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Iterative Probability Kinematics

Horacio Arlé-Costa and Richmond H. Thomason

Abstract

ABSTRACT. Following the pioneer work of Bruno De Finetti [12], conditional prob-
ability spaces (allowing for conditioning with events of measure zero) have been studied
since (at least) the 1950’s. Perhaps the most salient axiomatizations are Karl Popper’s
in [30], and Alfred Renyi’s in [32]. Non-standard probability spaces [33] are a well
know alternative to this approach. Vann McGee proposed in [29] a result relating both
approaches by showing that the standard values of infinitesimal probability functions
are representable as Popper functions, and that every Popper function is representable
in terms of the standard real values of some infinitesimal measure.

Our main goal in this article is to study the constraints on (qualitative and prob-
abilistic) change imposed by an extended version of McGee’s result. We focus on an
extension capable of allowing for iterated changes of view. Such extension, we argue,
seems to be needed in almost all considered applications. Since most of the available
axiomatizations stipulate (definitionally) important constraints on iterated change, we
propose a non-question-begging framework, Iterative Probability Systems (IPS) and
we show that every Popper function can be regarded as a Bayesian IPS. A generalized
version of McGee’s result is then proved and several of its consequences considered.
In particular we note that our proof requires the imposition of Cumulativity, i.e. the
principle that a proposition that is accepted at any stage of an iterative process of
acceptance will continue to be accepted at any later stage. The plausibility and range
of applicability of Cumulativity is then studied. In particular we appeal to a method
for defining belief from conditional probability (first proposed in [41] and then slightly
modified in [6] and [3]) in order to characterize the notion of qualitative change induced
by Cumulative models of probability kinematics. The resulting cumulative notion is
then compared with existing axiomatizations of belief change and probabilistic suppo-
sition. We also consider applications in the probabilistic accounts of conditionals [1]
and [29].

KEY WORDS: Conditional probability, Hypothetical revision, Infinitesimal prob-
ability, Popper functions, Probability conditionals, Supposition.



1. Introduction

Epistemic states undergo rational change. Therefore, probability measures need to repre-
sent epistemic transitions, as well as static epistemic states. The same should hold for the
representations of conditional probability known as “Popper functions.”! The point applies
with special force in this case, since one popular motivation for Popper functions is the need
for reasonable epistemic transitions in cases more general than those that are allowed when
conditional probability is defined in terms of absolute probability.

Vann McGee, for instance, argues that events with probability zero (such as an infinite
sequence of coin tosses, all coming up heads) are possible, and goes on to say this:

If a proposition we now assign the probability 0 is discovered to be
true, we shall revise our system of beliefs. In seeing how we ought
rationally to revise our beliefs, standard Bayesian theory is no help.
[29, p. 179]

Clearly, epistemic transitions should iterate. It is not much good to have a characteriza-
tion of revision that only allows you to revise your opinion once. For some reason, however,
Popper functions have not been formulated in a way that provides a direct, general way of
of dealing with iterated revisions.

Here is the problem with Popper’s idea of using a relational probability C(p,q) as a
theoretical primitive. Suppose we take such a probability, C', together with a proposition
po (the latter representing everything that an agent unconditionally accepts)? to be the
representation of an ideal agent’s epistemic state. The agent’s initial state, then, will have
the form

(1.1) (ApC(p, po),po)-

Suppose now that the agent accepts a new proposition p;. Then the new epistemic state,
according to Popper, would be

(1-2) (APC(P,]?O /\pl),po Ap1>-

If the agent in state (1.2) now accepts p,, the new epistemic state will be

(1.3) (ApC(p, po A p1 A D2), Po A D1 A Da).

Thus, as propositions are accepted they are combined into a conjunction that compiles the
acceptance history. Since this cumulative combining of accepted propositions is built into the
definition of revision, it holds universally, regardless of eventual conflicts among the accepted
propositions. One consequence of the conjunctive policy of dealing with iterated acceptance
is Simple Cumulativity: the principle that a proposition that is accepted at any stage of an

!The reference here is to the new appendices *ii to *v of [30] as well as to the work of Alfred Renyi in
[32]. The axioms adopted in this paper, nevertheless, do not exactly coincide with either the ones offered
in [30] or [32]. We adopt a axiomatization more akin to the one used later by van Fraassen in [41]. See the
comments in Section 1.1, below, comparing the two approaches.

2 A more precise epistemological analysis of the attitude encoded by py will be offered later on. For the
moment the reader can think about pg as the encoding of the certainties or full beliefs of the agent.
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iterative process of acceptance will continue to be accepted at any later stage. Cumulativity
is a rather severe constraint on learning scenarios. In fact, the principle requires a strong
form of path-dependence according to which a sufficient condition for the incoherence of the
current epistemic state is an epistemic past where incompatible inputs have been accepted.

It is easy to make this constraint seem implausible. For instance, consider the following
example.

Example 1.1.

I assign probability 0 to a certain die’s falling edgewise. Now [ am told
by an informant whom I trust that

(1.4) The die fell on an edge.
Then I am told by another informant whom I also trust that
(1.5) The other informant lied.

Simple Cumulativity can be defended against such examples by constraining the inter-
pretation of C' so that revisions with mutually incompatible pieces of information become
incoherent. One could argue, for instance, that what should be have been accepted in the
first place in the above example is not (1.4) but

(1.4") Either the die fell on an edge or my informant is lying.

We have a certain amount of sympathy with this idea, if it is applied cautiously. But even
the most enthusiastic advocates should reject formalizations which, like Popper’s, make it
impossible to even formulate rival interpretations of revision. Even if cumulativity assump-
tions are reasonable and appropriate in some or even all cases, it is going too far to make
them hold as a matter of definition.

In the next two sections of this paper, we develop a formal account of conditional prob-
ability that generalizes Popper’s formalization, and that does not enforce cumulativity® as
a matter of definition. We believe that this account provides insights into probability kine-
matics that are not readily obtainable using Popper’s formalism. For instance, it provides a
better basis for comparison with qualitative theories of belief revision, and semantic theories
of conditionals, and it enables us to formally characterize the cases of probability kinematics
that are representable using nonarchimedean probability.

1.1. Popper functions and infinitesimal probability: two sides of the same coin?

There are two standard ways to represent conditioning with events carrying zero measure:
infinitesimal probabilities and the so-called Popper functions. The former notion appeals to
the idea that a proposition can carry infinitesimal value greater than zero, but smaller than
any standard number. Instead of assigning zero to the proposition that a randomly chosen
point is in the Western Hemisphere, we give it an infinitesimal value. So, if we assign an
infinitesimal value ¢ to the point being in the southern part of the Western Hemisphere and

3In a general setting, different, non-equivalent cumulativity principles become formulable. None of these
forms of cumulativity hold automatically.



24 to the proposition that it is in the Western Hemisphere; the proposition that it is in the
southern part of the Western Hemisphere, conditional on its being in the Western Hemisphere
is defined and carries infinitesimal value % . Of course, in order to have a workable proposal,
a calculus of infinitesimal magnitudes has to be developed. Abraham Robinson’s pioneering
work in this area is standard in the field today.

Karl Popper [30] and Alfred Renyi [32] proposed a different way of proceeding. The basic
idea is to treat conditional probability as primitive. The two-place functions in question
receive standard real values, but the probability of P(p | ¢) where ¢ carries unconditional
value zero is well defined (i.e., it is defined when P(q | U) = 0, where U is the universe
of the underlying sigma-field F'). The central axiom constraining the two-place functions is
the so-called Multiplication Axiom, according to which P(pNr|q) = P(p|q)P(r|pNq) for all
propositions ¢, p, r

These two approaches are differently motivated. They have grown independently and
their foundational problems have different roots.*

Perhaps non-standard probability is a more adequate (or ‘intuitive’) representational tool,
but two-place functions have the advantage of a simple axiomatization—at least this is so
for most applications where the domain of the underlying sigma field is at most countable.’

In spite of the aforementioned differences, Vann McGee has recently offered an interest-
ing result showing that it is possible to map statements about non-standard probabilities
into corresponding facts about ordinary valued two-place probability functions (and vice-
versa). The gist of the result is a back-and-forth proof showing that the standard values of
infinitesimal probability functions are representable as two-place functions, and that every
two-place function is representable in terms of the standard real values of some infinitesimal
measure. McGee’s result is presented only for non-iterated probability change. The first five
sections of this piece focus on showing that: (1) McGee’s original proof does not extend to
an iterative setting; (2) that there is nevertheless a modified proof that does extend to this
case, and (3) that this extended proof requires cumulativity assumptions.

As we explained above, we will first present two-place iterative kinematics in such a way
that cumulativity is not imposed definitionally. This will help to display more effectively the
role played by cumulativity in our representation result. This will also have the additional
virtue of developing a generalized account of iterated Popper functions, which allows cumu-

4Popper’s main motivation was the development of a probabilistic semantics for classical logic. Therefore
in his model the carriers of probability are sentences. Renyi followed Kolmogorov’s lead, and therefore
in his axiomatixation of generalized conditional probability propositions (sets of points in the underlying
sigma-field) are the carriers of probability. Here we follow the latter path rather than the former. But we
do not adopt Renyi’s approach in full either. For example, Renyi relativizes conditioning events to what
he calls bunches. So, the terminology ‘Popper functions’, or even ‘Popper-Renyi functions’, in the context
of this paper, will only reflect the common attempt to axiomatize (without appealing to non-standard
numbers) a generalized notion of conditional probability, rather than particular historical features of the
models developed by either Popper of Renyi.

5The work done by Alfred Renyi on conditional probability is perhaps the most serious attempt to provide
solid foundations for two-place functions. Still it is well known that the general definition of the probability
of events conditional on events, rather than on sigma fields, is problematic in the context of Kolmogorovian
measure theory (see [7], [34], [4]). Probabilities conditional on arbitrary events (defined with respect to
arbitrary spaces) are considerably less problematic if finite additivity is assumed. Most of the present work
applies to finite or at most countable spaces. The imposition of countable additivity will be stated when
needed, although it is not presupposed for most of the results.
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lativity assumptions, but does not require them. Depending on the nature of the intended
interpretation, cumulativity conditions might or might not be required.

If the goal of using two-place functions is to provide a more general modeling of the
way we actually update our beliefs when we acquire new evidence, Simple Cumulativity
is at best doubtful as a universal constraint. It seems perfectly reasonable that an agent
whose current view is consistent could have an epistemic past where he updated his view
sequentially with inputs that do not form a consistent set. The situation is different when the
intended interpretation is suppositional, but even in this case it is unclear whether all forms
of supposition are cumulative. Nevertheless, as we explained above, we will show that in
order to extend McGee’s result a cumulativity condition needs to be imposed. This seems to
constrain the set of feasible interpretations of the mapped extensions of classical probability.

Extended conditional probability can be constructed in the context of a pluralist episte-
mology where belief is a primitive alongside probability. Extended conditional probability
measures can then be constructed as coherent degree of belief conditional on qualitative
suppositions. Hajek and Harper offered in [18] the first attempt to axiomatize the resulting
notion of qualitative supposition. Although the authors try to stress some commonalties
with axiomatizations of contemporary theories of belief change, the resulting notion is ac-
tually inconsistent with all the standard notions of belief change—independently of their
intended interpretation. The model offered in [18] has the further limitation of not applying
to sequential changes.

The final sections of this piece are devoted to studying the qualitative constraints on
supposition imposed by cumulativity. In other words, we will offer an exact account of the
qualitative constraints on supposition imposed by the generalized mapping between Popper
functions and infinitesimal probability. In order to do so we will need to associate in a
natural manner a qualitative notion of belief with each Popper function, and we will need
to show how this body of belief changes when its associated Popper function is updated.
We will follow a proposal recently offered by Bas van Fraassen (and recently extended and
slightly modified in [3] and [6]). This framework permits a very direct analysis revealing how
the probabilistic and qualitative approaches (of belief kinematics) connect.

The notion of belief change that thus arises (Hypothetical Revision) is axiomatized and
compared with some of the standard notions of belief change in the literature. Since the
qualitative counterpart of Simple Cumulativity is rejected by standard accounts, we will see
that Hypothetical Revision is irreducible to any of those accounts. This might be surprising,
given that historically part of the recent work on (qualitative) belief dynamics was motivated
by previous work on probability kinematics. Contrary to what untutored intuition might
suggest, the epistemology induced by (the standard presentation of) Popper functions® is
at odds with some of the most popular qualitative accounts of inquiry and supposition
developed to date.

The last section of the paper will be devoted to showing that Hajek and Harper’s approach
can be reconciled with our approach. We will show that a modified version of Hajek and
Harper’s axioms are theorems of Hypothetical Revision. We will also suggest that this notion
of hypothetical change manages to articulate the notion of supposition tacitly used in the
probabilistic semantics of conditionals developed by Adams and McGee.

6T.e. a presentation imposing Cumulativity definitionally.
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2. An abstract characterization of iterative Popper functions

A semantics for absolute probability is provided by measure theory. But, in itself, a measure-
theoretic approach will not provide an interpretation of primitive conditional probability.
The approach we adopt here retains the classical idea of a probability function, as a function
from an algebra of propositions to [0,1]. To this we add a selectional approach to the
conditionalization of probabilities, somewhat like Stalnaker’s approach to the interpretation
of conditionals in [38]. In other words, we postulate a selection function that, given a
probability function P and a hypothesis ¢ produces another probability function P. We
can then ask about the probability of p on this derived probability function. From this
standpoint, a notation like [U(q, P)](p) is preferable to the more familiar notation P(p, q)
that derives from Popper [30].” This notation has the advantage of providing a neutral
representation for iterative updates. The probability of p given an initial probability function
P and successive hypotheses ¢, q1, - . ., ¢, (assumed in this order) is then

[U(gn, Ulgn-1, U, U(go, P)) - ))](p)-

Ugp....qn (P)(p) is an alternative, more readable notation for the same thing.

The idea of perturbing a probability function with a hypothesis is similar to van Fraassen’s
proposals in [39, 40, 41]. In fact, there is an interesting convergence between van Fraassen’s
ideas and the results presented in this essay, although this coincidence is only clearly revealed
by focusing on certain models of a slightly modified version of van Fraassen’s original proposal
(see [3], [6], and Section 6, below, for details).

In view of cases like Example 1.1, it may be surprising that Simple Cumulativity should
be an appropriate constraint to impose on iterative probability kinematics. Tracking the
epistemological states of an ideal observer as evidence is gathered is a primary motivation
for probability kinematics. (If this is not the entire point of Bayesian epistemology it is a very
large part of the point.) But, as Example 1.1 shows, it is not always unreasonable to revise
in ways that do not satisfy Simple Cumulativity.® We firmly believe that the phenomenon
of noncumulativity needs to be taken into account when iterated updates are interpreted in
terms of idealized inquiry.

However, there is another interpretation of probabilistic conditionalization, in terms of
supposition. Here, the ideal agent doesn’t undergo a learning experience, but performs a
thought experiment involving a hypothetical news item, or supposition.

It would be strange if there were not close connections between hypothetical condition-
alization and ideal inquiry conditionalization; in fact, an important use of the former would
be to precompile or plan for potential epistemic changes.” Nevertheless, most of the re-
searchers who followed Adams’ steps in developing a probabilistic semantics of conditionals
have adopted Simple Cumulativity in order to explain away the puzzling evidence offered
by McGee in [28]. (See [1], [13], [28] for recent literature where Simple Cumulativity is

"Here, “U” stands for “Update”.

80ne reasonable revision for the observer to make on being told (1.5) is to retract the previous hy-
pothesis (1.4). In this connection, see [15, Chapter 5], where the goal seems to be to develop a theory of
noncumulativity in Bayesian inquiry.

9Bratman argues for the need for such planning in [9]. Bratman’s examples have to do with physical
activities, but the same points apply to epistemic actions and plans.
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explicitly adopted).!® A self-contained version of McGee’s examples is presented below in
Sections 5.2, 6, 7, and 8. Section 3, below, we will give further evidence in support of the
view that the notion of supposition embedded in the probabilistic semantics of conditionals
is cumulative. 't

In the neutral framework for iterative probabilistic update developed here, Simple Cu-
mulativity has to be added explicitly. The natural way, it seems, to formalize this principle
would be as follows:

Simple Cumulativity for Probability Update:
If pe{q,...,qu}, then Uy, . (P)(p) =1.

But unless we modify our account of conditional probability, Simple Cumulativity will
conflict with the generally accepted constraint that primitive conditional probability should
be a conservative extension of Bayesian conditional probability:

Favor Bayesian Update:

U, = P/p whenever P(p) > 0, where P/p = A\q Pleng)

P(p)

In fact, suppose that we have at least one nontrivial Popper revision; that is, assume
there is a probability function P and proposition p such that P(p) = 1 and U_,(P)(p) is
defined, so that U_,(P)(p) = 0. Argue as follows."?

By Favor Bayesian Update, U,(P) = P.

So Up,—p(P) = U-,(P).

But by Simple Cumulativity for Probability Update, U, —,(p) = 1.
Whereas, by assumption, U_,(P)(p) = 0.

The upshot is that update can’t operate just on a probability function and satisfy both
Simple Cumulativity for Probability Update and Favor Bayesian Update. Therefore, we will
think of update as having three inputs: (1) a probability function, (2) the update proposition,
and (3) a proposition indicating “necessary information” that is to be assigned probability
1 at all costs for purposes of this update.'3

With the above intuitions in hand, we now develop an abstract account of iterative
conditional probability.

0McGee’s examples are discussed at length in [2].

1To establish this claim we will show that extending a representation result presented by McGee in [29]
that links infinitesimals and Popper functions requires several forms of cumulativity. Simple Cumulativity
was independently assumed (as an intuitive constraint) by McGee in [28]. See Theorems 3.2 and 3.3, below.
Cumulativity seems to be an unavoidable feature of this probabilistic semantics rather an optional part of
the program.

12For those who examine this argument carefully, U is operating on extended probability functions; see
below, immediately after Definition 2.1.

13This idea is somewhat similar to Vann McGee’s idea of for modifying Stalnaker’s conditional semantics
in [28, p. 469].



Definition 2.1. Probability measure.

Let B be a Boolean algebra with zero L and unit T. A function P from B to [0, 1] is a
probability measure on B if and only if:

(1) P(L) =0,
(2) P(T) =1, and
(3) if paqg =L then P(pvq)= P(p)+ P(q).

We adopt the policy in [29] of replacing cases where update is undefined with cases where
it yields “the absurd probability function.” In particular, let 15 be the function that returns
1 for each p € B. An extended probability function, or “eprobability function” on B, is
either a probability measure on B or is 15.

Definition 2.2. Iterative Index.

Let B be a Boolean algebra. An iterative indez i on B is a pair (P;, O;), where (1) P; is
an eprobability function on B and (2) O; € B.

Definition 2.3. Partial Iterative System.
A partial iterative system P is a system (Z, B, /,w) such that:

(1) Bis a Boolean algebra.

(2) T is a family of iterative indices over B and w € Z, where P, = 15 and
o, = L.

(3) / is a partial function taking indices and propositions to indices, i.e.,
i/peTifi/p €T is defined.
Where p € B, i € Z, we write i/p for the value that / assigns to ¢ and p.

And we write i/po,p1, ..., pn for (... ((¢/pn)/ - /P1)/Po)-

A normal index is any index other than w.

Definition 2.4. Iterative System.
An iterative system is a partial iterative system (Z, B, /,w) such that / is total.

The conditions characterizing an iterative system are very weak: they merely place typ-
ing constraints on the system’s components. We now add three general conditions that are

motivated by the interpretation of the revision operator as a form of probability condition-
alization.

Definition 2.5. Iterative Probability System.

A [partial] iterative probability system P is a [partial] iterative system (Z, B, /,w) such
that, for all p and 7 € Z:

) Pip(p) = 1.

5) P(0;) =1 and Py, (0;) = 1.
6) If O; < p then i/p =i.

7) If O; < —p then i/p = w.

4
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Conditions (4) and (5) ensure that conditionalization on the proposition p at the index
i will give probability 1 to p and to any proposition that is necessary at i. Condition (6)
is motivated by the idea that the effects of conditionalizing on p should in some sense be
minimal; it says that conditioning 7 on a proposition that is already necessary at ¢ will leave
i unperturbed. Condition (7) ensures that the abnormal index is selected on updating with
a necessarily false proposition.

We wish to mention three additional conditions which we believe are well motivated
by intuitions concerning iterative probability. They characterize a natural class of cases in
which the abnormal index is unique, and can only be reached by conditioning on epistemically
impossible propositions.'*

Definition 2.6. Conservative Iterative Probability System.
A conservative [partial] iterative probability system P is a [partial] iterative probability
system (Z, B, /,w) such that

(8) If i/p = w then O; < —p.
(9) If P, =15 then i = w.
(10) O, = L iffi = w.

Several less general conditions are of special importance. We state these separately.

Definition 2.7. A-Cumulative Probability System.
A [partial] iterative probability system P is a-cumulative (acceptance-cumulative) if it
satisfies the following condition.

(11) For alli € Z, O;;, < O,.

Any iterative probability system will assign hypotheses probability 1 on conditionaliza-
tion; this is the import of Condition (4) of Definition 2.5. An a-cumulative system does this
one better, treating hypotheses as necessary.

We note in passing that there are iterated probability systems that are not a-cumulative.
In the simplest case, the algebra of propositions is generated by just one proposition p, which
alternates endlessly between probabilities 1 and 0 as you revise with p and —p.

Definition 2.8. Conjunctive Cumulativity.
A [partial] iterative probability system P satisfies Conjunctive Cumulativity if and only
ifforalli € Z,i/p,qg=1i/pnrq.
We will use the following lemma below.

Lemma 2.1. Let P be a conservative iterative probability system. If i/p = i/q, then for all
propositions s, P/ (pas) = Pijr(qAs).

Proof. 1t i/p = i/q then i/p,—p = i/q, —p. But i/p, ~p = i/pr —p by Conjunctive
Cumulativity, so i/q A =p = w by Definition 2.5(7) and Conjunctive Cumulativity.
So by Definition 2.6(8), O; < —(g A —p). By similar reasoning, 0; < (p = q), so
O, < ((prs) = (gns)). So by Definition 2.5(5), P;/r(pas) = Pyr(gns).

M Conservative IPSs will not be required for various important results stated below. Nevertheless, the
proof of Theorem 3.4 does require the use of conservative properties of IPSs.
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Definition 2.9. Conjunctive A-Cumulativity.
This is the following condition on [partial] iterative probability systems.

(12) Foralli € Z, O, = pA O;.

Definition 2.10. Bayesian Iterative Probability System.
A [partial] iterative probability system P is Bayesian if it satisfies the following condition.

(13) (i) Piyp = AqPi(q | p) if Py(p) # 0 and (ii) O;;, = pnr O,

A Bayesian system uses Bayesian conditionalization for hypotheses that have nonzero proba-
bility. In the context of iterative probability systems, we construe Bayesian conditionalization
to include not only the familiar transformation of probabilities, but a conservative approach
to supposition that transforms the background necessities by adding only the hypothesis
proposition to them; i.e., a Bayesian system satisfies Conjunctive A-Cumulativity.

Note that Condition (6) follows from Condition (13) and the remaining conditions of
Definition 2.5.

Definition 2.11. Representing a Popper function as an iterative probability system.
We can assume without loss of generality that a Popper function C is defined over a
Boolean algebra B of propositions. (If the Popper function is defined over a language,
there is an equivalent Popper function defined over the language’s Lindenbaum algebra.)

For a Popper function C defined over a Boolean algebra B, the corresponding iterative
probability system P = (Z¢ BY /¢ w") is defined as follows:

i) ZC = {<P p) /p € Band P=XC(q,p)}.
ii) B

(
(
(iii) z/cp = ()\qC’(q pa0;),pa O).
(iv) w® = (15,L).

Theorem 2.1. Every Popper function C' on a complete!> Boolean algebra B can be
regarded as a Bayesian iterative probability system P on B.

Proof. Let C be a Popper function. Then the corresponding iterative system P¢
satisfies conditions (4), (5), (6), (7) and (13).

Definition 2.12. Iterative Probability o-System.
An iterative probability o-system is like an iterative probability system, but with a o-
algebra and a o-additivity constraint on the probability functions.
Without going into details, we remark that the case in which the range of P is restricted
to {0,1} provides an interpretation for a conditional logic.

5The completeness condition can, of course, be weakened. We assume completeness here for the sake of
simplicity.



Definition 2.13. Generators for P.
Let P be an iterative probability system. P is generated by I, C Z if for all i: ¢ € T iff
for some iy € Iy, either i =iy or i =ig/qy, ...,y for some qi, ..., q,. P is rooted in iy iff
P is generated by {ig}.

Lemma 2.2. Let P = be an iterative probability system rooted in 7y, that satisfies
Conjunctive Cumulativity. Then i € Z iff i = iy/q for some ig € Z and q.

Proof. By Conjunctive Cumulativity, i = ig/qq, ..., qgm iff i =ig/q1 A ... A .

3. Nonarchimedean representations
3.1. McGee’s representation theorem

In [29], a theorem is proved that is intended to show the equivalence of two quite different
approaches to probability kinematics, in the case where nontrivial updates on impossible
information are allowed. Using an operation NS taking an arbitrary Popper function C into
a nonstandard probability measure NS(C'), McGee’s representation theorem goes as follows.

Theorem 3.1. [29, pp. 182-183].

(1) If C is a Popper function, then: NS(C) satisfies
(1.1) [NS(O)](p) =0iff C(¢q,p) =1 for all ¢, and
(1.2) for all p, g, C(q, p) = std(NS(C)(q | p)) if [NS(C)](p) # 0.

(2) If P is a nonstandard probability measure, then there is a Popper function
C such that

C(q,p) = std(P(q | p)).

Here, std(z) is the unique standard real that differs from 2 by at most an infinitesimal
amount.

3.2. Generalizing nonarchimedean representations to an iterative setting

This theorem does in fact establish a natural correspondence between Popper functions and
nonstandard probability measures. But as stated and proved, it presupposes fairly strong
constraints on update; and worse, these constraints are built into the update notation.

To see this, suppose that we have an iterative update operator U, (P, ¢) that produces
the result of updating an absolute probability measure P with p, relative to background
suppositions compiled into the proposition ¢. Can we account for this sort of iterative
update using a Popper function C'7 The identity

UAr C(r,q),p) = Ar C(r,qAp)

10



provides an account of single revisions in terms of C'. (Note that the revisions are only defined
over one-place probability functions that are recoverable by conditionalizing C.) But this
update produces only a probability function; it does not provide the background assumptions
that are required for further update by U. To iterate the revision process, we must make
further assumptions.

The simplest such assumption is the following cumulativity condition.

Conjunctive Cumulativity for Iterative Update of a Probability Measure:
(CCIP) Upy...pn(Ar C(r, T),q) = Ar C(r,gApiA ... ADp).

If we take McGee’s representation theorem for Popper functions to be canonical, then in
view of Theorem 3.3, below, we are pretty much committed to CCIP. Thus, the combination
of Popper functions, nonstandard probability interpretations, and a view of iterative update
that satisfies CCIP presents a coherent picture of probability kinematics, though it does make
rather strong assumptions about iterative update, which (at least on some interpretations)
can seem implausible. However, to establish the coherence of the position, it is necessary to
generalize McGee’s representation theorem, since his proof does not work for the iterative
case. To see the difficulty, we restate the nonarchimedian representation in a general setting,
using iterative probability systems.

Definition 3.1. M-Representation.
Let NS be a map from the normal indices of an iterative probability system P to a family
of nonstandard probability measures. Where P is such a measure and P(p) # 0, let P/p
be the result of conditionalizing P on p:

Plp= )\QP](%;)Q)-

NS M-represents P in case NS satisfies the following two conditions. (These are straight-
forward analogues of McGee’s conditions in the generalized setting.)

If i € T — {w}, then:

(1) for all p, g, Piyp(q) = std([NS(2)] (¢lp)) if [NS(9)](p) # 0.
(2) for all p, [NS(9)](p) = 0 iff O; < —p.

The following definition provides a more useful version of Condition (2), which is available
in case we have a complete Boolean algebra, and which implies Condition (2) for finite
Boolean algebras.

Definition 3.2. MC-representation.

11



Let NS be a map from the normal indices of an iterative probability system P = (Z, B, w),
where B is a complete Boolean algebra, to a family of nonstandard probability measures.
NS MC-represents P in case NS satisfies Condition (1) of Definition 3.1, as well as the

following condition.
If i € T — {w}, then:
(2') B = AD(NS(i)), where O(P) = {p / P(p) = 1}.

Definition 3.3. Revision Homomorphic M-representation.
Let NS be a map from the indices of an iterative probability system P to nonstandard
probability functions. NS is Revision Homomorphic in case

NS(i/p) = Ag[NS(i)](q | p).

Here, = stands for strong equality on partial functions: F(z) = G(x) means that F(z)
is defined iff G(z) is defined, and whenever F(z) is defined, F(x) = G(z). A revision
homomorphic M-representation, then, renders the representation of an update in the iterative
probability system equal to the update of its representation.

Theorem 2.1 showed that every Popper function corresponds to a Bayesian iterative
probability system. And these systems satisfy a strong form of cumulativity, Conjunctive A-
Cumulativity. The following two theorems establish connections between nonarchimenidean
representability and forms of cumulativity.

Theorem 3.2. Let P be an iterated probability system that is M-represented by a revision
homomorphic mapping NS. Then P is a-cumulative.

Proof. 1t follows from condition (2) of Definition (3.1) that [NS(i)](¢) = 1 iff
O; < g, for all i and ¢. In particular, [NS(i/p)](D;) =1 iff O,/ < O,.

NS (i)(O;  p)
~ NS()(p)
0; < Oy, so we have [NS(7)](0;) = 1. Therefore, NS(i/p)(0;) =
So Oip < O,

(ii) Suppose that O; < —=p. Then by Condition (7) of Definition 2.5, i/p = w, so
O/, = L. So, trivially, we have O,,, < O; in this case.

. Again from Condition 2 of Definition (3.1), [NS(7)](O;

Theorem 3.3. Suppose that NS provides a Revision Homomorphic MC-representation
of an iterative probability system P over a complete Boolean algebra. Then P satisfies
Conjunctive Cumulativity.

Proof.

Case 1. NS(i)(prq) > 0.

12



Then NS(i/pnq) is defined, since NS(i/prq)(r) = [NS(i)](r | prgq), which
is defined by hypothesis. Also, NS(i/p,q) is defined, since NS(i/p,q)(r) =
[NS(i/p)](r | q) = NS(i)(r | prq). Furthermore, this calculation shows that
NS(ifprq) = NS(i/p. q).

By Condition (2') of Definition 3.2, we have O;/,, = A O(NS(i/p,q)).

But A O(NS(i/p,q)) = A O(NS(i/prq). Again by Condition (2) of Defini-
tion 3.2, we have O;/,nq = A O(NS(i/pAq)).

So Di/p,q = Di/p/\q-

Case 2. NS(i)(prq) = 0.

By Condition (2') of Definition 3.2, we have 0O; < =(pAq).

Then, by Condition (7) of Definition 2.5, i/pAq = w.

By the argument of Case 1, we have NS(i/pA q) = NS(i/p, q). So, since NS(i)/prq
is undefined, NS(i/p, q) is also undefined. But NS is defined on all indices other
than w; therefore i/p, ¢ = w. So again, i/parqg =1i/p,q.

Case 3. NS(i) is undefined. Then i = w, so i/prq=1i/p,q = w.

Under very general conditions, then, the only iterative systems that are representable
using nonstandard probability measures will satisfy Conjunctive Cumulativity. This means,
among other things, that our happiness with the nonstandard representations should depend
crucially on our willingness to accept Conjunctive Cumulativity as a constraint on probability

kinematics.

Problems with McGee’s proof

McGee’s proof does not apply to the iterated case; his construction does not guarantee the

Revision Homomorphism condition. This is shown by the following example.

Example 3.1.

Take the propositional language generated over the atoms {p,¢}. De-
fine the behavior of C as follows.

1. C(p, T)=5
2. C(q, T)=0
3. Cp,q) =0

Let P¢ be as in Definition 2.11. We show that P¢ is not revision
homomorphic under McGee’s map NS. According to McGee’s con-
struction,

[NS(E/Cp)](q) 1: €(1 —€)/(1 —€*) =¢/(1 +¢), where € is an
infinitesimal.
And [NS()](q | p) = z/y where z = [NS(i)](pr¢q) and y =
[NS(i)](p), for y # 0.
13



Now, z = €2(1 —¢€)/(1 — €°).

And 'y = [(1— /(1 - 1+ 26) /2]

So x/y = 2¢2/(1 + 2¢?). Now, assume that revision homomorphism
holds. In particular, assume:

[NS(i/“p))(q) = [NS(D))(q | p) = z/y.
Then we have
e/(1+¢€) =2e2/(1+ 26%).

So 1 4 262 = 2¢ + 2¢2.
Soe=1/2.

But this contradicts the assumption that € is infinitesimal.

3.4. A generalized result

In the following proof, we assume that B is finite. The proof relies heavily on McGee’s
construction of a series of formulas that enables us to formulate patterns of conditionalization.

Definition 3.4. M,,.
With respect to a fixed iterative probability system rooted in 7y, let
D(p) = V{q /g <pand P,(q) = 0}. Define N and My,..., My as follows.

M() =T.

M1 == D(M,) it D(M,) # L.
N :=nif D(M,) = L.

MN+1 = 1.

Lemma 3.1. If n < N and Pj;/u, (p) = 0 for each m < n, then p < M,,.
Proof. Straightforward, by induction on n. (This lemma is proved in McGee [29].)

Lemma 3.2. If Py, (p) =0 for all n,0 <n < N, then P, ), = 1p and O;; < —p.
Proof. Suppose that P; /a, (p) = 0 for all n,0 < n < N. Then, in particular,
Piy/my(p) = 0. By Lemma 3.1, p < My. By Definition 3.4, we have D(My) =

L. Now, D(My) = V{q¢ / ¢ < My and Pjj;n,(q) = 0} = L. Therefore,
p<D(My). Sop< L,ie. p=_L. Then O;) < —pand P/, = 1p.

Lemma 3.3. If Conjunctive A-Cumulativity is satisfied then O; < —(paq) iff O;/, < —q.
Proof. First, suppose that O, < =(pnr¢q). By Conjunctive A-Cumulativity,
O/, = O;Ap, and, in particular, O;/, < p. So O;/, < —q.

Second, suppose that O;/, < —=¢. By Conjunctive A-Cumulativity, O; A p < =g,
so O;ap < =(pag). By Conjunctive A-Cumulativity, O,/ < —(paq).

14



Definition 3.5. K(p).

If Py ), # 1p then K(p) := the least n such that P/, (p) > 0.
If P/, = 1p then K(p) := N + L.

Lemma 3.4. If O; < —gand O; £ —p then P,;,(q) = 0.

Proof. Suppose that O; < =¢ and O; £ —p. Now, by Definition 2.5(7), P/, # 15.
So Pyy(q) =1 — Pip(—q). And P;,(—q) = 1, by Definition 2.5(4).

Py vine. (DA q)
2 K(p

Proof. By Lemma 3.1, p < Mg(,). Then p = Mg ) A p, so

Piyp(q) = Pijpe iy 1 p(Q)-

But
Pi/MK(p) /\p(q) = Pi/MK(p),p(q)
by Conjunctive Cumulativity. And since Pjar,,, (p) > 0, we have

Py, (P 7 4)

Pi/MK(p)m(Q) = P ( )(p)
7 K(p

The following theorem shows that McGee’s result can be generalized to the iterative case
where conservative Conjunctive Cumulativity is satisfied.

Theorem 3.4. Let P be a conservative iterative probability system over a finite Boolean
algebra, rooted in iy, that satisfies Conjunctive Cumulativity. Then if i3 # w there is a
nonstandard probability MC-representation NS of P satisfying the Revision Homomorphism
condition.

Proof.
This proof diverges from McGee’s. Define €, ..., en11 as follows.
€y :— 1.

If n < N then €,,, := an arbitrary constant that is infinitesimal with
respect to €,.

eyt = 0.

Then let
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(NS (i0)}(p) = Zo(én = €ns1) Pio/at, (P)

YN o (6n — €ns1) B M (P1A oo ADmAQ)
NS(io/p1, - pm)l(@) = =5y —

where it is assumed that iy/py,...,pm # w; in case i = w, NS(i) is
undefined.

Note that NS is presented as a two-place function from the index ig/p1,...,pn
and ¢ to the nonstandard reals. But it is defined in terms of the probabilities
of pyan ... ApyAq and py A ... Ap,. Lemma 2.1 resolves this difficulty, showing
that NS is well defined. (It is here that we appeal to Conservativity.)

We now show that the conditions for MC-representation are met, as well as the
Revision Homomorphism condition.

1. First, Condition (1) on MC-representation: we wish to show that for all p,
¢, that the difference
Pisp(q) — NS(i)(q | p) (1-1)
is infinitesimal, if [NS(7)](p) # 0.

We can suppose without loss of generality that ¢ = 75. Now, in view of
Lemma 3.5 and Conjunctive Cumulativity, (1-1) becomes

Pig /My (prq) ET]LV:K(p) (€n — €nt1) Pig/ar, (P2 q)

_ : (1-2)
Pio /M) (p) ET]LVZK(p)(en — €n+1) iy, (P)
Let Pn = 'PZ-U/MK(p)#»nfl (p)
J=N+1-K(p),
Qn = 10/ Mg (p)+n—1 (p A Q),
On = EK(p)n—1 ~ EK(p)+n-
Then (1-2) becomes
%_61Q1+---+6JQJ . (1_3)
P1 51P1+...+6JPJ
Simplifying (1-3) and combining terms, we obtain
02 (P — P1Q2) + ...+ 6,(PyQr — PIQy) (1-4)

P (6:P+...4+0;Py)
Now, choose

v = max ({ (671?}1]3“1162 )/2§n§J}>-
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The quantity v is infinitesimal, because d,, << d,,_1 in view of the original
choice of the ¢,, and P, and @), are standard reals.

And (1-4) is bounded by 7 since v was defined so that for all n such that
2 <n <.J we have:

6n(PnQ1 - PlQn) S ’)/5n,1P1Pn,1.

. Second, Condition (2') on MC-representation.

First, we establish Condition (2) of Definition 3.1. That is, we show [NS(i)](p) =
0iff O; < —p.

Because of Lemma 2.2, we can assume without loss of generality that ¢ =
Zo/q

First, suppose that [NS(i)](p) = 0.

Then S0 (€n — €nt1) Pig/ar, (g4 p) = 0.

Then, by Lemma 3.2, O;; < =(gAp). So by Lemma 3.3, O;,/4 < —p,
ie, O; < -p.

Conversely, suppose that O; < —p, i.e., O;/, < —p. Now, by Conjunctive
Cumulativity, we have (ga O;,) < —p, so that O;, < =(gAp).

Therefore, by Definition 2.5(5), P/, (¢A—p) = 0 for all n. So, by the
definition of NS, [NS(io/q)](p) = 0. Le., [NS(i)](p) = 0.

This establishes Condition (2).

Since B is finite, A O(NS(7)) exists, for any i € Z.
By Condition (2), O; < A O(NS(i)); and clearly, A O(NS(7)) < O;. So
Condition (2') is proved.

. Third, Revision Homomorphism.
Show that NS(i/p) = Aq[NS(i)](q | p)-

Let ¢ = ig/r. Where NS(i/p) is defined, i.e. where i/p # w, this follows
immediately from the definitions of NS(i/p) and NS(7).

Suppose, then, that i/p = w. Then by Definition 2.5(8) O; < =p. So by Con-
dition (2) on MC-representation, established above, we have [NS(i)](p) = 0.
So [NS(i)](p) = 0, so Ag[NS(i)](¢q | p) is undefined.

Also, since i = iy/r, we have O;, < —(par). So by Condition (2),
[NS(ip)](pAr) =0, so by Definition 2.5, NS(i/p) is undefined.

On the other hand, if A\g[NS(7)](¢ | p) is undefined, i.e., if [NS(:)](p) = 0,
then by Condition (2) on MC-representation, established above, 0O; < —p.
So NS(i/p) is also undefined.
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This proof assumes crucially that the Boolean algebra is finitely generated. Thus, the
method works only for finite languages. McGee [29, p. 182] claims that the result can be
extended to the infinite case by an analogue of the ultraproduct construction. We do not
see how to generalize that construction to prove compactness for this logic; the problem of
whether these representation theorems can be generalized to the infinite case remains open.

4. Quantitative and qualitative methods for epistemic update

According to a popular qualitative view, the locus of inquiry for an ideal agent is a set S of
propositions—the ones that are fully believed by the agent. And it is usual to model these
propositions using sets of possible worlds. The intersection of the members of S, which we
can call K, compiles the agent’s beliefs into a single proposition.

This traditional model remains fairly open concerning other components of an agent’s
epistemic state. Initially, it was also silent about the origin of beliefs, and about how K
is (or should be) updated when a new proposition is learned or supposed, at least in the
nonmonotonic case where this proposition is inconsistent with K.

This last problem has been intensely scrutinized during the last two decades. This
scrutiny has been performed, nevertheless, in the context of pluralists forms of Bayesian-
ism where qualitative belief and probability are taken as separate epistemological primitives.
Therefore, belief change has been studied independently of probability change. The pioneer-
ing AGM theory remains an important contender. We review this theory briefly in Section
7.

The main goal of the following sections will be to make explicit the qualitative commit-
ments imposed by a cumulative account of iterative probability kinematics. The intended
outcome of this study is to reveal the qualitative commitments imposed by a unified account
of generalized probability kinematics considered in previous sections. The idea, therefore,
is to study changes of belief as supervening on (a primitively given) notion of probability
change. In other words, the idea is to study the (qualitative) notion of belief change in-
duced by a form of radical probabilism where the only primitive is a generalized notion of
conditional probability. Surprisingly, this form of belief change supervening on probability
change has hardly been studied in the literature. This is so even when such a form of radical
probabilism has been recently advocated both on theoretical and applied grounds.'® We will
proceed as follows. First we will review some of the standard qualitative axiomatizations of
belief change and we will evaluate their adequacy as representations of the notions of learn-
ing and/or supposing. Then we will focus on making explicit the qualitative structure of
probability-based change induced by a notion of probability kinematics obeying cumulativity.
This will be accomplished in two steps.

First we will focus on determining the notions of full belief and qualitative expectations
for a primitively given Popper function C. This first step will rely on previous work done
by Bas van Fraassen in [41] (and recently extended and slightly modified in [3], [6], [4] and
[5]). The basic idea is to show that for each Popper function C' (modulo some constraints)

16Bas van Fraassen has defended this form of probabilism in various papers, of which [41] is one of the most
salient for our purposes. Various applications in Economics are summarized in [19]. Related applications
in computer science appear in [16] — especially concerning the method called ‘Bayesian qualitative updating
with hard evidence’, which will be discussed later on in more detail.
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there is a nested set of propositions called probability cores. We will propose to interpret the
largest core of C' as the encoding of full beliefs for C, and the smallest as the expectations
for C.

Secondly we will study how the system of cores for C' changes when C' changes as a result
of supposing a new item. This, of course, also will give us a picture of how full beliefs and
qualitative expectations for a given C' evolve when C' changes for the sake of the argument.
The resulting notion of qualitative supposition will then be axiomatized and compared with
other accounts of epistemic change.

We remind the reader that in section two we proposed an alternative definition of Popper
functions that does not impose cumulativity by fiat. This representation kept track of a
qualitative notion of epistemic necessity Oi associated with each index 7. But, of course,
a subclass of such indices will represent standard Popper functions - where cumulativity
s imposed by definition. In the following sections we will show that those indices can be
naturally represented as pairs (P;, O;), where the first component P;(q) is C(q | p) for some
two-place function C' and proposition p; and the second component is the largest core of
this C'. This analysis will shed some light on the intended interpretation of the notion O;
used in previous sections. When a set of indices represents a function C', O¢ can be seen as
encoding the full beliefs for A\¢ C'(¢q | p). It will also give us the tools to clarify some open
issues in the abstract axiomatization on Popper functions. Finally, this analysis will give us
the tools for commenting on the intended interpretation of the notion of core change induced
by probability kinematics.

So, our goal in the following sections is not to question any form of cumulativity built
into probability kinematics, but to understand the qualitative constraints that follow from
assuming it. In order to make the last point more transparent it would be convenient to sum
up here what we have accomplished so far. We first offered an account of iterative probability
kinematics that does not have cumulativity built into it. Then we showed that cumulativity
needs to be assumed in order to obtain a natural representation of Popper functions in terms
of non-standard probability. The conclusion is that a unified account of Popper functions and
non-standard probability is coherent with a view of iterative update satisfying Conjunctive
Cumulativity (CCIP). Moreover such a unified account requires CCIP. This result is to
some extent surprising. Usually non-standard measures, or Popper functions, or both are
presented as an unproblematic and general extension of standard probability theory.!” Our
result seems to indicate that an equivalence result linking Popper functions and non-standard
probability will seriously constrain the set of possible interpretations compatible with these
formalisms (namely to those interpretations for which cumulativity might make sense). The
goal in the following sections is to make explicit the nature of the qualitative constraints
induced by cumulative accounts of probability kinematics. We will do so by axiomatizing the
form of probability-based qualitative change induced by an account of iterative probability
kinematics that has cumulativity built into it. The notion that thus arises will be then
compared with other qualitative models of supposition and learning. The conclusion will be
that the resulting notion of probability-based change is a notion seldom studied before (and
inconsistent with most accounts of belief change offered in recent years).

Our immediate goal will be to consider how probabilistic kinematics and qualitative

17 At least this is so for probabilistic spaces of limited size.
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kinematics connect. Although there is a fair amount of recent work devoted to formalizing
notions of belief dynamics, almost nothing focuses on capturing the qualitative constraints
presupposed by two-place probability functions. We are aware of only one such theory,
namely the one offered by Hajek and Harper in [18]. Unfortunately this account only covers
single-shot hypothetical changes, and we will argue below that an unmodified version of it
is inadequate. Nevertheless Hajek and Harper’s approach can be reconciled with ours. The
last section of this essay shows that a modified version of Hijek and Harper’s axioms follows
from our account.

Section 5 introduces two different theories of qualitative belief change. This brief but
self-contained review is needed to understand both the gist of our own proposal and the sort
of technical changes that are needed to reconcile Hajek and Harper’s theory with ours. Our
ultimate goal in the coming sections will be to offer an account of the qualitative properties
needed to extend McGee’s mapping.

5. Knowledge in flux: two theories of qualitative change

5.1. AGM

A basic model of change is a triple (€2, P, ), where {2 is a non-empty set of states, P is a
field of propositions with respect to € and * is a function * : 2% x P — 292 obeying the
following constraints. Subsets K of € represent bodies of full belief.

(5.1.1) K«pCop (Success)
(5.12) f KNp# 0, then KNp=K *p (Preservation)
(5.1.3) If p £ 0, then K xp # 0 (Consistency Preservation)
(5.1.4) If (K xp)Nq # 0,

then (K xp)Ng=Kx(pNgq) (Conjunction)

More constraints can be added to the models, but the ones presented above are enough for
our purposes.

The so-called “AGM approach” [15] satisfies these five conditions. It is prima facie unclear
whether the intended interpretation of the axioms is suppositional or not. Some constraints,
like Success, seem constitutive of supposing (and inappropriate for inquiry). But we will
argue that Preservation precludes a suppositional interpretation. The argument is based on
an example initially proposed by McGee in [28].

5.2. Cumulativity and the inadequacy of AGM as a theory of supposing

The AGM approach leaves iterated change relatively unconstrained. It has been criticized
(perhaps unfairly) because of this limitation. But the five constraints listed above do impose
some constraints on iteration. For example, in [2] it was noted that the following postulate
is a consequence of Preservation:

If K Cpand K # 0, then (K xp)xq= K xq. (Invariance)
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On the suppositional interpretation, Invariance says that if r follows upon supposing first p
and then ¢, then r should follow upon just supposing ¢, provided that p is believed in the
current (consistent) view. But consider the following example presented by McGee in [28]:

Example 5.1. (Vann McGee)

Opinion polls taken just before the 1980 election showed the Republi-
can Ronald Reagan decisively ahead of the Democrat Jimmy Carter,
with the other Republican in the race, John Anderson, a distant third.
Those apprised of the poll results believed, with good reason: If a Re-
publican wins the election, then if it’s not Reagan who wins it will be
Anderson. A Republican will win the election. Yet they did not have
reason to believe If it’s not Reagan who wins, it will be Anderson.

It is reasonable to conclude that Anderson will win upon supposing first that the winner
will be a Republican, and second that he won’t be Reagan. And one should conclude that
Carter will win after supposing that Reagan won’t win. But Invariance tells us that in
this situation, where it is believed initially that a Republican will win, one should reject
this second conclusion and conclude instead that Anderson will win, supposing that Reagan
won’t. This result is, to say the least, implausible.

So, although AGM appeals to some postulates (like Success) that seem adequate as uni-
versal constraints on supposition, it admits other postulates (like Preservation and its corol-
lary, Invariance) which fail on a suppositional interpretation of update. Moreover, there
are convincing arguments that the AGM postulates capture only some features of suppo-
sition, and some features of rational inquiry. (See Levi [26] and Collins [10] for arguments
showing that AGM is not a completely adequate theory of supposition. See Levi [25] for
arguments showing that AGM doesn’t fit some features of rational inquiry.) These consid-
erations suggest that it may be worthwhile to reconsider the axiomatization of qualitative
belief kinematics in light of a thorough reexamination of the sources of the intuitions that
motivate the theory.

In their foundational critique of AGM, Friedman and Halpern suggest that postulates
need to pay closer attention to the “underlying ontology,” where

An ontology must make clear what the agent’s epistemic state is, what types of
observations the agent can make, the status of observations, and how the agent
goes about revising the epistemic state. [14, p. 430]

Friedman and Halpern confine themselves to intuitions relating to rational inquiry; their
point is that there may be important differences in these intuitions depending on the under-
lying agent model, and that for this reason the axiomatization of qualitative belief revision
should be accompanied by more detailed explicit models of the rational agent. To this
point—which we endorse—we wish add that the recommendation applies equally well to the
suppositional construal of qualitative conditionalization.

What about Cumulativity? A purely qualitative version of the postulate follows:

(K xp)xqg=K=(pngq) (Cumulativity)
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Obviously, Conjunction is weaker than Cumulativity. Moreover AGM is inconsistent with
Cumulativity, because Cumulativity clashes with Success and Consistency Preservation.!'
Thus, Cumulativity runs against the basic account of theory change incorporated in the
AGM theory.

5.3. Non-invariant theories: Darwiche and Pearl

In [11], Darwiche and Pearl presented a theory of belief change inspired by previous ideas of
Wolfgang Spohn [37]. Their theory (called “DP” from now on) is less inadequate than AGM
as an account of supposing.

An extended model of change is a quintuple (E, ), P, *, p), where E is a non-empty set, {2 is
a snon-empty et, P is a field of propositions with respect to €2, * is a function x : ExP — E,
and p is a function p : E — 29,

Intuitively, E is a set of epistemic states, €2 is a set of states or worlds, * maps epistemic
states and propositions to epistemic states, and p maps epistemic states to their associated
belief sets. Darwiche and Pearl constrain their extended models by imposing the following
basic postulates:

p(E xp)Cp (Success)
If p(E) Np # 0, then p(E)Np = p(E *p) (Preservation)
p(E % p) is consistent if p is. (Consistency Preservation)
If p(E xp) N q# 0, then

p(Exp)Ng=p(E*xpNq) (Conjunctive Revision)

In addition to these basic postulates, Darwiche and Pearl impose the following special
postulates for iterated revision or C-postulates:

(C1
(C2
(C3
(C4

If p C ¢, then p((E * q) x p) = p(E * p).
If p € —~q, then p((E * q) x p) = p(E *p).
If p(E *p) C q, then p((E * q) *p) C q.

If p(E *p) € g, then p((E *q) *p) £ —q.

In this setting, Cumulativity is p((E *p) *q) = p(E * (pNgq)). Clearly, this equation does
not follow from DP. In fact, Cumulativity is inconsistent with DP, because it clashes with
Consistency Preservation and Success. DP, nevertheless, is less inadequate than AGM as an
account of non-cumulative forms of supposing (see section 8 below). Examples relating to
this point, and an attempt to modify DP to treat supposition, are considered in [2].

Several useful examples are discussed in [11]. For example, epistemic states can be
encoded as rankings. A ranking is a function from the set Q of worlds into the class of
ordinals. A ranking F' is extended to (consistent) propositions by requiring that the rank
F(p) of a proposition be the smallest rank assigned to a p-world:

F(p) =min({F(w) / w € p}).
18To see this, consider the case ¢ = —p, with p, ¢ consistent.
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So, we can consider the following instance (F,Q, P, %, p), of an extended model, where F
is the set of ranking functions, p is defined as the set {w / F(w) = 0}, and the function * is
defined as:

o= { E 0 nes

Even if we focus on a suppositonal interpretation of theories like DP, nested English
conditionals with contradictory antecedents are hardly intelligible. So one might consider
the following, milder version of cumulativity.

Ifpng#0, then p((E *p) *q) =
p(E *(pNq)) (Weak Cumulativity)

The *-method proposed above fails to satisfy even Weak Cumulativity. Let the set 2 of
worlds of an extended structure be {wy, wy, ...}, and consider the following epistemic state
K:

| F(w) | Possible world w ||
Wi, Wy
1 W2, W3

Let Odd = {w; / i is odd}, and One = {w; / i # 1}. It is easy to check that p((F =
Odd) * One) = {w3, wy}, whereas p(F * (Odd N One)) = {ws3}, although Odd N One # (.

6. From two-place probability functions to belief

In the previous sections we briefly reviewed some of the salient theories of belief change
and we considered their adequacy as theories of supposing. In this section we will consider
which qualitative notion of supposition is adequate for the non-standard probability func-
tions studied in the first three sections of this article. This will require tackling two hard
problems in formal epistemology. The first problem can be formulated as follows: which is
the set of certainties (beliefs) naturally correlated to each infinitesimal probability function
(or, equivalently, to each Popper function). The second problem is related to the form of
probability-based belief revision induced by probability kinematics—in other words, to what
laws dictate how a body of certainties for a function P changes when P is updated.

This section will mainly focus on the first problem. It will also prepare the ground for
an axiomatic treatment of the second problem in sections 6.1 and 7. It is well known that
some easy solutions to this problem are defective. (For example, the solution based on using
probability-one events to define certainty is known to be problematic [23].) To bridge two-
place functions and belief, we will appeal to a proposal first offered by Bas van Fraassen.
Van Fraassen’s approach is sufficiently well behaved to deliver a paradox-free account of the
certainties associated with Popper functions, at least if we restrict ourselves to countable
probability spaces.!®

19Gee [7], [34], [4] for further discussion about this topic.
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Let’s briefly review the main axioms obeyed by two-place measures: (I) for any fixed p,
the function C(x,p) as a function of z is either a probability measure,? or has constant
value 1 and (IT) C(gnar,p) = C(q,p)C(r,qnp) for all propositions p, ¢, r. The unconditional
probability of p, pr(p), is C(p, T). Axiom II (usually called the Multiplication Axiom)
differs from the usual rule for computing conditional probabilities by allowing conditioning
on events of measure zero.

As we explained above, in order to determine the qualitative constraints on belief and
conditional belief imposed by this account, we need to determine the body of belief associated
with each two-place measure and how these bodies of belief change when the measures
change.

Paradox-free accounts of the first problem were considered by van Fraassen in [41] and
then refined, extended and slightly modified in [3] and [6]. The problem these accounts need
to circumvent is the so-called lottery paradoz [23], which arises when full belief is identified
with measure one. The account presented here, following the proposal in [6], dissolves the
paradox by making probability one a necessary but not a sufficient condition for full belief.
This approach has the additional advantage of producing the best fit between some well
known models of qualitative belief change and probability kinematics.

If C(x,p) is a probability measure as a function of z, then p is normal; otherwise it
is abnormal. The notion of normality is closely connected to an epistemic analysis of a
prioricity: (A) pis a priori for C iff C'(p,z) = 1 for all x. Thus p is a priori for C iff the
complement of p is abnormal for C'.

A probability core is a set K which is normal and satisfies the strong superiority condition
(SSC): for all nonempty subsets A of K and all B disjoint from K, C(B,AU B) = 0.

The family of cores induced by a non-coreless two place probability function C' is nested.
That this holds in general has been shown in [41]. Moreover it can also be shown for spaces
of arbitrary size that the chain of belief cores induced by a non-coreless 2-place function C'
cannot contain an infinitely descending chain of cores (the proof is presented in [3]).?!

Thus the cores are well ordered under inclusion and closely resemble the so-called Grove
system of spheres [17], widely used as a semantical tool in belief revision - or Spohn’s ‘ordinal
conditional functions’ [37]. When the space is countable it can be shown that there is a
smallest as well as a largest core. Moreover, the smallest core has measure 1. And, more
importantly, this innermost core is constituted by all ‘heavy’ points carrying unconditional
positive measure (this is shown in [6]). In the following we will restrict our analysis to finite or
at most countable spaces—[4] provides arguments in favor of restricting applications related
to models of supposition to such spaces.

We will rely heavily below on some recent studies revealing how the web of cores of a
function C' changes when updated by a proposition p. Let S¢ be the system of cores for C.
Let, in addition, C'(x,y A p) be the update of C'(z,y) with the proposition p.?? Then in [5] it
is shown that, provided that p intersects the largest core for C, the system of cores of P,

20Results requiring countable additivity will be flagged below. The axiom will not be assumed in general.

21 This result requires postulating countable additivity. Although the property is useful, the main results
used in the following sections will not depend on it. On the other hand, the existence of a smallest core is,
of course, automatically guaranteed for finite spaces

22 As we explained above, we will build cumulativity into this account of probability change. Our interest
is to study the form of qualitative change induced by this form of probability kinematics.
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is:
S'={cnp : ceStand cnp+#0D}

From now on we will refer to the fact just alluded as “Update of Cores.” When p does
not intersect the largest core for C, the unique core of C'(—, p) is set identical to the empty
set.

Two salient epistemic notions are definible using a system of cores for a function C': the
largest core for C', and the smallest core for C'. Both propositions carry measure one, but
only the former is robust with respect to suppositions. Le. if ¢(C) is the largest core for C,
it can be shown that C(c(C),z) = 1 for all propositions x. The smallest core also carries
measure one but it does not exhibit the ‘epistemic robustness’ with respect to suppositions
of the largest core. We will argue below that the largest core should be seen as encoding
the full beliefs for C', while the smallest core should be seen as encoding the expectations for
C.2%> We will also argue that, in general, O; should be seen as encoding the full beliefs for
each index 7.

Now we will turn to the idea of representing Iterative Probability Systems by Popper
functions. We remind the reader that Iterative Indices (i.e. the indices defined in section
2) are pairs of one-place standard measures P;, and a proposition O;. For each index i, i/p
‘selects’ the ‘closest’ standard measure for P; and a new necessary proposition.

Our goal here is to focus on a particular sub-class of such indices, namely the ones such
that the first component P;(¢) of an index i is C'(q,p) for some (fixed) two-place function
C and a proposition p. The second component of the index 7 is the largest core of this
function AgC(q,p). On the other hand, for each index i (whose first component is C(q,p))
and proposition r, the first component of i/r is C'(q¢,pAr) and the second component is the
largest core of C'(q,par).

The first component of the index ig is ApC'(p, T), and the second component is the
largest core of this function. In addition we assume that all indices are rooted in iq —i.e. are
reachable from it via a finite sequence of updates.

The idea is to show that the notion of epistemic necessity O; used in section 2 can be
naturally represented in this setting by the largest core of ApC(p,q), where ApC(p,q) =
ApP;(p). Since, for every proposition q, ApC(p, q) satisfies the axioms for one-place prob-
ability measures (by Axiom I adopted in section 6), we are focusing on a legitimate and
‘natural’ sub-class of probability indices. On the other hand only cumulative transitions
among indices will be allowed - as in standardly defined Popper functions.

Definition 6.1. Representation of an Iterative System by a Popper function.

23The model respects the intuitive fact that every fully believed proposition is expected — while the converse
does not necessarily holds. We remind the reader that a proposition A is fully believed if and only if it is
a superset of the largest core, and a proposition is expected as long as it is a superset of the innermost
core. The expected inclusion among the theories induced by the largest and innermost core also holds. If
Th(c(C)) is the (closed) set of sentences true in the largest core, and Th(p(C')) the theory corresponding to
the innermost core, Th(c(C)) C Th(p(C)).

25



Let P be an iterative system over a Boolean algebra B, rooted in 7,. P represents a
(normal and non-coreless) Popper probability function C' on B if

1) Py, = ApC(p, T),

2) for all pi,...,pu, Pigjpi,pn = APC(P,P1A ... ADR),

(1)
(2)
(3) for all p1,...,pn, Oig/py,..p. is the largest core of ApC(p,p1 A ... Apy).
(4) If p= L, then, Py, = P,.

(5) P,p = Py.

Now we can establish the following fact:

Theorem 6.1. Representation of ¢(P;) as epistemic necesity

Let P be an iterative system over a Boolean algebra B, rooted in iy representing a
Popper probability function C. P is an Iterative Probability System obeying Conjunctive
Cumulativity.

Proof. We need to check the properties 4 to 7 required in Definition 2.5.

(4): We need to show that: P;/,(p) = 1, for all p. When i = iy this is easily es-
tablished by the fact that C'(p,p) = 1. In fact, P, ;, = ApC(p,p) = 1. Since P is
an iterative system over a Boolean algebra B, rooted in iy, for any index j # iy we
have a sequence py, ..., pn,. .., such that j =iy/p1,...,pn,.... But then the Mul-
tiplication Axiom guarantees that P/, . pn,...p = ADC(D;P1A ... ADpA ... AD)
= 1. In general once the iy-case is established, proving the correspondent fact
for an index different from iy mimics the proof used in the iy3-case. So in the
following we will only establish (5), (6) and (7) for .

We will establish the following fact before proving (5) and (6):

(Identity) For all propositions r, ¢, if C(r,¢) is normal, C(r,q) = C(r,q ¢(C)),
where ¢(C') is the largest core of C.

In order to see that Identity holds consider the following instance of the Multi-
plication Axiom:

C(T A C(C)a q) = C(C(C)v Q) ’ C(T, qn C(C))

Since ¢(C) is a priori for C',** we have that C(c(C),q) = 1. On the other hand,
since C(r,q) is assumed to be normal, finite additivity guarantees the following
fact (here we will use the notation 7 to denote the complement of the proposition

p).>

24We are assuming here that the space is countable.

25Previously we used the notation —p to denote complements of propositions. We change notation in this
section in order to improve readability—we are working here with complex propositions like the one encoding
the cores of a system of cores.
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O(T, Q) = C(T A C(O)a Q) + C(?” A C(C)7 Q)'

The second term of the previous sum is zero. This is so because ¢(C) is a
priori and therefore ¢(C') has zero measure, conditional on ¢q. Therefore, by finite
additivity and the assumption that the proposition ¢ is normal, any cell of any
finite partition of ¢(C') should carry measure zero as well (conditional on ¢).?°
So, we have:

C(r,q) = C(r,qgnrec(C))

as desired. Now, let p be epistemically possible for P, , if and only if p intersects
c(C), where P, = ApC'(p, T). Otherwise p is epistemically impossible for P,,. An
immediate consequence of Identity is that if p is epistemically impossible for F;,
the function C'(—, p) is abnormal, and pr;,/, = pr,. Now we are ready to prove
(5) and (6).

(5) We need to establish that P;,(c(C)) = 1, where P;; = ApC'(p, T). This follows
from the fact that ¢(C) is a core for C' and every core for every function carries
probability one.

Now, consider pr;,;,(¢(C)). If p is epistemically impossible for P, we have
PTiy/p = DT, and therefore pri,/,(c(C)) = 1. Otherwise, Update of Cores guar-
antees that p N ¢(C) is a core for C(—,p). Therefore, since all cores receive
probability one we have pr;,/,(c(C)) = 1.

(6) Here we need to show that if O,  entails p, then ig/p = i. So, assume that
¢(C) entails p. We have to show that P;,/, = P;, and O/, = Oy,

Piysp = MC(q,p), where C(g, T) is assumed to be normal and non-coreless.”
Therefore, according to Identity,

7

C(q,¢(C)) =C(q, T).

We need to show that P;,,, = A\qC(q,p) = Pi, = A\qC(q, T). Given that C(q, T)
is assumed to be normal, Identity guarantees that C'(¢, T) = C(g, ¢(C)). On the
other hand, Update of Cores guarantees that C'(q,p) is normal and non-coreless
with ¢(C) as its largest core. Therefore C(q,c(C)) = C(q,p), given that O,
entails p. So, we can establish that P/, = A\¢C(q,p) = A\C(q, T) = P;. In
addition, Update of Cores also guarantees that O; /,, = O;.

(7) Assume that 0O; = ¢(C) entails p. We need to establish that iy/p =
By Identity, P/, = AC(q,p) = AC(q,prc(C)). But then C(g,prc(C))
C(q,L) = P,. On the other hand, since P/, = A\¢C(q,p) = AqC(q,prc(C
the unique core of C(q,p) is empty, making O;,/, = L.

W.

).

26We should dispel a possible confusion here. Since ¢(C) is a priori for C, we also have that ¢(C) is
abnormal for C. But this only means that P(—,¢(C)) is not a probability function. C(—,q) is nevertheless
a probability function obeying finite additivity. Therefore C(r A ¢(C),q) + C(F A ¢(C),q) = C(c(C),q) = 0.

27T A slightly more general result can also be proved for functions C' that need not be normal. The needed
assumption is that the C function should be assumed to be non-coreless, if normal.
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Finally, it is easy to see that Conjunctive Cumulativity is obeyed. Moreover a
Popper Iterative System is also a Bayesian Iterative Probability System.

Notice that when an Iterative System is used to represent a two-place function C', other
epistemic notions defined via the system of cores for C fail to provide a representation of
epistemic necessity. In particular, the qualitative expectations encoded in the smallest core of
C(p, T), are not a viable representation of O;,— properties like Identity will not be satisfied.

It is also important to see that the crucial role of O; is to determine the space of
epistemic possibilities for P;. In order to see this, notice that according to clause (4) in
the representation of Iterative Systems by a Popper function, the inconsistency of p is only
a sufficient, but not a necessary condition of the inconsistency of P, (P, = P,). This
leaves open the possibility that revising P; with logically consistent propositions might also
yield P, as an outcome. The previous results shows that this is indeed the case. For
example, P/, = P, for any (non-empty) proposition p failing to intersect c¢(C'), i.e. for any
proposition that is epistemically impossible for C'. This and other reasons summarized in
[6] and [5] strongly suggest that, for every C, the largest core for C' (alternatively our O;)
encodes the certainties (full beliefs) for P;, determining the space of epistemic possibilities
for P,. McGee adopts in [29] a semi-formalized principle incorporating the former ideas:

P, is to take the constant value 1 only if p is epistemically utterly impossible.
There is no need for even an ideally rational agent to formulate a plan for how
she would revise her beliefs upon learning that p, if she is absolutely certain that
p is false, in this extreme case, we set P/, equal to 1 arbitralily.

Notice that principle is not formulated exactly in [29]. This is so because this paper lacks
the resources to exactly define what is ‘epistemically utterly impossible’ for a probability
function P;. A theory like van Fraassen’s is needed to define this notion probabilistically
in terms of P;. Here we have offered such definition, by appealing to the theory presented
in [6] and [4]. McGee’s principle can therefore be exactly formulated as follows for Popper
functions:

(Consistency) U,(C) is abnormal only if p N ¢(C) = (%

Iterative systems provide an alternative formulation of the same principle in a more general
setting:

(Consistency) Py, = P, only if pn O; = 0.

Notice that as long as conditions 9 and 10 of conservative iterated probability systems are
satisfied, condition 8 and Consistency are also satisfied. As a matter of fact, both condition
8 and Consistency hold in the presence of the RTL half of condition 10. This condition
guarantees that the necessary proposition (O;) for the index ¢ is the falsity as long as the
P-component of 7 is 15. So, we have as a corollary that if P be an iterative system over a
Boolean algebra B, rooted in i, representing a Popper probability function C' and satisfying

28We adopt here the notation proposed in section 2 for encoding changes with sequences of propositions
{90,---,qn}-
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conditions 9 and 10 (Definition 2.6), then P is a Conservative Iterative Probability System
obeying Conjunctive Cumulativity.

Although consistency is a widely accepted principle in the orthodox Bayesian tradition,
the forms of Bayesianism that nurtured the development of theories of belief revision and
belief-contravening supposition do not accept the principle. To a large extent the main
current theories of belief change and supposition allow for the formulation of policies for
changing view upon learning (supposing) that p, when the agent is absolutely certain that p
is false. The probabilistic tradition based on the use of Popper functions is not equipped to
deal with such (full)belief-contravening changes.

The bodies of expectations for a measure C' (encoded via the innermost core for C') can,
nevertheless, be revised with propositions incompatible with those expectations, as long as
these propositions are epistemically possible, i.e. compatible with the largest core for P.
We will verify in the coming section that this form of expectation change also obeys a form
of cumulativity. And we will also verify, of course, that the notion of (full) belief change
induced by probability kinematics is also constrained by conjunctive cumulativity.

6.1. The notion of belief change induced by cumulative probability kinematics

We will adopt here the notation proposed in section 2 for encoding changes with sequences
of propositions {qo,...,qn}. Ugp,..qo(C)(p | T) denotes such sequential change. Moreover,
according to the adopted definition of update, we have U, .. (C)(p| T)=C(p | Na N
...N¢q,). Then the following properties are satisfied, for non-coreless Functions P over a
countable space.??

Inclusion p(C) C ¢(C)
Expansion ¢(C)Np = ¢(U,(C))
Success p(U,(C)) entails p
Preservation If p(U,(C)) Np # 0, then p(C) Np = p(U,(C))
Restricted Consistency Preservation If p(C) # 0, and ¢(C)Np # 0, then p(U,(C)) # 0.
Fixity If C' = 1p, then p(C) = ¢(C) = 0 and U,(C) = 15.
Cumulativity for Expectations p(U,,(C)) = p(Upn,(C))
Entertainability If ¢(C) N p = 0, then U,(C) = 15.
And, of course, Expansion yields Cumulativity for full belief or certainity:

Cumulativity for Full Belief ¢(U, ,(C)) = ¢(Upr(C))

In addition, Expansion, together with Fixity, entails the principle of Consistency pre-
sented in the previous section:

29The satisfaction of Fixity requires non-triviality constraints on the size of the underlying space - the
universe of the space needs to contain more than one point.
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7. Hypothetical revision and cumulativity

A qualitative account of change of view can be abstracted from the previous account of
probability change. In order to do that one can focus on an epistemic state F, rather than
a probability function C'. Such state is supposed to have two epistemic dimensions. On
the one hand there is a body of expectations p(E) associated with it as well as a body of
certainties ¢(F). These two dimensions of E obey, in turn, a series of constraints reflecting
the properties mentioned above.

A cumulative model of change is a tuple ((E,Q,P,x*, p),c), where (E,Q, P, x, p), is an
extended model and ¢ is a function ¢ : E — 2%,

While p(FE) is supposed to yield the strongest proposition expected in state E, ¢(E) cap-
tures the strongest proposition fully believed in E. The following axioms are then motivated
by the previous account of iterated probability kinematics:

(7.1c) p(E) C ¢(E). (Inclusion)
(7.2¢) ¢(E) Np =c(E *p). (Expansion)
(7.3¢) p(E *p) C p. (Success)
(7.4¢) If p(E) Np £ 0, then p(E) Np =p (E *p). (Preservation)
(7.5¢) If p(E) # 0 and pNc(E) # 0, then

p(E xp) # 0. (Restricted Consistency Preservation)
(7.6¢) If ¢(E) = 0, then ¢(E * p) = 0. (Fixity)
(7.7¢) p((E xp)*xq) = p(E % (pNq)). (Cumulativity)

Fixity indicates that the revision of any state whose (full) beliefs are inconsistent yields in
turn a state preserving this feature. This strong condition is compatible with Cumulativity,
but not required by it. Nevertheless, such a condition is required in Conjunctively Cumulative
probability systems. Of course, the abstractly specified state E can not only be instantiated
by a Popper function, but also by a Grove system of spheres or, even more directly, a system
of cores defined on (2, or a ranking function, etc.

The previous axiomatization has been independently proposed in [4] and [5] under the
name of hypothetical revison. A computational prodedure obeying the axioms is offered in
[16]. The following example provides some intuitive idea of how the method can be used to
model the act of supposing.

Consider a spinner on a dial divided into four equal parts 1, 2, 3 and 4. Being in E means
that you expect that the winners are either 1 or 4.

FE | Possible worlds
CI Wi, Wy

We2, W3
Rest of worlds

E is represented via a system of cores whose innermost core is CI and its largest core is
{wy, wa, w3, ws}. According to intuition, hypothetical revision sanctions the acceptability of:
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(1) If the winner lands in an odd number, then if the number is different from 1, the
number is 3.

The initial act of supposing Odd is modeled as the opening of a ‘suppositional window’
that only includes Odd-options. This suppositional window preserves as much as possible of
the structure encoded in the initial core system. For example, the ordering of worlds induced
by E' is not altered. So, our first act of supposing will lead us to:

E «Odd Possible worlds
CI wn
W3

Rest of worlds: {ws, w4}

where CI is the innermost core and {wy,wsy} is the largest core.®® It is easy to check that
the previously reviewed methods of change fail to capture the intuitive acceptability of (1).
In particular, an analogue in this setting of the DP rule sanctions the acceptability of the
following conditional with respect to E:

(1) If the winner lands in an odd number, then if the number is different
from 1, the number is either 3 or 4.

The examples considered above were first studied in [28]. In this article McGee used a
qualitative model of supposition similar to the one presented here. McGee was also aware
that this model of supposition requires the adoption of Cumulativity, a property which he
did not find questionable. Here we have shown that the adoption of a cumulative modeling
of supposition is not optional, but mandatory for probabilism. We have also shown that
Cumulativity is required in order to prove that Popper functions and infinitesimal probability
are two faces of the same coin - in the sense precisely specified in section3. While this clarifies
the shape of a cumulative theory of supposition, it leaves the status of Cumulativity open.
In fact, many accounts of supposition reject Cumulativity.

30The previous diagrams used to represent cores can be easily adapted in order to represent raking functions
(or Spohn’s ordinal conditional functions) of the type considered in section 5.3. We only need to assign
ordinals to each rank (row in the diagrams) - or to each core, depending on the intended interpretation of
the diagrams. The updating algorithm tacitly used in the examples assigns to each p-point w the updated
rank F % p(w) = F(w) - F(p) — see section 5.3. —p-points get assigned the infinite rank after a p-update.
This method has been dubbed ‘Bayesian updating with hard evidence’ in [16], where it is recommended for
computational reasons. Probabilistically the idea is that the points in the infinite ranks after a p-update
are the abnormal points of U,(C) — if the initial core system corresponded to a function C. The points in
the lowest rank are the ones corresponding to the innermost core and the remaining p-points configure the
largest core of U,(C'), which, on the other hand, are also the normal points for U,(C). All the points with
positive (unconditional) measure appear in the lowest rank. The remaining points all receive unconditional
measure zero. But there are various gradations distinguishing those zeros. The ones in the infinite rank are
abnormal points. Epistemologically those points are impossible. The remaining normal zeros are, in turn
distinguished in terms of their plausibility by intermediate cores. So, in the example, after updating with
Odd, the points 2 and 4 are rendered epistemically impossible, while 1 is expected (with measure one). 3 is
considered epistemically possible, but maximally unexpected. In plainer terms, after the update the agent
is certain that the number is either 1 or 3. Given his background knowledge he is almost sure (or he expects)
that the winner is 1; and he is certain that the outputs 2 and 4 are ruled out.
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8. Rival views of supposing

In the previous sections, we presented a purely qualitative model of the theory of change
presupposed by iterative probability kinematics. We argued that the theory can be viewed
as a theory of supposition, and we showed that some of its most fundamental axioms are
incompatible with AGM and DP.

Cumulativity also collides with other theories of supposition. Here we will briefly review
three different theories of supposing, none of which is cumulative.

When conditionals are considered as propositions, their truth conditions with respect to
a view K can be represented as follows:

Suppositional construal of conditional belief (SCCB)
K Cp>qifft K#p Cgq.

The notion of change # satisfying SCCB has been proposed as an account of supposition
by Gérdenfors in [15]. Previously, David Lewis proposed a probabilistic version of # in
[27]. Lewis’ name for this operation (imaging) is now more or less standard in this field.
Gérdenfors’ notion is incompatible with AGM [15]. Lewis’ imaging is incompatible with
standard conditioning and with Popper functions. Both fail to satisfy the qualitative or
quantitative versions of Cumulativity and Preservation.

Instead of Preservation, # requires:

If K Cp, then K#p = K. (Weak Preservation)
This in turn requires:
If K =0, then K#p = 0. (Inconsistency Preservation)

A recent theory of supposing proposed by Hajeck and Harper also implements Inconsis-
tency Preservation—see their postulate (2), [18, p. 3]. We will consider this theory below.
The # operator not only fails to obey Preservation, it also fails to satisfy:

If KZpand K € —p, then K#p = K Np. (Open Revision)

Isaac Levi argued in [25] that Open Revision is an adequacy condition which needs to be
satisfied by theories of supposing that extend the views first suggested by F.P. Ramsey in [31].
He offered in [25] a theory of supposition that does obey Open Revision, and fails to obey
Preservation (Levi calls this method Ramsey revision). He also defended the appropriateness
of using such a notion to provide acceptability conditions for conditionals. As in the case of
#, Levi’s notion of change fails to obey Cumulativity.

Lewis’ notion of supposing has played a prominent role in recent years due to the central
role played by the notion of supposing in contemporary causal decision theory. In fact,
most causal decision theorists claim that the notion of conditional probability used in the
calculation of expected utility is imaging rather than standard conditioning. James Joyce
has recently articulated the mathematical details of this claim in [22].

Brian Skyrms proposed yet another notion of supposition in [35]. Skyrms clearly em-
phasizes the differences between learning and supposing in a probabilistic context. He also
makes clear how supposing (rather than learning) is the act required to evaluate certain
conditionals. The following lines present the issue clearly:
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Updating subjective belief to assimilate a given piece of information and suppos-
ing what the world would be like were that bit of information true, are distinct
mental acts for which different rules are appropriate. The difference is often
marked by the distinction between the indicative and the subjunctive mood.
The Warrenite will assert: ‘If Oswald didn’t kill Kennedy then someone else did’
but deny ‘If Oswald hadn’t killed Kennedy someone else would have’.

Without going into the details of Skyrms’ probabilistic models of learning and supposing,
we will focus here only on a few aspects of his proposals. Our main goal is to indicate the
role played by cumulative methods of change (probabilistic or not) in the theory.

The less controversial point made by Skyrms is the following: the processes of learning
and supposing need to be conceptually distinguished. They are governed by different rules.
There is indeed a robust consensus in the probabilistic literature concerning the need to
distinguish between stochastic supposition and learning, as methods ‘for which different rules
are appropriate’. The distinction is less consensual among researchers who use qualitative
methods to model epistemic change. Nevertheless, the distinction is easy to export from a
quantitative to a qualitative setting, and we will take it for granted here.

Controversy arises at the point where the rules governing supposing need to be made
explicit. Skyrms suggests (in the paper mentioned above) that learning should be modeled
by conditioning and that this method is also appropriate to model the form of supposition
revealed by the acceptance of indicative conditionals like ‘If Oswald didn’t kill Kennedy then
someone else did’. On the other hand, Skyrms seems to equate the act of supposing with the
form of subjunctive supposing involved in the acceptance of subjunctive conditionals like:
‘If Oswald hadn’t killed Kennedy someone else would have’. The probabilistic rule required
to model such a mental act is, according to Skyrms, the one involved in minimizing the
so-called Kullback-Leibler information measure (MAXENT).

Recently, James Joyce [22] offered an analysis of Skyrms’ ideas and of their (conflictive)
relationship with Lewis’ analysis of (subjunctive) supposition in terms of imaging.

[ agree completely with the claim that learning and subjunctive supposition are
different, and with the claim that learning and the process captured by mini-
mizing Kullback-Leibler information are fundamentally different. What I deny
is that the process captured by maximizing Kullback-Leibler information has
anything to do with subjunctive supposition.

In the dispute concerning how to model subjunctive supposition, Joyce sides here with
Lewis, proposing imaging, rather than MAXENT as the correct method. Of course, neither
method is cumulative. So we find in the literature at least three models of subjunctive
supposition, of which two are probabilistic (MAXENT and imaging) and one is qualitative.
The methods are MAXENT (Skyrms), imaging (Lewis) and Ramsey Revision (Levi). Again,
none of these methods is cumulative.

Joyce also differs from Skyrms when it comes to indicative (or ‘matter-of-fact’) supposi-
tion. The idea is that conditioning is not powerful enough to model all forms of indicative
hypothesizing. This is based on the simple observation that there are plenty of cases in
which one evaluates indicative conditionals with respect to bodies of information that assign
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probability zero to their antecedents. Skyrms’ own example can be used to illustrate Joyce’s
point. According to the Warrenite, Oswald, acting alone, killed Kennedy. Therefore, accord-
ing to the Warrenite, the antecedent of ‘If Oswald didn’t kill Kennedy then someone else
did” might carry zero measure. This is so, for example, in case the Warrenite fully believes
that Kennedy’s only killer was Oswald. The conclusion is that in order to model indicative
supposition one needs either Popper functions or infinitesimal probability.

According to Joyce, when the unconditional probability of A is zero, one can entertain
A for the sake of argument in two different ways. One way appeals to (Lewis’) image of X
given A, while another uses the two-place Popper function P(X, A). The first measures the
probability that X would have if C' were true; while the second determines the probability
that X has if C' is true.?!

McGee also proposed to treat indicatives via two-place functions in [29], the same article
in which he offered his mapping between Popper functions and infinitesimal probability:

(8.4) The probability of a simple conditional A > B is C(B, A) where
C s a Popper function on the factual sentences.

This probabilistic test improves on a previous version offered by Adams, according to
which all conditionals whose antecedents carry zero measure should carry probability one.
But this improved version of Adams’ test is still limited; it only applies to non-nested condi-
tionals. (In McGee’s formulation of the test, ‘simple’ means non-nested.) In a different essay
[28], McGee did consider the problem of iterated conditionals. Here, he recommends the
so-called Exportation and Importation laws, both for indicatives and subjunctives. These
laws require identical acceptance conditions for the conditionals of the shape ‘If A, then
if B, then C” and ‘If A and B, then C”. In our setting, this is tantamount to requiring
conjunctive cumulativity. Nevertheless Lewis’ conditionals do not obey the Exportation and
Importation laws. This is just the counterpart of the fact that Lewis’ imaging does not obey
Conjunctive Cumulativity. Unfortunately McGee’s analysis in [28] is not probabilistic—he
appeals to a possible worlds semantics in order to defend the Exportation and Importation
laws. In addition a test of acceptance for iterated probabilistic conditionals has been recently
considered in [4]. The test makes essential use of a generalized version of McGee’s Improved
Adams’ Hypothesis (see 8.4 above). The resulting view of iterated probability conditionals
requires the use of Export-Import laws.

Cumulativity and Conjunctive Cumulativity have emerged as fundamental parts of the
probabilistic program in semantics pioneered by Adams and later continued by McGee,
Edgington and other researchers. Cumulation principles were tacitly invoked by McGee in
order to explain away the fact that a rational agent can accept both a conditional of the
form ‘If A, then if B, then C” and its antecedent and reject its consequent. Edgington has
recently offered similar arguments in [13], together with an attempt to explain away the
acceptance conditions of subjunctive conditionals without appealing to imaging.

The idea of developing and defending a unified notion of supposition encoded in terms
of generalized conditional probability seems to be congenial to contemporary defenders of

31 Although this view is more or less widespread in the literature, we should stress here that it is far from
being consensual. For example, both Adams and Levi disagree with it, although for different reasons.
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Adams’ program in the semantics of conditionals.??> Here we do not intend to offer arguments
pro or con this sort of unification.?® We have focused instead on revealing the probabilistic
and qualitative commitments induced by the extension of McGee’s mapping to the iterated
case, concluding that a strong form of Cumulativity is needed to establish this mapping.
Moreover we have provided an axiomatization of the cumulative notion required (at the
qualitative level), along with an interpretation of the axioms based on the work of Darwiche
and Pearl. Of course, Cumulativity has not been popular in the context of belief change.
Far from that, all standard accounts of belief change are incompatible with Cumulativity.

Although Cumulativity seems too strong a constraint for an inquiry-based interpretation
of generalized conditional probability, a suppositional interpretation might suit it. It is less
clear whether all forms of supposing are Cumulative. Many authors disagree with this.
A more modest claim, perhaps, is that the constraint applies to ‘matter of fact’ forms of
supposing, in Jeffrey’s terminology.?* In any case, the shared conclusion is that a general
mapping between Popper functions and infinitesimal probability imposes constraints that
limit the range of possible interpretations of these two different generalizations of standard
conditional probability.

The next and final section is devoted to a notion of supposition explicitly proposed to
study the qualitative constraints on change imposed by non-iterated Popper functions. We
will verify an interesting convergence between this view and the one encoded in Hypothetical
Revision.

8.1. H4ajek and Harper on supposition

The theory of supposition proposed by Hajek and Harper in [18] is closely related to the
purposes of the present study.?®> Hajek and Harper defend the appropriateness of extending
conditional probability as a representation of conditional belief by taking full belief as prim-
itive and defining extended conditional probability as coherent degree of belief relative to
suppositions. This idea is similar to the one considered by van Fraassen, but, in the order
of explanation, it places full belief and supposition before extended conditional probability.
Therefore this view is more akin to the non-reductive proposal considered here. In fact,
Héjek and Harper start with full belief and then introduce supposition axiomatically, as we
have done in the previous sections.3

32This view has been independently defended by some philosophers of science like van Fraassen and Harper.
The gist of the idea is to make the notion of matter of fact supposing involved in the acceptance of indicatives
the central suppositional operation, and to explain other types of supposition in terms of added time shifts.

33In [4] an argument is offered in defense of the view that commitment to Export-Import laws depends
on the kind of Bayesian Epistemology assumed in the analysis. Commitment to Export-Import laws is only
required when the underlying epistemology is a form of radical probabilisn whose only primitive is a notion of
generalized conditional probability. Natural extensions of 8.4 in this setting require the Export-Import laws.
But the mere use of generalized conditional probability in the context of a different Bayesian epistemology
might not require these laws (see the observations in the first paragraph of section 8.1 for more details).

34Gee [21]. Nevertheless, this view is far from being uncontroversial. The issue is related to the status of
the Exportation and Importation laws. Many researchers are reluctant to accept those laws, even for forms
of matter-of-fact supposing.

35The theory is based on a previous account offered by Harper in [20].

36 Therefore Hajek and Harper’s analysis tacitly rejects the use of an underlying form of radical probabilism
whose only primitive is conditional probability. They offer instead a probabilistic analysis compatible with
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Their notion of change is explicitly conceived as the qualitative counterpart of the notion
of supposing encoded in non-iterated Popper functions. Our notion of hypothetical revision
is supposed to do the same job for iterated Popper functions. Therefore, it is natural to ask
whether our notion of hypothetical revision is an extension of Hijek and Harper’s notion. The
lemmas below show that if Hajek and Harper’s axioms are modified in one well-motivated
way, they indeed are a special case of hypothetical revision.

A basic model of supposition is a triple (€2, F, %), where {2 is a non-empty set of states,
F is a field of propositions with respect to  and * is a function * : 29 x F' — 2%, obeying
the following constraints. Subsets K of () represent bodies of full belief.

k1)

k2) IfKCp,thenK K xp.

k3) if pCgand KxqgNp#0, then Kxp=K xqnNp.
)

(
(
(
(k) If p C g and K x ¢ = (), then K xp = {).

The view of supposition encoded by the former postulates is incompatible with AGM
and Ramsey revision. In fact, it satisfies Inconsistency Preservation (which is entailed by
(k2)); a postulate inconsistent with both AGM and Ramsey revision. The notion does not
fit the idea of supposition encoded by # either. In fact, k3 entails Preservation, while the
crucial idea of # is to construct a non-Preservative notion of change.

Moreover, Hajek and Harper’s postulates do not seem apt to model a well-motivated
notion of supposition,?” unless we confine our attention to non-nested conditionals. In fact,
Postulates (k2) entails Invariance. But the notion proposed by Héjek and Harper is almost
right, as we will see. Invariance can be circumvented by adopting an axiomatization of the
type advocated by Darwiche and Pearl (and adopted in our presentation of Hypothetical
revision).

(E1) p(E*p) Cp.

(E2) If p(E) C p, then p(E) = p(E * p).

(E3) If p C g and p(E % q) Np # 0, then p(E * p) = p(E * q) N p.
(E4) If p C g and p(E * q) = 0, then p(E * p) = 0.

This presentation of the axioms advocated by Hajek and Harper is indeed entailed by
the axioms of hypothetical revision.

Lemma 8.1. E2 follows from 6.2c and 6.4c.

Proof. If p(E) # 0, k2 follows immediately from (6.2c). If p(E) = (), then
p(E *p) =0, by (6.4c).

Lemma 8.2. E3 follows from 6.2c, 6.5¢ and 6.6¢

the classical views of De Finetti and Savage, where a qualitative notion of full belief (certainty) is assumed
as an epistemological primitive not derivable from (conditional or unconditional) probability - see [4], section
1, for details.

370r to model the notion of supposition required by McGee’s extension of Adams’ program.
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Proof. Assume p C ¢ and p(E x¢) Np # (. Now, by (6.2¢) p(E xq)Np =
p((E*q)=*p). (6.5¢) yields p((E *q)*p) = p(E % (¢Np)). Now, by the hypothesis
and (6.6¢) we get that p(E * (¢ Np)) = p(E *p).

Lemma 8.3. E4 follows from 6.5¢ and 6.6¢.

Proof. Assume the antecedent of E4. Since p C ¢, p = pN g, (6.6¢) guarantees
that p(E*p) = p(E*(pNq)). By (6.5¢), p(Exp) = p(E*q)*p. Since p(Ex*q) = 0,
then, by (6.4¢), p(E % q) * p = ().

The previous lemmas show an interesting convergence of ideas between the view proposed
in this article and the one offered in [18]. Hajek and Harper focused on capturing the notion
of supposition presupposed by non-iterated Popper functions. We just saw that the modified
version of their axioms is indeed part of our more comprehensive study of the qualitative
commitments induced by Popper iterative probability kinematics. It is also interesting to
see that neither theory is compatible with some of the standard theories of theory change,
or with other, differently motivated, notions of supposition.3

38Notice also that Hajek and Harper’s postulates are embeddable in different iterated extensions. As we
explained above, unlike van Fraassen, they do not subscribe to a form of radical probabilism whose only
primitive is conditional probability. As it is argued in [4], this leaves open the possibility of non-cumulative
iterated extensions of their theory. For example, their postulates might be obeyed by other forms of matter-
of-fact supposing which are not consistency preserving (like the form of consensus revision, proposed by Levi
in [26], section 2.5.).
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