hz

ÜberSim Small-Size
System

<vx, vy�� �!�[��
@ 30Hz

~100ms
latency

Figure 2. ÜberSim block diagram

In addition to providing the appropriate parametric interface,
ÜberSim must simulate the appropriate dynamical properties of
the system. For the interfaces ÜberSim must limit the I/O rate and
provide non-zero latency to match that of the real system. The
parameters that control the latency and data rate will vary
according to the system being modeled. For the CMDragons’02
system high-level vision produces frames at 30Hz and a total
system latency of around 100ms (the latency distribution across
the system is unknown). [3] describes the details of the vision
output and its noise artifacts. [4] describes the motor commands
which are also shown in Figure 5.

There are two types of robots: differential drive robots and three-
wheel omni directional drive robots. Each of the robots has a
different shape, mass, and rotational inertia. Each robot has
different acceleration and peak velocity capabilities by virtue of
their different masses, motors, wheel types and configurations.
Finally, each robot is equipped with a dribbler mechanism (a
rolling bar coated in rubber used to spin the ball backwards and
thereby control it), and a kicker. Again, the differential drive
robots have different dribbling and kicking capabilities to the
omni directional ones.

3. ÜBERSIM IMPLEMENTATION
In this section we describe the implementation of ÜberSim to
simulate small-size robot soccer for the CMDragons’02 small-size
software. We focus on the technical aspects of the simulation
engine. The source code for both ÜberSim and CMDragons is
available, under the GNU Public License, on line at [11].

3.1 Simulator Overview
Figure 3 shows the modules for ÜberSim. Essentially, ÜberSim is
built around the Open Dynamics Engine physics simulation
library to provide the physics simulation and parameterized object
classes to define each physical object in the simulator. The scene
graph forms the primary data structure for containing all the ODE
relevant and simulation relevant information. A collision manager
provides efficient potential rigid body collision detection and
using the low-level primitives provided by ODE updates the scene
graph to produce the appropriate collision response. The main
controller is the orchestra conductor for the system. The controller
maintains the communication interfaces to the robot software,
generates simulation and collision detection calls at the
appropriate time, and performs system configuration as required.

IFace
Vision
Radio

Control

Ball Field Diff
Robot

Omni
Robot

Collision
Manager Scene Graph

ODE
Dynamics, Collisions, Graphics

Main
Contr.

Figure 3. Major modules for ÜberSim.

3.2 Open Dynamics Engine
The physics simulation engine is the key to making ÜberSim
useful in terms of high performance robot control. The physics
simulation engine must be able to model, with appropriate
parameterization:

• Contact collisions between polygonal rigid body objects
with different elasticity

• Static and sliding contact between two surfaces and the
transition between static contact and sliding

• Rigid body motion with non-negligible mass and
rotational inertia

Although there are a number of Open Source simulation engines
available, most focus on producing fast pseudo realistic
simulations for use in computer games. These engines are
therefore fast, but produce motions that look good as opposed to
being accurate. In contrast, there exist a number of simulation
engines for rigid body motion that are useable for simulating the
mechanical interactions of rigid parts. These simulators vary in
terms of their integration engines used to produce a forward
model of how the rigid parts move dynamically, and in the
collision detection/handling mechanisms. We desire an accurate
but fast simulation engine for ÜberSim that models rigid bodies,
elastic collisions between rigid parts, and contact surfaces that
have both static and dynamic friction.

For ÜberSim we chose the Open Dynamics Engine (ODE)
(version 0.035 was used for this paper). ODE is an Open Source
rigid body simulation engine, developed by Russell Smith,
available at [9]. It has been used in a number of other projects
(see the site for details), is reasonably documented, and has
reached a maturity level ensuring that the code is stable and
useable. ODE is essentially a simulation library that provides
support for rigid body motion, with finite mass, rotational inertia,
and non-even mass distributions (defined via the moment of
inertial matrix). ODE provides support for rigid body collisions.
Contacting surfaces can take a number of configurations with
static friction, or sliding contacts with adjustable levels of
Coulomb friction. Finally, ODE provides for a small, but ever
growing, number of joint types. Although there are only a few
joint types, they cover the range of mechanisms that have been
used in any of the leagues at RoboCup. Finally, its simulation
engine provides fairly accurate integration using Euler integration,
that is fast and more importantly, stable. As a bonus feature, the
ODE library includes Open GL routines to render the 3D
simulated environment. Although cross platform development is
not currently a goal of the ÜberSim project, ODE is a cross
platform development making future extensions of ÜberSim to
multiple platforms quite possible. Put together, ODE meets the
requirements for the simulation engine. Its main limitation stems
from its collision detection package, which only provides a small
set of primitive object shapes rather than a general polygon soup.

3.2.1 ODE Details
Within ODE, objects consist of rigid bodies, geometries, and
joints. Rigid bodies are dynamical objects and therefore have
mass (with optional mass distribution), rotational inertia, and
momentum. As rigid bodies are dynamical objects their motions
are calculated during simulation updates by numerically
integrating their equations of motion based on the forces acting on
the bodies. In contrast, geometries and joints are not dynamical
objects and are used in the integration step. Instead, geometries
are used to determine when and where collisions occur and what
resultant forces are transferred to the connected rigid bodies.
Joints are special geometries used to specify how two connected
rigid bodies can move in relation to one another. Joints can also
be powered, which provides the primary mechanism for
controlling how the connected body behaves.

ODE groups connected rigid bodies into islands. Disconnected
islands are simulated independently during the motion integration
step. In the context of ÜberSim, each robot is a separate island, a
connected group of rigid bodies. Rigid bodies interact with one
another, and with other geometric objects such as the ground,
whenever they make contact. Contact between objects is a
collision detection process, discussed in more detail below, based
on the geometry data structures. Whenever contact between two
parts is made forces are introduced at the contact point, line, or
surface. The resulting forces acting on the rigid bodies as a result
of the contact is a function of the properties of the contacting
surfaces. ODE stores these properties in a surfaces data structure.

ODE supports a range of different types of contact. Contacting
surfaces can either be hard or soft, where soft surfaces are
essentially deformable meaning some penetration depth is allowed
in collisions. In contrast, hard surfaces allow no deformation and
therefore no penetration of either rigid body. Contact collisions
can have some elasticity, whereby the restitution coefficient can

be independently set. Contacting surfaces can impart frictional
forces on one another where the friction coefficients for these
interactions can be specified. If the friction force exceeds the
VWLFWLRQ� OLPLW� �LH�� WKH� IRUFH� H[FHHGV� _)N| where FN is the
magnitude of the force normal to the contact surface), then the
contacting surfaces slip. As with friction coefficients, ODE allows
the slip coefficients to be specified. Finally, for contacting
surfaces, ODE allows the friction and slip coefficients for two
orthogonal directions to be in specified independently. This is
useful because omni directional wheels have the unique property
of rolling freely in the direction of its axis, while operating as a
normal wheel in the direction perpendicular to its axis.

3.3 Building a Simulation Environment
ODE provides a basis for building a realistic, 3D simulation
engine for multi-robot problems. However, ODE is only a library
for simulation, the main part of the simulator must still be built.
Similarly, for ÜberSim to be useful and to meet the goals of its
specification, it needs to be structured in such a way that new
robots can be easily incorporated into the simulation package.
Additionally, the parameters that define a robot configuration
need to be easily changeable to support design modifications as
well as to operate as a design tool. In this section we describe how
ÜberSim is structured around ODE, how the extensible robot
classes are defined and parameterized.

3.3.1 Storing the World State via the Scene Graph
At the core of ÜberSim is the scene graph. The scene graph stores
all the information about the simulation environment and is the
major data structure used by ÜberSim. The scene graph
hierarchically stores the geometric and physical information about
each object in the environment. The scene graph is a tree
consisting of linked nodes. Each node stores a bounding sphere
for collision detection where the bounding sphere encloses all the
bounding spheres contained in its children. Each node may
optionally store an ODE geometry object. The geometry object
may also be augmented with a rigid body object, or a joint object,
or a surface object for collision contacts. If a node contains a rigid
body, joint, or surface, then it must contain a geometry object.
Finally, each leaf in the scene graph must contain at least an ODE
geometry object. Figure 4 shows an example scene graph for a
simple robot with no dribbler or kicker and a ball.

rigid

sphere

root

Robot1 ball

shell

cylinder

wheel

wheel

Robot2

Figure 4. A simple scene graph. Rigid bodies are boxes, nodes

are ovals, and hexagons are geometries.

The scene graph is the main data structure used by ÜberSim. It
compactly encodes:

• The geometric properties of each object in the
environment

• The physical parameters for each rigid body that
partakes in the integration step

• The contact surface parameters: friction, bounce etc.

• The geometry information required for optimizing and
performing collision detection

The remaining components of ÜberSim are dedicated to creating
and maintaining the scene graph, using it to perform operations
such as collision detection, using it to drive the actuators in the
system, or extracting geometric information from it to report to
form the output of the simulator. Finally, the scene graph forms
the main object used to store the data required by ODE to execute
the simulation and by ODE’s graphical visualization engine used
to draw the simulated objects via Open GL.

The scene graph is constructed and maintained through base
object classes. Currently, there are three types of objects: the field,
the ball, and robot classes. Each object type, upon construction,
adds nodes to the scene graph. The root node of the scene graph
branches to different object types which in turn branch to nodes or
leaves with geometry, and possibly rigid body information. Once
created, the role of each object class is to provide a useable
interface for handling simulator events and extracting geometry
information about an object. ÜberSim events include
manipulation commands and actuator commands for robots,
Manipulation commands are for manually moving objects around
in the simulated environment, for example when a user is moving
objects via a GUI. Actuator commands are commands sent to
drive a robot around the field or to use its other actuators. The
final role of the object class is to provide a useful interface for
extracting object pose information in order to generate perceptual
output from the simulation engine.

3.3.2 Collision Handling
Collision are handled using a Collision Manager (CM) developed
for ÜberSim. The CM uses the scene graph data structure and the
ODE collision detection components. Essentially, the CM uses the
bounding spheres encoding in scene graph to determine which
geometries are potentially colliding. Once found, the CM uses the
ODE collision detection routines relevant to the colliding objects
types, to determine if there is a collision.

To determine what nodes are potentially colliding, the CM uses
the bounding spheres encoding in the scene graph. Each node in
the scene graph stores a bounding sphere that surrounds all of its
child nodes and so on recursively through the tree. The first step
of collision handling is to determine which bounding spheres
intersect. To test for intersection, the bounding sphere for each
node is compared to each other node in the tree that it is not its
ancestor or descendent. The ancestor/descendent constraint is
required because the node’s bounding sphere is contained within
each of the ancestor bounding spheres. Likewise, all descendent
bounding spheres are contained within the node’s bounding
sphere. If a node intersects with another node in the tree, other
than its ancestors or descendents, then the child nodes are checked
recursively until the colliding nodes are found. If a node does not
intersect with any other node in the tree, then none of its children
intersect with any other node, thus no further collision checking is
required for that node or its children. Once all intersecting nodes
have been located, and the ODE collision routines for the object
types in each intersecting node are called. These routines
determine if there is a collision, and using the surface properties

(if defined) for the contacting surfaces, ODE specifies what forces
result. These forces then act on the colliding parts in the next
simulation steps to produce the appropriate response.

The CM search for collisions is fast because of the tree search
using the hierarchical bounding spheres. In the types of
simulations ÜberSim is used for, the number of colliding objects
is limited and often significantly less than the size of the scene
graph. Hence the tree-based search provides a powerful tool for
quickly finding the few objects that are colliding.

3.3.3 Base Object Class, Field and Ball Objects
The base object class is the RigidBodyEntity object. This class
encapsulates the notion of a rigid body with geometry. The base
class provides the base operations for adding the object to the
scene graph, accessing its position, and for handling manipulation
commands from ÜberSim. All other objects, the field, ball, and
robot classes, are derived from RigidBodyEntity and therefore
inherit its basic capabilities. The basic structure for objects
derived from RigidBodyEntity is shown in Table 1.

Table 1. Pseudo code describing a physical object.

Class SomeObject
 Derived from RigidBodyEntity
Methods
 Constructor
 HandleEvent(Event e)
Data
 Node root_node
 Other data
Constructor
 Create root node for SomeObject and add to scene graph
 For each part in SomeObject
 Create [Geometry, RigidBody, Joint, Surface, Node]
 Set parameters from configuration file
 Add to scene graph
 End
End
HandleEvent(Event e)
 Switch (e)
 SomeEvent:
 Handle the event
 Default:
 Call default RigidBodyEntity handler
 End
End

The field object is a static geometry. As the field is essentially
non-moving, it consists of only geometry objects. The geometry
objects define the position and shape of the field walls and ground
surface. Once created, the field object is unused and its role in
simulation occurs via the collision management engine and its
defined geometries in the scene graph.

In contrast to the field object, the ball is a moving object but
contains no actuators. Thus, the ball object contains a single
spherical geometry that describes its surface and a rigid body
object to describe the dynamical properties of the ball. The rigid
body object contains the parameters that define its mass, mass
distribution, and rolling friction. A surface object describes the
contact properties of the ball. Specifically, the contact properties
are the friction coefficient of the ball on carpet, the elasticity of
the ball for collisions, and the coefficient of friction for the carpet

when it is in slipping mode. The latter is required when the ball is
driven by the dribbler and spins backwards on the carpet against
the robot kicker plate. Once created, the ball object handles
velocity manipulation commands from ÜberSim and passes
position commands to its ancestor RigidBodyEntity.

3.3.4 Robot Objects
One of the core challenges in the ÜberSim concept is the problem
of how to enable new robot configurations to be easily added
and/or parameters changed easily. In terms of robot hardware and
capabilities, RoboCup is a very dynamic domain. Robots are often
completely rebuilt from one year to the next. Hardware
innovations may result in completely new drive configurations,
new complex ball manipulation devices, and at the very least
substantial changes in the parameters that describe the physical
characteristics of a robot. For the ÜberSim concept to be useful to
a team, or to be capable of providing a simulation environment for
comparing two teams, there must be mechanisms to add new robot
types easily. Moreover, given the argued need for simulation
accuracy, there must be a mechanism to easily adapt robot
parameters to closely match those of the physical robot.

To achieve this goal, ÜberSim uses multiple robot objects where
each object encapsulates a particular robot type. Each robot object
is derived from the usual RigidBodyEntity object giving it the base
abilities for manipulation. Each robot object encapsulates a
parameterized robot configuration, where the parameters describe
the physical characteristics of a robot. In the current
implementation of ÜberSim, two robot objects are defined:
OmniRobot and DiffRobot. Each robot type, with appropriate
parameters, can represent nearly all the robots found in small-size
RoboCup competitions. The two types are distinguishable based
on the drive configuration where the DiffRobot uses two wheels,
while the OmniRobot uses three specialized omni wheels. Each
robot has an optional dribbler and kicker mechanism.

The robot types define a generic differential or omni directional
robot base with a kicker and dribbler (if selected). The particular
parameters that define the dimensions and positioning of each
part, the physical properties of the major robot components (mass,
inertia etc.) and their contact parameters are read from human
readable/editable ASCII text configuration files. Configuration
files are ASCII text files that allow comments (preceded by a ‘#’
character) and parameter assignments. Parameter names are
ASCII strings (with no spaces and limited special characters)
assigned to arbitrary but non-zero length vector of values. An
example is:

KICKER_SIZE = 120 3.175 20 # <x, y, z> mm

A configuration file reader parses each file. If the parameter is
being used, and is stored in the file, the configuration reader
extracts the vector information based on the parameter type (real,
integer or string), and stores the resulting array in the converted
format. The converted array is then accessed directly making
future data access very fast. By using the combination of
configuration parameter files, new robots within in a given class
can be quickly added if its physical parameters are known.

In the CMDragons system, like many other small-size league
teams, each robot is commanded to move by specifying robot
relative velocity commands. Typically, each robot locally
implements velocity control servo loops, using for example PID
compensation. As mentioned above, ÜberSim must be able to

receive similar commands. Thus, each robot object incorporates
event handlers to receive velocity commands, as well as kicker
and dribbler binary commands.

All velocity commands v = (vx, vy�� �T sent to the robot are
defined in a robot relative reference frame (see Figure 5). To
translate the velocity commands into wheel motor angular velocity
for each of the N wheels (ie. to generate w � 1�� «� N)T) the
velocity command is transformed using the inverse of the forward
kinematic transform T. In other words:

vTw 1−=
The inverse transforms for the different drive robot T-1

Diff and
omni directional robot T-1

Omni for a wheel of radius r and a wheel
base of 2R (see Figure 5), are given by:























−

−

=
















−−

−
= −−

R
r

R

R
r

T

r

R

r

r

R

rT OmniDiff

3

1

3

1
3

2
0

3

1

3

1

,
0

1

0
1

11

vy

vx

1

2

3

R

vy

vx

1
2 R

Figure 5. Reference frames.

3.4 Control Interface
Following our approach with our previous 2D simulator,
configuration of what robots are on the field utilizes an identical
interface to the CMDragons high-level vision configuration. That
is, high-level vision must be told which robots are currently on the
field so that it uses the appropriate models to recognize them.
ÜberSim uses an identical interface to configure what robots, and
what type, are on the field.

3.5 Main Simulation Loop
The main simulation loop essentially branches to each part of the
simulation process in sequence. Essentially, the main simulation
loop checks for any new configuration commands and creates or
moves objects as required. If there are any robot velocity
commands, they are sent to the appropriate robot object handler.
The simulator is then progressed by the simulation� VWHS� VL]H� 7�

and the process continues. When new perceptual output is ready,
the raw position information is extracted from each major object
in the scene graph, transformed to the appropriate format, and sent
to the client programs. Perceptual output is VHQW� HYHU\� 7�

VHFRQGV��ZKLOH� VLPXODWLRQ�VWHSV�RFFXU�DW� D� ILQHU� UHVROXWLRQ�RI� 7�

VHFRQGV�� 7� �k� 7��ZLWK�LQWHJHU�k) to ensure integrator stability.
)RU� WKH� &0'UDJRQV� V\VWHP�� 7� LV� GHILQHG� WR� EH� ��PV�

corresponding to a 30Hz frame rate. The simulation step sL]H� 7�
was set to 16ms such that k = 2 to obtain accurate simulations.

3.6 Graphical Visualization
Finally, ODE is equipped with OpenGL drawing routines.
ÜberSim makes use of these drawing routines, if Open GL is
available, to provide a rich 3D visualization of the environment.
Figure 6 shows an example screenshot from the simulator.

Figure 6. Screenshot of ÜberSim using the OpenGL

visualization built using the ODE engine.

4. RESULTS & DISCUSSION
ÜberSim as described in this paper is able to simulate two teams
of 5 robots and the golf ball playing soccer. With two simulation
steps per frame of vision, running on a 1GHz Pentium processor,
the simulator is able to execute at full frame rate (30Hz output,
60Hz simulation steps) using around 60% of the processor for two
full teams playing against one another.

To examine the performance of the system, we have compared the
trajectories generated by ÜberSim for a robot performing a set
pattern and performing acceleration tests. The set patter is a fixed
sequence of target points fed into the navigation/motion control
system where the target speed at the destination is set to zero. For
details on the navigation and motion control see [4]. Figure 7
shows the acceleration tests at 2 m.s-2 for a differential drive robot
in simulation and reality. The trials were repeated 5 times. Note
that there will be some variation in the observed trajectory as the
real system has noise and natural variation in the robot
parameters. Figure 8 shows trajectory comparisons for a
differential drive driving in a figure 8 at around 0.8 m.s-1 for a
simulated robot versus a real one.

In its current form ÜberSim is functional, but rather “bare bones”.
There are a number of limitations, and extensions to the
architecture that are required before it becomes truly useful as a
simulation engine for multiple teams or for comparing the control
approaches of two different teams. Currently ÜberSim is limited
to the primitive geometrical shapes supported by ODE. However,
there are mature Open Source packages for fast collision detection
libraries for general polygon shapes. Voronoi Clip (or V-Clip)
(see [10] for a review and comparison) is one potential collision
detection package that could augment the ODE substantially.

A second area of investigation is improvements to the robot class
structure. Currently, new robot classes must be added at compile
time. While adding a program class is an easy exercise it is not
trivial. Thus future work is required to explore how best to
extend, or replace, this approach. A final area of work relates to
the robot software interfaces. Ideally, we would like the option of
using a high-level vision/action interface or using a low-level

perception model, and a low level motor model, to test all parts of
the control system.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2
Linear Acceleration Test

Time (s)

Speed
m/s

Figure 7. Acceleration comparison for a simulated Diff Robot

(‘.’) versus a real robot (‘+’) repeated 5 times.

-1000 -500 0 500 1000
-600

-400

-200

0

200

400

600

800

Figure 8. Trajectory comparison for simulator (line) and real

robot (‘.’) performing a set figure 8 shape.

5. RELATED WORK
A plethora of robot simulators have been created and used to
support robotics research. Although some are available in the
public domain, most are not. Most simulators provide simulation
engines for developing general-purpose multi-robot software.
Prime examples of this approach are Player/Stage [6][12] and
TeamBots [1]. Player/Stage is a distributed multi-robot simulator
and can simulate large numbers of different robots interacting in a
complex, structured environment using a range of conventional
sensors. In terms of dynamics, the simulation package uses low-
fidelity dynamics models limited to kinematic approximations.
TeamBots is similar to Player/Stage. Written in Java, it provides a
range of vehicle types and sensor types. Although TeamBots has
been used to simulate games of robot soccer [2], the simulator
again uses low-fidelity dynamics approximations. The Robot
Soccer Server [8], which is the official simulator for the RoboCup
simulator robot soccer league, provides a simulation environment
dedicated to investigating the high-level control issues for a team
of distributed soccer agents. In contrast to TeamBots and
Player/Stage, the Soccer Server simulates each agent as a high-
level abstract robot/human. Although the simulator provides
dynamical interaction between the agents and the ball, it uses no
realistic dynamical models for agent movement. Indeed, there is
no collision detection so agents can drive through one another.

For robot soccer where the control code has to transfer to a real
system, dynamics are an integral part of the problem. Hence, low-
fidelity dynamic approximations limit the usefulness of a
simulator for the development of robot control software.
Dynamics are critical for motion control, as it is the dynamical
limitations of motor torque, inertia, and traction that prevent a
robot from instantaneously moving to where it wants to go.
Similarly, ball manipulation is one of the primary challenges for
robot control of a soccer robot. To develop detailed software
control for ball manipulation in simulation, one most certainly
needs a high-fidelity simulator to have any hope of developing
software that is transferable to the real system.

Most robot soccer teams develop simulation engines to rapid
prototype control software, but few publish details of the
simulator or make the software publicly available. There are some
exceptions, however. M-ROSE [5] is a novel simulation engine
that uses a neural network (NN) to learn the forward dynamics
model. That is, a conventional back-propagation NN is trained
using results recorded from the real robots to approximate the
movement model for the robot without latency. The simulation
engine operates by receiving commands, delays them by the
latency amount, and then using the current state of the robot with
the forward model determines where the robot moves to for the
next simulation time step. The authors use collision detection
algorithms to handle ball collisions with robots and provide no
modeling of robot-robot contact. This approach is distinctly
different to the approach described in this paper. The advantages
of the M-ROSE approach are that measurement of the physical
parameters of the world is done implicitly through the data
collection to train the forward model. One disadvantage of this
approach is that it is unclear how robot-robot collision detection
could be integrated with the forward model to produce at least
partially realistic robot-robot interactions.

6. CONCLUSIONS
In this paper we have described the development of a new high
fidelity simulation engine for robot soccer an adversarial multi-
robot task. The simulation engine, ÜberSim, builds on top of an
Open Source physics simulation library to provide fast, stable and
accurate rigid body dynamics. We have developed the ÜberSim
architecture to enable easy addition of new parameterized robot
types. Furthermore, we have developed the architecture such that
parameters are in ASCII text files for easy editing and
manipulation. Using this architecture we have created both a
differential and an omni directional robot class and simulated a
game of soccer using our existing small-size robot soccer
software. Much work still remains to be done to achieve the final
vision for ÜberSim, in particular collision detection and more
powerful tools to easily add new robot types and parameters.

7. ACKNOWLEDGMENTS
The authors would like to thank Prof. Manuela Veloso and
Michael Bowling for the help and support for the development of
the research described in this paper.

This research was sponsored by Grants No. DABT63-99-1-0013
and F30602-00-2-0549. The views and conclusions contained in
this document are those of the authors and should not be

interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the funding
agencies.

8. REFERENCES
[1] Balch, T. Behavioral Diversity in Learning Robot Teams,

Ph.D. Thesis, College of Computing, Georgia Institute of
Technology, December, 1998.

[2] Balch, T. JavaSoccer. RoboCup-97: Robot Soccer World
Cup I, Springer-Verlag, 1998.

[3] Bruce, J., & Veloso, M. Fast and accurate vision-based
pattern detection and identification. In Proceedings of the
2003 IEEE International Conference on Robotics and
Automation (ICRA’03), 2003, under submission.

[4] Bruce, J., Bowling, M., Browning, B., & Veloso, M. Multi-
robot team response to a multi-robot opponent team. In
Proceedings of IEEE International Conference on Robotics
and Automation (ICRA’03), 2003, under submission. A
previous version also submitted to IROS-2002 workshop on
Collaborative Robots

[5] Buck, S., Beetz, M., & Schmitt, T. M-ROSE: A multi robot
simulation environment for learning cooperative behavior. In
H. Asama, T. Arai, T. Fukuda, and T. Hasegawa (eds.):
Distributed Autonomous Robotic Systems 5, Springer, 2002.

[6] Gerkey, B., Vaughan, R., Støy, K., Howard, A.,Sukhatme,
G., & Mataric, M. Most valuable player: A robot device
server for distributed control. Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS 2001), pages 1226-1231, Hawaii, October, 2001.

[7] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., &
Matsubara, H., RoboCup: A Challenge Problem for AI and
Robotics. RoboCup-97: Robot Soccer World Cup I, Nagoya,
L.N. on A.I., Springer Verlag, 1998, 1-19.

[8] Noda, I., Matsubara, H., Hiraki, K. & Frank, I. Soccer
Server: A tool for research on multiagent systems. Applied
Artificial Intelligence, 12:233-250, 1998.

[9] Open Dynamics Engine main site: http://www.q12.org/ode

[10] Reggiani, M., Mazzoli, M., Caselli, S. An experimental
evaluation of collision detection packages for robot motion
planning. In Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
(IROS’2002), Switzerland, October, 2002.

[11] ÜberSim and CMDragons’02 software downloads page
http://www.cs.cmu.edu/~coral/download/

[12] Vaughan, R. Stage: a multiple robot simulator. Technical
Report IRIS-00-394, Institute for Robotics and Intelligent
Systems, School of Engineering, University of Southern
California, 2000.

