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Abstract 

This paper presents a predictive model of a simple, but 
important, data entry task. The task requires participants to 
perceive and encode information on the screen, locate the 
corresponding keys for the information on different layouts of 
the keyboard, and enter the information. Since data entry is a 
central component in most human-machine interaction, a 
predictive model of performance will provide useful 
information that informs interface design and effectiveness of 
training. We created a cognitive model of the data entry task 
based on the ACT-R 5.0 architecture. The same model 
provided good fits to three existing data sets, which 
demonstrated the effects of fatigue with prolonged work, 
repetition priming, depth of processing, and the suppression 
of subvocal rehearsal. The model also makes predictions on 
how performance deteriorates with different delays after 
training, how different amounts of rehearsal during training 
affect retention, and how re-training helps retention of skills.  

Introduction 
In this paper we present cognitive models constructed to 
predict the effectiveness of specific training principles in 
perceptual, cognitive, and motor tasks. We used empirical 
data and theory developed at the University of Colorado in 
three main experiments. We constructed executable models 
that represent the theory including the cognitive processes 
and mechanisms we expect to be involved. From these 
models we obtained data that we compared to the human 
data obtained from the experiments. After our models were 
validated using the procedure just described, we generated a 
set of new predictions for future experiments. 

The Data Entry Task 
The data entry task has been studied extensively in the 

laboratory and is routinely used outside the laboratory in a 
variety of complex, naturalistic situations. In this task, 
subjects are typically shown sets of four-digit numbers, 

either as numerals (e.g., 4 8 2 6) or as words (four eight two 
six).  Subjects respond by typing each of the four digits 
using either the keypad on the right-hand side of the 
computer keyboard or the number row on the top of the 
keyboard.  In some cases, they respond instead by typing the 
initial letters of each word (e.g., f e t s).  Typically, no 
feedback concerning the accuracy of the responses is 
provided to the subjects, and they do not see their typed 
responses. There are three major component-processing 
stages in the data-entry task: encoding, response 
preparation, and response execution. Encoding involves 
perceptual processes, response preparation involves the 
mental construction of a motor program for entering the 
sequence, and response execution involves the actual 
motoric button presses.  

The Model 
A general structure of the ACT-R (Anderson et al., 2004) 

models used in the next three data entry experiments is 
represented in Figure 1. We divided the task into the 
cognitive steps represented in this figure: encode each of the 
4 digits; retrieve the location of the key for each of the 
digits; type each of the 4 digits and hit the “enter” key. Each 
of these steps involved at least one production in the ACT-R 
model. 

Figure 1 shows that the task can be decomposed into three 
different components. The first is initiation time, which 
measures the time to enter the first digit. During the 
intiation time, participants had to encode the four digits, 
find the corresponding key locations on the keypad, and 
execute the first keypress. Thus, the initiation time includes 
both cognitve and motoric processes. The second is 
execution time, which measure the time to enter the second, 
third, and fourth digits. During the execution time, 
participants presumably engaged in less encoding, so the 
time represented primarily finding the corresponding key 
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locations on the keypad and executing the keypresses. The 
third is conclusion time, which measures the time to enter 
the concluding “Enter” keystroke. During the conclusion 
time, participants had to only find and press the key, which 
is largely a motoric process. We will show later, since 
different cognitive and motoric processes are involved in 
these component measures, this breakdown of response 
times will provide important information for the underlying 
cognitive and motoric processes in this task. 

 

 
 

Figure 1: Steps in the ACT-R cognitive models of the data 
entry task 
  
 ACT-R is a computational cognitive architecture used to 
simulate the cognitive processes involved in human 
performance of a task. There are multiple representations of 
ACT-R modules and capabilities (see ACT-R 4.0 
representation in Anderson & Lebiere, 1998, and ACT-R 
5.0 representation in Anderson et al., 2004). There are two 
major kinds of knowledge representation in the ACT-R 
architecture: declarative and procedural knowledge. ACT-
R’s declarative knowledge involves a representation of basic 
units of knowledge, or chunks. These represent facts 
described by slots or attributes. Procedural knowledge in 
ACT-R consists of production rules represented as 
condition-actions pairs. We will describe the two major 
mechanisms in ACT-R that are relevant to the current task.  
 The first mechanism concerns the access of declarative 
knowledge, or chunks. ACT-R keeps track of the usefulness 
of the knowledge and the use of a chunk is determined by its 
activation level, as described in the following activation 
equation: 

∑+=
j
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where Bi is the base-level activation of the chunk i, the Wj 
are the attention weightings of the elements that are part of 
the current goal, and the Sji are the strengths of association 
from the elements j to chunk i. The major mechanism 
relevant to the current task is the base-level activation 
equation that governs the value of Bi: 
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where tj is the time since the jth practice of an item. This 
equation reflects the findings that access of declarative 
knowledge increases with each exposure as a power 
function (producing the power law of practice), otherwise 
access to knowledge decays exponentially.  
 At any point in time, the productions representing 
procedural knowledge detect the patterns in declarative 
knowledge that are actively being processed by the system 
(usually relevant to the current goal). The key idea is that at 
any point in time multiple production rules might apply, but 
because of the seriality in production rule execution, only 
one can be selected, and this is the one with the highest 
utility. Production rule utilities are like activations for 
chunks, and play a similar role as activations play in chunk 
selection.  
 The mechanism most relevant to the current task for 
procedural knowledge is called production compilation, 
which basically is a combination of composition and 
proceduralization as described in Anderson’s (1983) theory 
of skill acquisition. Production compilation will try to take 
each successive pair of productions and build a single 
production that has the effect of both. After a production 
New is composed from productions Old1 and Old2, 
whenever New can apply, Old1 can also apply. The choice 
between New, Old1, and whatever other productions might 
apply will be determined by their utilities. However, the 
new production New has no prior experience, and so, its 
initial utilities will be determined by Bayesian priors. We 
describe how the prior θ is set for the utility value U. When 
New is first created, θ is set to be 0. Thus, there is no chance 
that the production will be selected. However, whenever it 
is recreated, its θ value is incremented according to the delta 
rule: ∆θ = a(U - θ), where U is the utility of Old1. 
Eventually, if the production rule New is repeatedly created, 
its priori θ will converge on U for the parent Old1. When it 
is actually superior, it will come to dominate its parent. 
Although our experience with this production rule learning 
mechanism is relatively limited, it seems to work well with 
the reinforcement-learning mechanism for production 
systems (Fu & Anderson, 2006). 
 We will next describe how our model produces 
performance of the data entry task in three different settings, 
as described in three different existing data sets. We will 
then describe how we can use our model to make 
predictions of performance in other novel situations. 

Effects of prolonged work  
When people work continuously over time on a task, two 
opposing processes might affect their performance. As 
predicted by the law of practice, performance may improve 
by becoming more accurate, faster, or both. On the other 
hand, performance may deteriorate as they suffer the effects 
of fatigue, boredom, and diminished attention over 
prolonged periods. In addition, it is possible that practice 
and fatigue may affect various measures of performance 
(e.g., speed, accuracy, and different components of a 
complex response) in different ways. The goal of the 
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experiments by Healy, Kole, Buck-Gengler, and Bourne  
(2004) was to encourage fatigue in a data entry task and to 
examine its effects on accuracy and on response time over a 
long practice period. As shown in Figure 2, Healy et al. 
(2004) found that prolonged work produced both learning 
and fatigue-like effects, depending on which measure, speed 
or accuracy, was used. With prolonged work, error rate 
increased (i.e., proportion correct decreased). This result 
suggested deterioration in performance as a result of fatigue. 
When an analysis was done for four different types of 
errors: missed trial, missed digit, extra digit, and wrong 
digit, it was found the trials with wrong or extra digits were 
more common than those involving missing digits or missed 
trials. These errors involving wrong or extra digits increased 
dramatically across the session.  
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Figure 
2. The observed (Obs) and predicted (Pred) total response 
time (A) and error proportion (B) in Experiment 1 of Healy 
et al. (2004). 
 

As shown in Figure 2, total response time decreased over 
time. This decrease contrasts with the increase in error rate 
and points to a speed-accuracy tradeoff. The model provided 
good fits to the data. We obtained a fit of R2=.96, RMSE= 
0.23, and R2=.91, RMSE=0.14 for the RT and accuracy 
respectively. The model produced these results as follows. 

Production compilation, which replaces the encoding and 
retrieving of the key locations by a “macro” production, 
results in faster execution. Fatigue corresponds to the 
increase of activation noise in retrievals, which leads to 
more errors (i.e., a decrease in the proportion of correct 
responses). 

Repetition priming and depth of processing 
Buck-Gengler and Healy (2001) asked subjects to enter the 
4-digit numbers displayed as either words or numerals. At 
test one week later, half of the old numbers from each group 
were presented in the same format as at training, and the 
other half were presented in the alternate format. They 
expected that the abstract concept would contribute to 
repetition priming. To separate the effect of learning in the 
motoric component, subjects were trained with one key 
configuration (keypad or row) and tested with a different 
one. Buck-Gengler and Healy found that old numbers were 
typed faster than new numbers (there was repetition 
priming) independently from the motor component. Also, 
numbers in word format at training were entered faster (as 
words or numbers) at test than numbers coded as numerals 
at training (see Figure 3).  
 In our model, because old numbers had a stronger base 
level activation (see the base-level activation equation), the 
retrieval was faster, thus creating the difference between old 
and new numbers. When numbers were presented as words, 
during the encoding process, the episodic representation of 
the word-format numbers invoked more phonological 
rehearsals of the numbers represented by the words. Both 
the episodic and semantic representations were encoded 
together with the key locations. During retrieval, both 
representations acted as sources of activation that speeded 
up the retrieval of the key locations. On the other hand, 
when numbers were presented as numerals, semantic 
concepts were not encoded and thus led to a lower level of 
activation due to the episodic representation. The difference 
in source activation created the faster response for numbers 
presented in word format.  
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Figure 3. The observed (Obs) and predicted (Pred) response 
time in different conditions. N-W = Numeral at training, 
Word at testing; N-N = Numeral at training and testing, etc.  
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 Figure 3 shows the reaction times for different conditions 
of Buck-Gengler’s experiment. The model fits the data well 
(R2=.92, RMSE=0.89).  

Suppression of subvocal rehearsal 
An explanation for the results from the second data set that 
was not answered by Buck-Gengler and Healy (2001) is that 
words may be more likely than numerals to elicit 
phonological processing. That is, it may not be that abstract 
meaning is retained better for numbers displayed as words 
than for numbers displayed as numerals. Rather, it is 
possible that individuals may simply activate the 
phonological loop of working memory. If this hypothesis is 
true, articulatory suppression would disrupt this means of 
coding and thus alter the performance in the task. 

In the study by Kole, Healy, and Buck-Gengler (2005) 
half of the subjects were in an articulatory suppression 
condition. Subjects in this group were required to repeat the 
word “the” continuously, starting before the first trial. The 
subjects in the other group were silent while they entered 
the digits. The main findings from their experiment were 
that old numbers were typed faster than new numbers 
(repetition priming holds), but the advantage of numbers 
presented as words at training was significant only for the 
silent group. 
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Figure 4. The observed (Obs) and predicted (Pred) response 
time for the different conditions in Kole et al. (2005) during 
training. AS=articulatory suppression, SIL=silence. 

The ACT-R model helped extend the explanation of the 
results and understand what might be happening at the level 
of cognitive processing. First, through modeling we found 
that the long-term repetition priming can be explained by 
the spreading activation mechanism in ACT-R. The results 
from the digit and letter conditions in the Buck-Gengler and 
Healy (2001) study suggest that it is not the amount but the 
type of processing that leads to the long-term repetition 
priming effect. We modified the model so that in the 
articulatory suppression condition, no encoding of the key 

location together with the numbers was done. During 
testing, since there was no chunk representing both the key 
locations and the numbers, there was no spread of activation 
to the key location and thus the retrieval was slower, 
compared to the silence condition. The results from the 
cognitive model and fit to the training data are shown in 
Figure 4. We obtained a fit of R2=0.88, RMSE=1.4. 

Model Predictions 
We aimed to answer three questions of general interest that 
had not been answered through empirical data collection in 
the data entry task. These questions are: 1) How would 
performance deteriorate with different delays after training?; 
2) How would different amounts of immediate rehearsal 
during training affect the retention of skills?; and 3) How 
would re-training help retention of skills? 

The delay was manipulated as the number of days 
between the end of training and the beginning of the testing 
phase. In the original experiments there was a delay of 7 
days. Figure 5 shows the predictions of the depth of 
processing and repetition priming effects when the duration 
between training and test varies from 1 to 16 days. The RT 
difference is the difference between the numeral and word 
RT for the depth of processing effect and the difference 
between the new number and the old number RT for the 
repetition priming effect. These predictions indicate that the 
benefit of training in words disappears with a longer delay 
between training and testing. Also, the repetition priming 
effect decays exponentially after a long delay.  
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Figure 5. The predictions of the differences in response time 
for the depth of processing and repetition priming effects 

We are also interested in predicting how the depth of 
processing and repetition priming effects will change across 
time with different initial amounts of training. We therefore 
manipulated the number of rehearsals of a word from 1 to 3 
times. Figure 6 presents these predictions. Compared to the 
predictions in Figure 5, we see that more initial training 
leads to higher retention of skills, but the effect decays 
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rapidly. However, the benefit of initial training stays even 
after 16 days.  
 Finally, we wanted to predict the effect of repetition: when 
individuals are trained and retrained after a particular time 
period. We varied the training from zero to two times. We 
found (Figure 7) that re-training may be more efficient than 
extensive initial training for retention of skills. 
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Figure 6. The predictions of the differences in response time 
for the depth of processing and repetition priming effects. 
Depth 1 = depth of processing effect with 1 rehearsal; RP1 
= repetition priming effect with 1 rehearsal, etc. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 4 8 12 16

Days between training and testing

D
iff

er
en

ce
 in

 r
es

po
ns

e 
tim

e 
(s

) depth 1 RP 1

depth 2 RP 2

depth 3 RP 3

 

Figure 7. The predictions of the differences in response time 
for the depth of processing and repetition priming effects. 
Depth 1 = depth of processing effect with 1 retraining, RP1 
= repetition priming effect with 1 retraining, etc. 

Discussions 
For decades, human factors practitioners have been calling 
for predictive models of human performance. One of the 
most prominent calls was made by Newell and Card (1985), 
who warned the human factors community it was not 
through advocating the empirical testing of endless design 
alternatives but, rather, through the use of predictive and 

reliable quantitative techniques. As the scope and scale of 
the issues that the human factors community was asked to 
consider expanded, the tool chest of quantitative methods 
seemed to diminish. With the recent advance of 
architectures such as ACT-R, or SOAR, engineering 
quantitative models of human performance is the wave of 
the present and represents an important part of the future of 
the human factors profession. 

The fact that we used the same model to fit the data is 
interesting in itself, because it demonstrates the flexibility 
and accuracy of the human cognition represented in the 
models. Through this exercise we were able to extend the 
explanations that researchers offered in the original papers. 
Most importantly, we were also able to make predictions of 
general interest using the model. The assessment of 
retention following different delay intervals and of transfer 
after changing the contexts are two general goals of 
effective training. Although this is only a first step towards 
our overriding goal of developing a theoretical framework 
for predicting the effectiveness of different training 
methods, we feel this is an important step. Given the good 
data fits in the three experimental data sets, we feel 
confident that the predictions offered here are reasonably 
close to actual human performance.  
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